Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Gels ; 10(6)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38920948

RESUMEN

A novel scaffold design has been created to enhance tissue engineering and regenerative medicine by optimizing the controlled, prolonged release of Hepatocyte Growth Factor (HGF), a powerful chemoattractant for endogenous mesenchymal stem cells. We present a new stacked scaffold that is made up of three different fibrin gel layers, each of which has HGF integrated into the matrix. The design attempts to preserve HGF's regenerative properties for long periods of time, which is necessary for complex tissue regeneration. These multi-layered fibrin gels have been mechanically evaluated using rheometry, and their degradation behavior has been studied using D-Dimer ELISA. Understanding the kinetics of HGF release from this novel scaffold configuration is essential for understanding HGF's long-term sustained bioactivity. A range of cell-based tests were carried out to verify the functionality of HGF following extended incorporation. These tests included 2-photon microscopy using phalloidin staining to examine cellular morphology, SEM analysis for scaffold-cell interactions, and scratch and scatter assays to assess migration and motility. The analyses show that the novel stacking scaffold promotes vital cellular processes for tissue regeneration in addition to supporting HGF's bioactivity. This scaffold design was developed for in situ tissue engineering. Using the body as a bioreactor, the scaffold should recruit mesenchymal stem cells from their niche, thus combining the regenerative abilities of HGF and MSCs to promote tissue remodeling and wound repair.

2.
Int J Biol Macromol ; 269(Pt 2): 132140, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719006

RESUMEN

Wounding is one of the most common healthcare problems. Bioactive hydrogels have attracted much attention in first-aid hemostasis and wound healing due to their excellent biocompatibility, antibacterial properties, and pro-healing bioactivity. However, their applications are limited by inadequate mechanical properties. In this study, we first prepared edible rose-derived exosome-like nanoparticles (ELNs) and used them to encapsulate antimicrobial peptides (AMP), abbreviated as ELNs(AMP). ELNs(AMP) showed superior intracellular antibacterial activity, 2.5 times greater than AMP, in in vitro cell infection assays. We then prepared and tested an FDA-approved fibrin-gel of fibrinogen and thrombin encapsulating ELNs(AMP) and novobiocin sodium salt (NB) (ELNs(AMP)/NB-fibrin-gels). The fibrin gel showed a sustained release of ELNs(AMP) and NB over the eight days of testing. After spraying onto the skin, the formulation underwent in situ gelation and developed a stable patch with excellent hemostatic performance in a mouse liver injury model with hemostasis in 31 s, only 35.6 % of the PBS group. The fibrin gel exhibited pro-wound healing properties in the mouse-infected skin defect model. The thickness of granulation tissue and collagen of the ELNs(AMP)/NB-fibrin-gels group was 4.00, 6.32 times greater than that of the PBS group. In addition, the ELNs(AMP)/NB-fibrin-gels reduced inflammation (decreased mRNA levels of TNF-α, IL-1ß, IL6, MCP1, and CXCL1) at the wound sites and demonstrated a biocompatible and biosafe profile. Thus, we have developed a hydrogel system with excellent hemostatic, antibacterial, and pro-wound healing properties, which may be a candidate for next-generation tissue regeneration with a wide clinical application for first-aid hemostasis and infected wound healing.


Asunto(s)
Antibacterianos , Exosomas , Fibrina , Hemostasis , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Hemostasis/efectos de los fármacos , Ratones , Fibrina/química , Antibacterianos/farmacología , Antibacterianos/química , Exosomas/metabolismo , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Humanos , Infección de Heridas/tratamiento farmacológico , Nanopartículas/química , Geles/química , Hidrogeles/química , Hidrogeles/farmacología , Masculino
3.
Biotechnol Bioeng ; 121(6): 1950-1960, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38470332

RESUMEN

In developing three-dimensional (3D) human skin equivalents (HSEs), preventing dermis and epidermis layer distortion due to the contraction of hydrogels by fibroblasts is a challenging issue. Previously, a fabrication method of HSEs was tested using a modified solid scaffold or a hydrogel matrix in combination with the natural polymer coated onto the tissue culture surface, but the obtained HSEs exhibited skin layer contraction and loss of the skin integrity and barrier functions. In this study, we investigated the method of HSE fabrication that enhances the stability of the skin model by using surface plasma treatment. The results showed that plasma treatment of the tissue culture surface prevented dermal layer shrinkage of HSEs, in contrast to the HSE fabrication using fibronectin coating. The HSEs from plasma-treated surface showed significantly higher transepithelial electrical resistance compared to the fibronectin-coated model. They also expressed markers of epidermal differentiation (keratin 10, keratin 14 and loricrin), epidermal tight junctions (claudin 1 and zonula occludens-1), and extracellular matrix proteins (collagen IV), and exhibited morphological characteristics of the primary human skins. Taken together, the use of plasma surface treatment significantly improves the stability of 3D HSEs with well-defined dermis and epidermis layers and enhanced skin integrity and the barrier functions.


Asunto(s)
Piel Artificial , Humanos , Gases em Plasma/química , Gases em Plasma/farmacología , Ingeniería de Tejidos/métodos , Piel/química
4.
Biomaterials ; 305: 122467, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224643

RESUMEN

Impaired angiogenesis, bacterial infection, persistent severe pain, exacerbated inflammation, and oxidative stress injury are intractable problems in the treatment of chronic diabetic ulcer wounds. A strategy that effectively targets all these issues has proven challenging. Herein, an in-situ sprayable nanoparticle-gel composite comprising platinum clusters (Pt) loaded-mesoporous polydopamine (MPDA) nanoparticle and QX-314-loaded fibrin gel (Pt@MPDA/QX314@Fibrin) was developed for diabetic wound analgesia and therapy. The composite shows good local analgesic effect of QX-314 mediated by near-infrared light (NIR) activation of transient receptor potential vanilloid 1 (TRPV1) channel, as well as multifunctional therapeutic effects of rapid hemostasis, anti-inflammation, antioxidation, and antibacterial properties that benefit the fast-healing of diabetic wounds. Furthermore, it demonstrates that the composite, with good biodegradability and biosafety, significantly relieved wound pain by inhibiting the expression of c-Fos in the dorsal root ganglion and the activation of glial cells in the spinal cord dorsal horn. Consequently, our designed sprayable Pt@MPDA/QX314@Fibrin composite with good biocompatibility, NIR activation of TRPV1 channel-mediated QX-314 local wound analgesia and comprehensive treatments, is promising for chronic diabetic wound therapy.


Asunto(s)
Diabetes Mellitus , Compuestos de Diazonio , Lidocaína/análogos & derivados , Nanocompuestos , Piridinas , Ratas , Animales , Dolor , Analgésicos/uso terapéutico , Nanocompuestos/uso terapéutico , Fibrina , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
5.
Polymers (Basel) ; 15(21)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37960012

RESUMEN

Cardiovascular tissue engineering is providing many solutions to cardiovascular diseases. The complex disease demands necessitating tissue-engineered constructs with enhanced functionality. In this study, we are presenting the production of a dexamethasone (DEX)-loaded electrospun tubular polymeric poly(l-lactide) (PLA) or poly(d,l-lactide-co-glycolide) (PLGA) construct which contains iPSC-CMs (induced pluripotent stem cell cardiomyocytes), HUVSMCs (human umbilical vein smooth muscle cells), and HUVECs (human umbilical vein endothelial cells) embedded in fibrin gel. The electrospun tube diameter was calculated, as well as the DEX release for 50 days for 2 different DEX concentrations. Furthermore, we investigated the influence of the polymer composition and concentration on the function of the fibrin gels by imaging and quantification of CD31, alpha-smooth muscle actin (αSMA), collagen I (col I), sarcomeric alpha actinin (SAA), and Connexin 43 (Cx43). We evaluated the cytotoxicity and cell proliferation of HUVECs and HUVSMCs cultivated in PLA and PLGA polymeric sheets. The immunohistochemistry results showed efficient iPSC-CM marker expression, while the HUVEC toxicity was higher than the respective HUVSMC value. In total, our study emphasizes the combination of fibrin gel and electrospinning in a functionalized construct, which includes three cell types and provides useful insights of the DEX release and cytotoxicity in a tissue engineering perspective.

6.
Gels ; 9(9)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37754359

RESUMEN

Atrioventricular block (AVB) is a severe disease for pediatric patients. The repetitive operations needed in the case of the pacemaker implantation to maintain the electrical signal at the atrioventricular node (AVN) affect the patient's life quality. In this study, we present a method of biofabrication of multi-cell-laden cylindrical fibrin-based fibers that can restore the electrical signal at the AVN. We used human umbilical vein smooth muscle cells (HUVSMCs), human umbilical vein endothelial cells (HUVECs) and induced pluripotent stem cell cardiomyocytes (iPSC-CMs) cultivated either statically or dynamically to mimic the native AVN. We investigated the influence of cell composition, construct diameter and cyclic stretch on the function of the fibrin hydrogels in vitro. Immunohistochemistry analyses showed the maturity of the iPSC-CMs in the constructs through the expression of sarcomeric alpha actinin (SAA) and electrical coupling through Connexin 43 (Cx43) signal. Simultaneously, the beating frequency of the fibrin hydrogels was higher and easy to maintain whereas the concentration of iPSC-CMs was higher compared with the other types of cylindrical constructs. In total, our study highlights that the combination of fibrin with the cell mixture and geometry is offering a feasible biofabrication method for tissue engineering approaches for the treatment of AVB.

7.
J Orthop Surg Res ; 18(1): 485, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415165

RESUMEN

PURPOSE: To construct an injectable, sustained-release fibrin gel containing rhein to solve the problem of low bioavailability of rhein, and observe its efficacy in the treatment of intervertebral disc degeneration. METHODS: The fibrin gel containing rhein was first synthesized in advance. Subsequently, the materials were characterized by various experimental methods. Secondly, the degenerative cell model was constructed by stimulating nucleus pulposus cells with lipopolysaccharide (LPS), and the corresponding intervention treatment was carried out to observe the effect in vitro. Finally, the rat tail intervertebral disc was acupunctured by needles to establish the intervertebral disc degeneration model, and the effect of the material was observed through intradiscal injection. RESULTS: The fibrin glue containing rhein (rhein@FG) showed good injectability, sustained release and biocompatibility. Rhein@FG can improve the LPS-induced inflammatory microenvironment, regulate ECM metabolic disorders of nucleus pulposus cells and aggregation of the NLRP3 inflammasome in vitro, and inhibit cell pyroptosis. Furthermore, in vivo experiments, rhein@FG effectively prevented needle puncture-induced intervertebral disc degeneration in rats. CONCLUSIONS: Rhein@FG has better efficacy than rhein or FG alone due to its slow release and mechanical properties, which can be used as a potential replacement therapy for intervertebral disc degeneration.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Ratas , Animales , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , Adhesivo de Tejido de Fibrina/uso terapéutico , Lipopolisacáridos/farmacología , Disco Intervertebral/metabolismo , Antiinflamatorios/farmacología
8.
Biochem Biophys Res Commun ; 674: 69-74, 2023 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-37413707

RESUMEN

The construction of in vitro capillary network models for drug testing and toxicity evaluation has become a major challenge in the field of tissue engineering. Previously, we discovered a novel phenomenon of hole formation by endothelial cell migration on the surface of fibrin gels. Interestingly, the hole characteristics, such as depth and number, were strongly influenced by the gel stiffness, but the details of hole formation are not to be clarified. In this study, we tried to understand the effect of hydrogel stiffness on the hole formation by dropping collagenase solution onto the surface of the hydrogels because the endothelial cell migration was made possible by the metalloproteinases' digestion. We found that smaller hole structures were formed on stiffer fibrin gels, but larger ones were formed on softer fibrin gels after the hydrogel digestion of the collagenase. This is consistent with our previous results in experiments on hole structures formed by endothelial cells. Furthermore, deep and small hole structures were successfully obtained by optimizing the volume of collagenase solution and incubation time. This unique approach inspired by endothelial cell hole formation may provide new methods of fabricating hydrogels with opening hole structures.


Asunto(s)
Células Endoteliales , Hidrogeles , Hidrogeles/química , Células Endoteliales/metabolismo , Movimiento Celular , Fibrina/metabolismo , Ingeniería de Tejidos/métodos
9.
Biotechnol Bioeng ; 120(6): 1678-1693, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36891782

RESUMEN

Efficient cell seeding and subsequent support from a substrate ensure optimal cell growth and neotissue development during tissue engineering, including heart valve tissue engineering. Fibrin gel as a cell carrier may provide high cell seeding efficiency and adhesion property, improved cellular interaction, and structural support to enhance cellular growth in trilayer polycaprolactone (PCL) substrates that mimic the structure of native heart valve leaflets. This cell carrier gel coupled with a trilayer PCL substrate may enable the production of native-like cell-cultured leaflet constructs suitable for heart valve tissue engineering. In this study, we seeded valvular interstitial cells onto trilayer PCL substrates with fibrin gel as a cell carrier and cultured them for 1 month in vitro to determine if this gel can improve cell proliferation and production of extracellular matrix within the trilayer cell-cultured constructs. We observed that the fibrin gel enhanced cellular proliferation, their vimentin expression, and collagen and glycosaminoglycan production, leading to improved structure and mechanical properties of the developing PCL cell-cultured constructs. Fibrin gel as a cell carrier significantly improved the orientations of the cells and their produced tissue materials within trilayer PCL substrates that mimic the structure of native heart valve leaflets and, thus, may be highly beneficial for developing functional tissue-engineered leaflet constructs.


Asunto(s)
Estenosis de la Válvula Aórtica , Calcinosis , Humanos , Fibrina , Válvula Aórtica , Células Cultivadas , Ingeniería de Tejidos , Andamios del Tejido/química
10.
ACS Appl Mater Interfaces ; 15(14): 17627-17640, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37000897

RESUMEN

Tumor recurrence remains the leading cause of treatment failure following surgical resection of glioblastoma (GBM). M2-like tumor-associated macrophages (TAMs) infiltrating the tumor tissue promote tumor progression and seriously impair the efficacy of chemotherapy and immunotherapy. In addition, designing drugs capable of crossing the blood-brain barrier and eliciting the applicable organic response is an ambitious challenge. Here, we propose an injectable nanoparticle-hydrogel system that uses doxorubicin (DOX)-loaded mesoporous polydopamine (MPDA) nanoparticles encapsulated in M1 macrophage-derived nanovesicles (M1NVs) as effectors and fibrin hydrogels as in situ delivery vehicles. In vivo fluorescence imaging shows that the hydrogel system triggers photo-chemo-immunotherapy to destroy remaining tumor cells when delivered to the tumor cavity of a model of subtotal GBM resection. Concomitantly, the result of flow cytometry indicated that M1NVs comprehensively improved the immune microenvironment by reprogramming M2-like TAMs to M1-like TAMs. This hydrogel system combined with a near-infrared laser effectively promoted the continuous infiltration of T cells, restored T cell effector function, inhibited the infiltration of myeloid-derived suppressor cells and regulatory T cells, and thereby exhibited a strong antitumor immune response and significantly inhibited tumor growth. Hence, MPDA-DOX-NVs@Gel (MD-NVs@Gel) presents a unique clinical strategy for the treatment of GBM recurrence.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Adyuvantes Inmunológicos/farmacología , Macrófagos , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Inmunoterapia , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Microambiente Tumoral , Línea Celular Tumoral
11.
Methods Mol Biol ; 2608: 389-407, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36653719

RESUMEN

The movement of groups of cells by collective cell migration requires division of labor between group members. Therefore, distinct cell identities, unique cell behaviors, and specific cellular roles are acquired by cells undergoing collective movement. A key driving force behind the acquisition of discrete cell states is the precise control of where, when, and how genes are expressed, both at the subcellular and supracellular level. Unraveling the mechanisms underpinning the spatiotemporal control of gene expression in collective cell migration requires not only suitable experimental models but also high-resolution imaging of messenger RNA and protein localization during this process. In recent times, the highly stereotyped growth of new blood vessels by sprouting angiogenesis has become a paradigm for understanding collective cell migration, and consequently this has led to the development of numerous user-friendly in vitro models of angiogenesis. In parallel, single-molecule fluorescent in situ hybridization (smFISH) has come to the fore as a powerful technique that allows quantification of both RNA number and RNA spatial distribution in cells and tissues. Moreover, smFISH can be combined with immunofluorescence to understand the precise interrelationship between RNA and protein distribution. Here, we describe methods for use of smFISH and immunofluorescence microscopy in in vitro angiogenesis models to enable the investigation of RNA and protein expression and localization during endothelial collective cell migration.


Asunto(s)
ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Hibridación Fluorescente in Situ/métodos , ARN/genética , Movimiento Celular , Transporte de Proteínas
12.
J Biomech ; 147: 111458, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36682211

RESUMEN

Cardiac fibrosis is a key contributor to the onset and progression of heart failure and occurs from extracellular matrix accumulation via activated cardiac fibroblasts. Cardiac fibroblasts activate in response to mechanical stress and have been studied in the past by applying forces and deformations to three-dimensional, cell-seeded gels and tissue constructs in vitro. Unfortunately, previous stretching platforms have traditionally not enabled mechanical property assessment to be performed with an efficient throughput, thereby limiting the full potential of in vitro mechanobiology studies. We have developed a novel in vitro platform to study cell-populated tissue constructs under dynamic mechanical stimulation while also performing repeatable, non-destructive stress-strain tests in living constructs. Additionally, this platform can perform these tests across all constructs in a multi-well plate simultaneously, providing exciting potential for direct, functional readouts in future screening applications. In our pilot application, we showed that cyclically stretching cell-populated tissue constructs composed of murine cardiac fibroblasts within a 3D fibrin matrix leads to collagen accumulation and increased tissue stiffness over a three-day time course. Results of this study validate our platform's ability to apply mechanical loads to tissues while performing live mechanical analyses to observe cell-mediated tissue remodeling.


Asunto(s)
Colágeno , Ingeniería de Tejidos , Animales , Ratones , Reactores Biológicos , Células Cultivadas , Matriz Extracelular , Fibroblastos , Estrés Mecánico , Ingeniería de Tejidos/métodos , Insuficiencia Cardíaca
13.
J Biomater Appl ; 37(8): 1436-1445, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36112982

RESUMEN

Biopolymer gels attract a lot of attention in a field of biothechnology due to their excellent compatibility and degradation. Their application is also promising for cryopreservation of spermatogonial stem cells (SSCs) which is so necessary to preserve the fertility of young patients. The aim of the study was to determine the effectiveness of biopolymer gels as a component of cryopreservation medium for SSCs of immature rats at the stage of exposure to cryoprotectants. It was found that 30-min exposure to cryopreservation media based on collagen or fibrin gel with an addition of 5% Me2SO or 6% glycerol did not lead to significant changes in membrane integrity, cytochrome C content, metabolic, mitochondrial and antioxidant activities in SSCs compared to the control (Leibovitz-based cryomedium). But fibrin gel more than collagen reduced the toxic effects of Me2SO and glycerol on SSCs increasing exposure time up to 45 min without significant changes in cell viability. The same cryoprotectants in Leibovitz-based media showed significant toxicity starting from the 15th minute of exposure. Necrosis was the main cause of cell death at this stage of cryopreservation in all experimental groups. The obtained results can be used to optimize SSC cryopreservation protocols for further cell autotransplantation for spermatogenesis initiation in boys who undergo gonadotoxic therapy in prepubertal age.


Asunto(s)
Glicerol , Espermatogonias , Masculino , Ratas , Animales , Espermatogonias/trasplante , Glicerol/farmacología , Criopreservación/métodos , Biopolímeros/farmacología , Geles/farmacología , Células Madre
14.
J Nanobiotechnology ; 20(1): 360, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918769

RESUMEN

Exosomes show potential for treating patients with spinal cord injury (SCI) in clinical practice, but the underlying repair mechanisms remain poorly understood, and biological scaffolds available for clinical transplantation of exosomes have yet to be explored. In the present study, we demonstrated the novel function of Gel-Exo (exosomes encapsulated in fibrin gel) in promoting behavioural and electrophysiological performance in mice with SCI, and the upregulated neural marker expression in the lesion site suggested enhanced neurogenesis by Gel-Exo. According to the RNA-seq results, Vgf (nerve growth factor inducible) was the key regulator through which Gel-Exo accelerated recovery from SCI. VGF is related to myelination and oligodendrocyte development according to previous reports. Furthermore, we found that VGF was abundant in exosomes, and Gel-Exo-treated mice with high VGF expression indeed showed increased oligodendrogenesis. VGF was also shown to promote oligodendrogenesis both in vitro and in vivo, and lentivirus-mediated VGF overexpression in the lesion site showed reparative effects equal to those of Gel-Exo treatment in vivo. These results suggest that Gel-Exo can thus be used as a biocompatible material for SCI repair, in which VGF-mediated oligodendrogenesis is the vital mechanism for functional recovery.


Asunto(s)
Exosomas , Traumatismos de la Médula Espinal , Animales , Exosomas/metabolismo , Fibrina/metabolismo , Fibrina/uso terapéutico , Ratones , Neurogénesis , Recuperación de la Función , Traumatismos de la Médula Espinal/patología
15.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35563371

RESUMEN

To study the friction of cell monolayers avoiding damage due to stress concentration, cells can be cultured on fibrin gels, which have a structure and viscoelasticity similar to that of the extracellular matrix. In the present research, we studied different gel compositions and surface coatings in order to identify the best conditions to measure friction in vitro. We examined the adhesion and growth behavior of mesothelial cell line MET-5A on fibrin gels with different fibrinogen concentrations (15, 20, and 25 mg/mL) and with different adhesion coatings (5 µg/mL fibronectin, 10 µg/mL fibronectin, or 10 µg/mL fibronectin + 10 µg/mL collagen). We also investigated whether different substrates influenced the coefficient of friction and the ability of cells to stick to the gel during sliding. Finally, we studied the degradation rates of gels with and without cells. All substrates tested provided a suitable environment for the adherence and proliferation of mesothelial cells, and friction measurements did not cause significant cell damage or detachment. However, in gels with a lower fibrinogen concentration, cell viability was higher and cell detachment after friction measurement was lower. Fibrinolysis was negligible in all the substrates tested.


Asunto(s)
Fibrina , Fibronectinas , Células Cultivadas , Fibrinógeno/metabolismo , Fibronectinas/farmacología , Fricción , Geles/química
16.
Asian Pac J Cancer Prev ; 23(2): 731-741, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35225487

RESUMEN

BACKGROUND: Breast Cancer (BC) is a malignancy with high mortality among women. Recently, scaffold-based three-dimensional (3D) models have been developed for anti-cancer drug research. The present study aimed to investigate the anti-proliferative effects of Astragalus hamosus (A. hamosus) in 3D fibrin gel against MCF-7 cell line. We have also evaluated anti-proliferative effect of A. hamosus differences between 3D and 2D cultures. METHODS: The fibrin gel formulation was first optimized by testing the structural and mechanical properties. Then the cytotoxic effect of A. hamosus extract was assessed on MCF-7 cells by MTT assay. Cell apoptosis was evaluated using TUNEL method and flow cytometry. Cell cycle and proliferation were analyzed by flow cytometry. Apoptosis-related gene expression such as Bcl-2, caspase-3, -8 and -9 were quantified by real time-PCR. RESULTS: TUNEL staining showed a significant damage accompanied with cell apoptosis. Flow cytometry analysis revealed that apoptosis increased after treatment with A. hamosus extract in 3D culture model compared to 2D culture. The A. hamosus extract arrested cell cycle in the S and G2/M phases in 3D model while in the 2D culture G0/G1 phase was affected. Treatment with A. hamosus extract led to upregulation of the caspase-3, -8 and -9 genes and downregulation of the Ki-67 in the 3D-culture compared with the 2D culture. CONCLUSION: These results indicated that A. hamosus extract could be used as a therapeutic candidate for BC due to its anti-proliferative effects. Furthermore, 3D fibrin gel could be better than 2D-cultured cells in simulating important tumor characteristics in vivo, namely, anti-proliferative and anti-apoptotic features.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Planta del Astrágalo/química , Neoplasias de la Mama/tratamiento farmacológico , Técnicas de Cultivo Tridimensional de Células/métodos , Extractos Vegetales/farmacología , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Geles , Humanos , Células MCF-7
17.
Oncol Lett ; 23(1): 13, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34820012

RESUMEN

The present study describes a local drug delivery system with two functions, which can suppress tumor growth and accelerate wound healing. Thе system consists of a two-layer multicomponent fibrin-based gel (MCPFTG). The internal layer of MCPFTG, which is in direct contact with the wound surface, contains cisplatin placed on a CultiSpher-S collagen microcarrier. The external layer of MCPFTG consists of a CultiSpher-S microcarrier with lyophilized bone marrow stem cells (BMSCs). The efficacy of MCPFTG was evaluated in a rat model of squamous cell carcinoma of the tongue created with 4-nitroquinoline 1-oxide. The results of the study showed that, within 20-25 days, a non-healing wound of the tongue was formed in animals that underwent only 85% resection of squamous cell carcinoma, while rapid progression of the residual tumor was concomitantly observed. Immunohistochemical methods revealed high expression of cyclin D1 and low expression of E-cadherin in these animals. Additionally, high expression of p63 and Ki-67 was noted. In 80% of animals with squamous cell carcinoma of the tongue that were treated with MCPFTG after 85% tumor resection, a noticeable suppression of tumor growth was evident throughout 150 days, and tumor recurrence was not detected. Immunohistochemistry revealed low or moderate expression of cyclin D1, and high expression of E-cadherin throughout the whole observation period. The MCPFTG-based local drug delivery system was shown to be effective in suppressing tumor growth and preventing recurrence. MCPFTG decreased the toxicity of cisplatin and enhanced its antitumor activity. In addition, lyophilized paracrine BMSC factors present in MCPFTG accelerated wound healing after tumor removal. Thus, the present study suggests novel opportunities for the development of a multifunctional drug delivery system for the treatment of squamous cell carcinoma.

18.
Polymers (Basel) ; 13(20)2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34685331

RESUMEN

Current clinical strategies to repair peripheral nerve injuries draw on different approaches depending on the extent of lost tissue. Nerve guidance conduits (NGCs) are considered to be a promising, off-the-shelf alternative to autografts when modest gaps need to be repaired. Unfortunately, to date, the implantation of an NGC prevents the sacrifice of a healthy nerve at the price of suboptimal clinical performance. Despite the significant number of materials and fabrication strategies proposed, an ideal combination has not been yet identified. Validation and comparison of NGCs ultimately requires in vivo animal testing due to the lack of alternative models, but in the spirit of the 3R principles, a reliable in vitro model for preliminary screening is highly desirable. Nevertheless, more traditional in vitro tests, and direct cell seeding on the material in particular, are not representative of the actual regeneration scenario. Thus, we have designed a very simple set-up in the attempt to appreciate the relevant features of NGCs through in vitro testing, and we have verified its applicability using electrospun NGCs. To this aim, neural cells were encapsulated in a loose fibrin gel and enclosed within the NGC membrane. Different thicknesses and porosity values of two popular polymers (namely gelatin and polycaprolactone) were compared. Results indicate that, with specific implementation, the system might represent a useful tool to characterize crucial NGC design aspects.

19.
Dokl Biochem Biophys ; 499(1): 242-246, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34426920

RESUMEN

Using the methods of dynamic and elastic light scattering and confocal laser scanning microscopy, the damage in the spatial fibrin structure during peroxide- and hypochlorite-induced oxidation of fibrinogen was studied. Peroxide had a weak effect on the structural organization of fibrin, whereas hypochlorite caused the formation of abnormal fibrin with reduced individual fiber diameter and decreased porosity. Measurements of the size distributions of the native and oxidized fibrinogen revealed a decrease in the hydrodynamic size of the oxidized fibrinogen molecule with an increase in the concentration of oxidizers. These results indicate that the hydrophobicity of fibrinogen surface increased and its colloidal stability decreased. The possible role of oxidative sites in the assembly of structurally abnormal fibrin is analyzed.


Asunto(s)
Fibrina/química , Fibrinógeno/metabolismo , Ácido Hipocloroso/farmacología , Peróxidos/farmacología , Fibrina/metabolismo , Oxidación-Reducción/efectos de los fármacos
20.
Acta Biomater ; 131: 355-369, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34233219

RESUMEN

Fibrin is the major determinant of the mechanical stability and integrity of blood clots and thrombi. To explore the rupture of blood clots, emulating thrombus breakage, we stretched fibrin gels with single-edge cracks of varying size. Ultrastructural alterations of the fibrin network correlated with three regimes of stress vs. strain profiles: the weakly non-linear regime due to alignment of fibrin fibers; linear regime owing to further alignment and stretching of fibers; and the rupture regime for large deformations reaching the critical strain and stress, at which irreversible breakage of fibers ahead of the crack tip occurs. To interpret the stress-strain curves, we developed a new Fluctuating Spring model, which maps the fibrin alignment at the characteristic strain, network stretching with the Young modulus, and simultaneous cooperative rupture of coupled fibrin fibers into a theoretical framework to obtain the closed-form expressions for the strain-dependent stress profiles. Cracks render network rupture stochastic, and the free energy change for fiber deformation and rupture decreases with the crack length, making network rupture more spontaneous. By contrast, mechanical cooperativity due to the presence of inter-fiber contacts strengthens fibrin networks. The results obtained provide a fundamental understanding of blood clot breakage that underlies thrombotic embolization. STATEMENT OF SIGNIFICANCE: Fibrin, a naturally occurring biomaterial, is the major determinant of mechanical stability and integrity of blood clots and obstructive thrombi. We tested mechanically fibrin gels with single-edge cracks and followed ultrastructural alterations of the fibrin network. Rupture of fibrin gel involves initial alignment and elastic stretching of fibers followed by their eventual rupture for deformations reaching the critical level. To interpret the stress-strain curves, we developed Fluctuating Spring model, which showed that cracks render rupture of fibrin networks more spontaneous; yet, coupled fibrin fibers reinforce cracked fibrin networks. The results obtained provide fundamental understanding of blood clot breakage that underlies thrombotic embolization. Fluctuating Spring model can be applied to other protein networks with cracks and to interpret the stress-strain profiles.


Asunto(s)
Fibrina , Trombosis , Fenómenos Biomecánicos , Módulo de Elasticidad , Humanos , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA