Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(27): 32885-32894, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37392172

RESUMEN

As the rapid development of advanced foldable electronic devices, flexible and insulating composite films with ultra-high in-plane thermal conductivity have received increasing attention as thermal management materials. Silicon nitride nanowires (Si3N4NWs) have been considered as promising fillers for preparing anisotropic thermally conductive composite films due to their extremely high thermal conductivity, low dielectric properties, and excellent mechanical properties. However, an efficient approach to synthesize Si3N4NWs in a large scale still need to be explored. In this work, large quantities of Si3N4NWs were successfully prepared using a modified CRN method, presenting the advantages of high aspect ratio, high purity, and easy collection. On the basis, the super-flexible PVA/Si3N4NWs composite films were further prepared with the assistance of vacuum filtration method. Due to the highly oriented Si3N4NWs interconnected to form a complete phonon transport network in the horizontal direction, the composite films exhibited a high in-plane thermal conductivity of 15.4 W·m-1·K-1. The enhancement effect of Si3N4NWs on the composite thermal conductivity was further demonstrated by the actual heat transfer process and finite element simulations. More significantly, the Si3N4NWs enabled the composite film presenting good thermal stability, high electrical insulation, and excellent mechanical strength, which was beneficial for thermal management applications in modern electronic devices.

2.
Polymers (Basel) ; 14(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35808800

RESUMEN

Studies that aim to produce flexible films of composite materials based on ionomers-PZT, and volume fractions lower than 10% PZT, in order to monitor damage in aeronautical structures are seldom investigated. The growing emphasis on the use of polymers capable of self-healing after damage or activation by heating has motivated the application of self-healing ionomers as polymeric matrices in composites with piezoelectric particles aiming to monitor damage. Flexible composite films were developed based on the self-healing polymer matrix Surlyn® 8940 ionomer (DuPontTM-Wilmington, DE, USA) and PZT particles (connectivity 2-3) in volume fractions of 1, 3, 5 and 7%, with thickness around 50-100 µm. The choice of PZT volume fractions followed the preliminary requirement that establishes a final density, which is lower or at least close to the density of the materials used in aeronautical structures. Since the application of composites based on epoxy resin/carbon fibers has been increasing in the aeronautical segment, this material (with density lower than 1500 kg/m3) was chosen as a reference for the present work. Thus, due to self-healing (a characteristic of the matrix Surlyn® 8940) combined with recyclability, high flexibility and low thickness, the flexible composite films showed advantages to be applied on aeronautical structures, which present complex geometries and low-density materials. The manufactured films were characterized by SEM, XRD, DMA and mechanical tensile tests. The results were discussed mainly in terms of the volume fraction of PZT. X-ray diffraction patterns showed coexistent rhombohedral and tetragonal phases in the PZT particles-dispersed composite, which can potentialize the alignment of ferroelectric domains during polarization under strong electrical field, enhancing dielectric and piezoelectric properties toward sensing applications. DMA and tensile testing results demonstrated that the addition of PZT particles did not impair either dynamic or quasi-static mechanical performance of the flexible composite films. It was concluded that the PZT volume fraction should be lower than 3% because, for higher values, the molecular mobility of the polymer would suffer significant reductions. These findings, combined with the high flexibility and low density of the ceramic particle-filled thermoplastic polymer, render the developed flexible composite film a very promising candidate for strain and damage sensing in aeronautical structures.

3.
Macromol Rapid Commun ; 43(18): e2200387, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35689512

RESUMEN

With the rapid advance of electronics, the light, flexible, and multifunctional composite films with high electromagnetic interference (EMI) shielding effectiveness and excellent thermal management are highly desirable for next-generation portable and wearable electronic devices. Herein, a series of flexible and ultrathin natural rubber/MXene/carbon nanotubes (NR/MXene/CNTs) composite films with sandwich structure are constructed layer by layer through a facile vacuum-assisted filtration method for EMI shielding and Joule heating application. The fabricated NR/MXene/CNTs-50 composite film, with NR/MXene as inner layer and NR/CNTs as out layers, not only has high EMI shielding efficiency, but also has excellent comprehensive mechanical properties at the thickness of only 200 µm. In addition, the superior environmental durability, high electrothermal conversion efficiency, hydrophobicity, and fine performance stability after periodic cyclic bending make the film possess more value in practical application.


Asunto(s)
Nanotubos de Carbono , Fenómenos Electromagnéticos , Goma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA