Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Antioxidants (Basel) ; 13(7)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39061881

RESUMEN

Aquafeed's contamination by microplastics can pose a risk to fish health and quality since they can be absorbed by the gastrointestinal tract and translocate to different tissues. The liver acts as a retaining organ with the consequent triggering of oxidative stress response. The present study aimed to combine the use of natural astaxanthin with natural-based microcapsules to counteract these negative side effects. European seabass juveniles were fed diets containing commercially available fluorescent microplastic microbeads (1-5 µm; 50 mg/kg feed) alone or combined with microencapsulated astaxanthin (AX) (7 g/kg feed; tested for half or whole feeding trial-30 or 60 days, respectively). Fish from the different dietary treatments did not evidence variations in survival and growth performance and did not show pathological alterations at the intestinal level. However, the microplastics were absorbed at the intestinal level with a consequent translocation to the liver, leading, when provided solely, to sod1, sod2, and cat upregulation. Interestingly, the dietary implementation of microencapsulated AX led to a mitigation of oxidative stress. In addition, the microcapsules, due to their composition, promoted microplastic coagulation in the fish gut, limiting their absorption and accumulation in all the tissues analyzed. These results were supported by in vitro tests, which demonstrated that the microcapsules promoted microplastic coagula formation too large to be absorbed at the intestinal level and by the fact that the coagulated microplastics were released through the fish feces.

2.
J Appl Anim Welf Sci ; : 1-16, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695339

RESUMEN

The aquaculture industry frequently employs various slaughter methods that subject fish to inhumane conditions, resulting in significant suffering. This study examined the effects of electrical method on the welfare of farmed fish (Mesopotamichthys sharpeyi) compared to air asphyxiation. Fish captured with electricity exhibited calm behavior until death, in contrast to fish treated with air asphyxiation, which exhibited violent responses within 4 minutes of capture. The electrical method achieved a complete state of unconsciousness 7 minutes faster than air asphyxiation. Our results show that air asphyxiation raised cortisol levels more than the electrical method, with no significant difference in glucose and lactate concentrations. Electrically treated fish had higher superoxide dismutase and liver-reduced glutathione levels, while suffocated fish showed elevated GSH and liver catalase levels. Radiographs revealed no fractures or skeletal changes. Electrical stunning had no effect on gill tissue, but caused brain tissue hemorrhage, whereas air asphyxiation caused less damage. Air asphyxiation caused gill tissue issues but less brain damage. Consciousness loss is crucial for humane practices. Specific electrical currents (110V for 30s) could improve aquaculture and fish welfare.

4.
Anim Welf ; 33: e6, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510420

RESUMEN

Finfishes are caught from the wild for food, feed (often in the form of fishmeal and oil) and bait. According to the Food and Agriculture Organisation of the United Nations (FAO), between 74 and 83 million tonnes (averaging 77 million tonnes) were caught annually in 2000-2019. Although fishes are now widely recognised as sentient beings, capture is still quantified as biomass rather than number of individuals (in contrast to wild-caught marine mammals and crocodiles; and farmed mammals and birds). Here, we estimate global numbers of wild-caught finfishes using FAO capture production (landing) tonnages (2000-2019 data) and estimates of mean individual weight at capture, based on internet-sourced capture and market weights. We estimate that between 1,100 and 2,200 billion (1.1-2.2 × 1012), or 1.1-2.2 trillion, wild finfishes were caught annually, on average, during 2000-2019. Anchoveta (Engraulis ringens) comprised 28%, by estimate midpoint. Estimated numbers in 2019, totalling 980-1,900 billion, were lower due to reduced anchoveta landings, but still represented 87.5% of vertebrate numbers killed for food or feed, as obtained or estimated from FAO data. These figures exclude unrecorded capture such as illegal fishing, discards and ghost fishing. Estimated finfish numbers used for reduction to fishmeal and oil represented 56% of the total 2010 estimate (1,000-1,900 billion), by midpoint. It is recommended that the FAO reports fish capture numbers. The welfare of wild-caught fishes, which is generally very poor during and after capture, should be addressed as part of sustainable utilisation of aquatic resources.

5.
J Fish Biol ; 104(6): 1654-1661, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38423545

RESUMEN

The principles of three Rs-REPLACEMENT, REDUCTION, and REFINEMENT-govern the protection and use of animals, including fish, for research purposes in the European Union and Norway. In this paper, we discuss some straightforward steps to simplify the delivery of these principles at the idea stage and adapt some of these examples for conducting fish trials related to health and welfare. Although some of the approaches are well established in other animal science arenas, we believe there can be a timely recap of their key facets. We discuss a number of simple strategies to emphasize how a reduction in fish numbers can be achieved from initial project conception to implementation, highlighting not only their advantages but also their limitations. We also highlight the role that funding agencies can play in the implementation of the 3R principles in aquaculture research. These simple points can be used in frameworks to initiate a broader and dynamic intersectoral dialogue among stakeholders of aquaculture research on how to promote ethics and embrace opportunities for this within the tenets of the 3Rs.


Asunto(s)
Bienestar del Animal , Acuicultura , Animales , Acuicultura/métodos , Peces , Unión Europea , Noruega
6.
Front Vet Sci ; 11: 1347062, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38288140

RESUMEN

Ballan wrasse (Labrus bergylta) are commonly used as cleaner fish in salmon farms as a biological treatment to mitigate sea lice infestation. Improved welfare for cleaner fish both during production of these fish and when in sea-cages with salmon is crucial for the industry's development. A common operational procedure in ballan wrasse production is transporting juveniles from one land-based farm to another for further on-growing. Episodes of increased mortality have been reported after such transportations. In this study, the relationship between transport stress and post-transport mortality at the on-growing facility was examined. It was also investigated if light sedation with AQUI-S® can mitigate stress during transport. Stress was quantified by measuring cortisol release rate to the tank water during transport. This was investigated in 10 commercial live carrier truck transports (6 without AQUI-S® sedation and 4 with sedation during loading and transport). The total time of transport varied between 12 and 21 h. In general, mortality was significantly higher (1.0 ± 0.6% day-1) the first five days post-transport compared to 15-20 days post transport (0.5% day-1). There was also a strong relationship between fish weight at transport and post-transport mortality, where higher mean weight at transport reduced mortality. In contrast to what was expected, AQUI-S® treatment during transport procedures increased cortisol excretion rate, suggesting a stimulating effect of AQUI-S® on the stress axis in ballan wrasse. Considering these results, the value of using AQUI-S® to reduce stress during transport of juvenile ballan wrasse might be questioned. However, there was no relationship between cortisol release rate during transport and post-transport mortality. Furthermore, this study emphasizes that water cortisol measurements can be used as a none-invasive tool for monitoring stress and can be integrated into the welfare evaluation during commercial fish transports.

7.
Animals (Basel) ; 14(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38254412

RESUMEN

The liver health of Gilthead sea bream and European sea bass, fed with fish meal-free diets, including various proportions of plant proteins, as well as insect and poultry by-product meals, was investigated through biochemical and histological analyses using a new liver index (LI) formula. Four isoproteic (45% Dry Matter, DM) and isolipidic (20% DM) diets were compared, including a plant-based control diet (CV) and three other test diets, in which 40% of a plant protein-rich ingredient mixture was replaced with meals from Hermetia illucens (H40) or poultry by-product (P40) alone, or in combination (H10P30). The trials lasted 12 and 18 weeks for sea bream and sea bass, respectively. The results obtained thus far highlighted species-specific differences in the physiological response to dietary changes. In sea bream, the biochemical and histological responses suggest favorable physiological and liver health statuses, with higher serum cholesterol (CHO) and triglyceride (TAG) levels, as well as moderate hepatocyte lipid accumulation, with the H10P30 diet compared to the CV (p < 0.05). In sea bass, all diets resulted in elevated serum TAG levels and lipid accumulation in the liver, particularly in fish fed the P40 one (p < 0.05), which resulted in the highest LI, coupled with a higher frequency of severe lipid accumulation, hypertrophy, cord loss, peripheral nuclei displacement, and pyknosis. In conclusion, sea bream adapted well to the test diets, whereas sea bass exhibited altered hepatic lipid metabolism leading to incipient liver steatosis, likely due to the high lipid contents of the diets, including the insect and poultry meals. The LI formula developed in this study proved to be a reliable tool for assessing the effects of dietary changes on the liver health of sea bream and sea bass, consistent with biochemical and histological findings.

8.
J Fish Biol ; 104(3): 758-768, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37950685

RESUMEN

Environmental enrichment has the potential to improve the welfare and post-release survival of hatchery fish stocked for conservation purposes. However, the effectiveness of environmental enrichment is partly dependent on the fish species, life stage, and specific enrichment structure used. To enhance the effectiveness of environmental enrichment, it is crucial to focus on characteristic differences in enrichment structures, such as type and level. This study investigated how differences in enrichment type and level affected physiological and behavioral aspects of the welfare of pre-release juvenile rock bream Oplegnathus fasciatus by evaluating growth performance, basal and stressed cortisol levels, antioxidant enzyme activities, and exploratory behaviors regarding anxiety and flexibility. Fish were reared for 4 weeks in different enrichment treatments: barren, low-level cover structure, high-level cover structure, low-level interference structure (LI), and high-level interference structure (HI). The results revealed that fish reared with the LI treatment showed less anxiety and greater flexibility with respect to exploratory behaviors, without oxidative damage being detected. Despite exhibiting less anxiety as well, fish reared in the HI treatment had oxidative damage, indicated by lower superoxide dismutase activity, compared to those in the barren treatment. In addition, none of these enrichment structures enhanced growth performance or mitigate chronic and acute stress responses. Overall, the low-level interference structure may be more favorable in promoting the behavioral welfare of the fish. Application of this type and level of enrichment may increase the survival of the hatchery fish after release, which is critical to stocking success.


Asunto(s)
Enfermedades de los Peces , Perciformes , Animales , Perciformes/metabolismo , Peces/metabolismo , Estrés Oxidativo , Proteínas de Peces/genética , Filogenia
9.
Sci Total Environ ; 907: 168086, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37890633

RESUMEN

While the inclusion of synthetic polymers such as primary microplastics within personal care products have been widely restricted under EU/UK Law, water-soluble polymers (WSPs) have so far slipped the net of global chemical regulation despite evidence that these could be polluting wastewater effluents at concentrations greatly exceeding those of microplastics. Polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) represent WSPs with common industry and household uses, down-the-drain disposal and a direct route to wastewater treatment plants, conveying high risk of environmental leaching into freshwater ecosystems. The current study is the first investigating the impacts of predicted environmental concentrations of these WSPs on life-history traits of two freshwater species also constituting a disease model (fish - Poecilia reticulata and parasite - Gyrodactylus turnbulli). Single effects of WSPs on fish as well as their interactive effects with infection of the ectoparasite were determined over a 45-day exposure. Generally, WSPs reduced fish growth and increased routine metabolic rate of fish implying a depleted energetic budget, however these effects were dose, exposure time and polymer dependent. Parasitic infection alone caused a significant reduction in fish growth and enhanced fish routine metabolic rate. In contrast, a non-additive effect on metabolic rate was evident in fish experiencing simultaneous infection and WSP exposure, suggesting a protective effect of the two WSPs for fish also exposed to a metazoan ectoparasite. Off-host parasite survival was significantly lowered by both WSPs; however, parasite counts of infected fish also exposed to WSP were not significantly different from the control, implying more complex mechanisms may underpin this stressor interaction. Distinct detrimental impacts were inflicted on both organisms implying environmental leaching of WSPs may be causing significant disruption to interspecies interactions within freshwater ecosystems. Additionally, these results could contribute to sustainable development in industry, as we conclude PVA represents a less harmful alternative to PVP.


Asunto(s)
Poecilia , Contaminantes Químicos del Agua , Animales , Polímeros , Plásticos , Ecosistema , Microplásticos , Agua Dulce , Agua/química , Contaminantes Químicos del Agua/toxicidad
10.
J Zool Bot Gard, v. 5, n. 2, 325-337, jun. 2024
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5423

RESUMEN

The cownose ray (Rhinoptera bonasus) faces vulnerability primarily due to unregulated fishing, resource overexploitation, and habitat degradation. Consequently, individuals maintained under human care play a pivotal role in species conservation, particularly when their welfare is prioritized. Achieving optimal welfare in aquarium settings relies heavily on effective management practices, notably environmental enrichment. However, research on the efficacy of such techniques for cownose rays remains limited. Thus, this study sought to evaluate the impact of various food enrichment items on the behavior of four individuals at the São Paulo Aquarium in Brazil. The project encompassed three phases: baseline, enrichment, and post-enrichment. Enrichment items, designed to mimic the species’ natural foraging behavior, included an ice block containing food, food hidden in vegetables fixed to structures at the bottom of the tank, a tray with substrate and food, and a perforated plastic container with food inside. Behavioral observations utilized focal sampling with instantaneous recording every minute. Results showed increased foraging activity in the post-enrichment phase, whereas swimming increased and following behaviors decreased during the enrichment phase. Additionally, foraging behaviors predominantly occurred near the aquarium bottom. Overall, findings suggest that enrichment items effectively stimulated natural behaviors in cownose rays and were very attractive to the fish, advocating for their integration into species management protocols to enhance welfare.

12.
Front Vet Sci ; 10: 1268396, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808101

RESUMEN

The primary aim of this study was to comprehensively evaluate the welfare of Nile tilapia (Oreochromis niloticus) throughout their entire life cycle within aquaculture, spanning from reproduction to slaughter. The methodology was structured to identify welfare indicators closely aligned with the principles of animal freedoms defined by the Farm Animal Council, encompassing environmental, health, nutritional, behavioral, and psychological freedom. Notably, psychological freedom was inherently considered within the behavioral and physical analyses of the animals. To accomplish this, an integrative systematic literature review was conducted to define precise indicators and their corresponding reference values for each stage of tilapia cultivation. These reference values were subsequently categorized using a scoring system that assessed the deviation of each indicator from established ideal (score 1), tolerable (score 2), and critical (score 3) ranges for the welfare of the target species. Subsequently, a laboratory experiment was executed to validate the pre-selected health indicators, specifically tailored for the early life stages of tilapia. This test facilitated an assessment of the applicability of these indicators under operational conditions. Building on the insights gained from this experimentation, partial welfare indices (PWIs) were computed for each assessed freedom, culminating in the derivation of a general welfare index (GWI). Mathematical equations were employed to calculate these indices, offering a quantitative and standardized measure of welfare. This approach equips tilapia farmers and processors with the tools necessary for the continuous monitoring and enhancement of their production systems and stimulate the adoption of more sustainable and ethical practices within the tilapia farming.

13.
Animals (Basel) ; 13(20)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37894012

RESUMEN

In aquaculture, the transportation of live fish is a crucial but stress-inducing practice, necessitating a thorough understanding of its impact on fish welfare. This study aimed to assess the physiological stress response of meagre (Argyrosomus regius) juveniles during a 24 h commercial transport by quantifying muscle cortisol levels using a specific radioimmunoassay. Additionally, an immunohistochemical approach was used to detect and localize the cellular distribution of oxidative-stress-related biomarkers within various tissues and organs. The results demonstrated a significant increase in muscle cortisol levels following the loading procedure, remaining elevated above basal levels throughout the 24 h transport period. This effect may be attributed to either insufficient time for recovery from the loading stress or prolonged transportation-related stress. Immunostaining for all the antibodies we examined was observed in multiple tissues and organs, but we found no notable variations among the various transport phases. In conclusion, the observed stress response appears to be mainly linked to loading stress and the transport process itself, emphasizing the importance of implementing appropriate operational procedures to safeguard fish well-being during transport. Nonetheless, the unaltered distribution of oxidative stress markers between the control and transported groups suggests that the experienced stress might be within tolerable limits.

14.
Environ Sci Pollut Res Int ; 30(53): 113297-113312, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37867167

RESUMEN

Acrylamide (ACR) is widely applied in various industrial activities, as well as in the water purification process. Furthermore, ACR is synthesized naturally in some starchy grains exposed to high temperatures for an extended time during the cooking process. Because of its widespread industrial usage, ACR might be released into water stream sources. Also, ACR poses a high risk of contaminated surface and ground-water resources due to its high solubility and mobility in water. Furthermore, animal studies have indicated that ACR exposure may cause cancer (in many organs such as lung, prostate, uterus, and pancreas), genetic damage (in both somatic and germ cells), and severe effects on reproduction and development. Recently, numerous studies have shown that ACR has a mild acute cytotoxic impact on aquatic species, particularly during early life stages. Besides, wide-spectrum usage of ACR in many industrial activities presented higher environmental risks as well as major hazards to consumer health. This literature was designed to include all potential and accessible reports on ACR toxicity related with aquatic species. The Preferred Reporting Items for Systematic Reviews were applied to evaluate the risk effects of ACR on aquatic organisms, the ACR sub-lethal concentration in the ecosystem, and the possible protective benefits of various feed additives against ACR toxicity in fish. The major findings are summarized in Tables 2 and 3. The primary aim of this literature was to specify the hazards of ACR toxicity related with fish welfare and possible suggested strategies to reduce its risks.


Asunto(s)
Acrilamida , Neoplasias , Masculino , Animales , Femenino , Acrilamida/toxicidad , Ecosistema , Reproducción , Agua
15.
Animals (Basel) ; 13(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37760260

RESUMEN

The gastrointestinal tract (GIT) promotes the digestion and absorption of feeds, in addition to the excretion of waste products of digestion. In fish, the GIT is divided into four regions, the headgut, foregut, midgut, and hindgut, to which glands and lymphoid tissues are associated to release digestive enzymes and molecules involved in the immune response and control of host-pathogens. The GIT is inhabited by different species of resident microorganisms, the microbiota, which have co-evolved with the host in a symbiotic relationship and are responsible for metabolic benefits and counteracting pathogen infection. There is a strict connection between a fish's gut microbiota and its health status. This review focuses on the modulation of fish microbiota by feed additives based on prebiotics and probiotics as a feasible strategy to improve fish health status and gut efficiency, mitigate emerging diseases, and maximize rearing and growth performance. Furthermore, the use of histological assays as a valid tool for fish welfare assessment is also discussed, and insights on nutrient absorptive capacity and responsiveness to pathogens in fish by gut morphological endpoints are provided. Overall, the literature reviewed emphasizes the complex interactions between microorganisms and host fish, shedding light on the beneficial use of prebiotics and probiotics in the aquaculture sector, with the potential to provide directions for future research.

16.
Front Vet Sci ; 10: 1183246, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745213

RESUMEN

The aim of this study was to investigate the physiological response of rainbow trout (Oncorhynchus mykiss) before slaughtering in the last phase of farming analyzing skin mucus and plasma. Two groups of rainbow trout were considered: Group UN ("unstressed"), represented by fish randomly captured from raceways, in the last phase of a standard fattening cycle; Group S ("stressed"), collected at the end of the pre-slaughtering tank, soon after slaughtering. The fish skin mucus was swabbed from head to tail using a sterile plastic spatula and the blood was collected through an endocardial puncture. qRT-PCR was used to study the gene expression in skin mucus. The mRNA expression levels of the IL-6 and IgD genes were higher in the S than in the Group UN. The plasma analysis showed an only a decrease in the glucose plasma levels in the Group S when compared to the Group UN. The present results indicated that the procedures adopted after slaughtering only affected changes in plasma glucose and skin mucus activity in rainbow trout suggesting that management protocol was compatible with non-stressful farming conditions.

17.
Animals (Basel) ; 13(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37570306

RESUMEN

Welfare assessments have risen to prominence in the aquaculture industry, with increasing awareness of their significance among stakeholders in Thailand. In this study, we conducted a welfare assessment of tilapia (Oreochromis spp.) farms in Thailand, focusing on health, environmental, behavioural, and nutritional indicators. Comparing semi-intensive (earthen ponds) and intensive farming practices (cage culture), we found significant differences in the overall health score, particularly at farm F due to a disease outbreak (Kruskal-Wallis, p = 0.01). Skin and fin scores varied across farms, indicating their potential as indicators of tilapia health. Environmental assessments revealed differences in transparency between the two culturing systems (Mann-Whitney, p = 0.02). During the harvesting process, tilapia behaviours indicated poor welfare across all farms. However, no statistically significant difference in overall welfare scores was found between the two culturing systems. Correlations were observed between nutritional, environmental, and health indicators, with negative correlations between fish density and water transparency (r = -0.87, p = 0.02), presence of inhabitants (r = -0.78, p = 0.04), feeding behaviours (r = -0.78, p = 0.04), and swimming behaviours during capture (r = -0.98, p = 0.001). These findings provide valuable insights to enhance tilapia-farming practices and welfare in Thailand.

18.
Animals (Basel) ; 13(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37370503

RESUMEN

As fish welfare becomes a growing concern, it is important to ensure humane treatment during slaughter. This study aimed to assess the onset of unconsciousness in Atlantic halibut immersed in CO2-saturated seawater through electroencephalography (EEG). Of the 29 fish studied, 10 exhibited escape attempts, indicating aversion to CO2-saturated water despite its oxygenation. EEG signals showed four distinct phases: transitional, excitation (high amplitude-high frequency), suppressed, and iso-electric phases. The onset of the suppressed phase, indicative of unconsciousness, occurred on average 258.8 ± 46.2 s after immersion. The spectral analysis of the EEG signals showed a progressive decrease in median frequency, spectral edge frequency, and high frequency contribution, which corresponded to the gradual loss of consciousness. The study concludes that CO2-saturated water is not recommended for pre-slaughter handling of halibut due to the extended time required for the onset of unconsciousness and the observed aversive behaviour. Ensuring humane treatment during slaughter is important for addressing public concern and safeguarding fish welfare in all stages of production.

19.
J Fish Biol ; 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37278313

RESUMEN

Sea lice represent a persistent and growing problem, challenging the resilience and growth of the salmon aquaculture industry. In this Norwegian case study, we studied and discuss how the absence of policy instruments directed at stimulating breeding for lice resistance (LR) might be explained. We found well-documented opportunities for selection progress for LR. Hence, breeding on LR appears with an untapped potential. We discuss how market-based, legal, institutional and interest-based factors can explain the absence of policy instruments stimulating LR breeding. Methodologically, we obtained data from document and literature studies and interviews with key players (salmon breeders, farmers, nongovernmental organizations (NGOs) and governmental bodies in Norway). First, LR is a polygenic trait, which makes it poorly suited for patenting. Furthermore, if only a small proportion of fish farmers choose seeds with higher LR, other operators can easily take on the free-rider role because they will not suffer from reduced gain in growth performance as a result of a much stronger emphasis on LR in the breeding goal. The market is thus not expected to stimulate stronger selection for LR in Norwegian salmon breeding. Second, neither genetic engineering (e.g., gene editing), still struggling with consumer acceptance, nor the uncertainty associated with possible changes in the Norwegian Gene Technology Act stimulate investment in LR via, for example, CRISPR technology. Thirdly, public policy instruments in their entirety have targeted other types of innovations against salmon lice, and none have so far been used to stimulate breeding companies to emphasize LR more strongly in their breeding programmes. From a political point of view, it seems that breeding has been left to the market and the private sector. However, neither the NGOs nor the public seem to be aware of, or pay significant attention to, the breeding potential to improve LR and fish welfare. Fragmented management of the aquaculture sector can camouflage the close ties between political and business interests. The industry is hesitant to invest significantly in long-term breeding targets such as significantly higher genetic LR. This may strengthen the assumption that strong economic interests will reduce the role of science in knowledge-based management. As farmed salmon are increasingly being exposed to stressful delousing treatments, mortality and associated welfare problems have increased significantly. For instance, large fish die more often from cardiomyopathy syndrome (CMS), resulting in growing demand for CMS-resistant salmon. This gives rise to a paradoxical situation: increasing treatments with high mortality and fish welfare issues in farmed salmon, while the lice threat to wild salmon persists.

20.
Entropy (Basel) ; 25(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37190348

RESUMEN

In a non-linear system, such as a biological system, the change of the output (e.g., behaviour) is not proportional to the change of the input (e.g., exposure to stressors). In addition, biological systems also change over time, i.e., they are dynamic. Non-linear dynamical analyses of biological systems have revealed hidden structures and patterns of behaviour that are not discernible by classical methods. Entropy analyses can quantify their degree of predictability and the directionality of individual interactions, while fractal dimension (FD) analyses can expose patterns of behaviour within apparently random ones. The incorporation of these techniques into the architecture of precision fish farming (PFF) and intelligent aquaculture (IA) is becoming increasingly necessary to understand and predict the evolution of the status of farmed fish. This review summarizes recent works on the application of entropy and FD techniques to selected individual and collective fish behaviours influenced by the number of fish, tagging, pain, preying/feed search, fear/anxiety (and its modulation) and positive emotional contagion (the social contagion of positive emotions). Furthermore, it presents an investigation of collective and individual interactions in shoals, an exposure of the dynamics of inter-individual relationships and hierarchies, and the identification of individuals in groups. While most of the works have been carried out using model species, we believe that they have clear applications in PFF. The review ends by describing some of the major challenges in the field, two of which are, unsurprisingly, the acquisition of high-quality, reliable raw data and the construction of large, reliable databases of non-linear behavioural data for different species and farming conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA