Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sensors (Basel) ; 24(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39001119

RESUMEN

To improve the signal-to-noise ratio (SNR) of vibration signals in a phase-sensitive optical time-domain reflectometer (Φ-OTDR) system, a principal component analysis variable step-size normalized least mean square (PCA-VSS-NLMS) denoising method was proposed in this study. First, the mathematical principle of the PCA-VSS-NLMS algorithm was constructed. This algorithm can adjust the input signal to achieve the best filter effect. Second, the effectiveness of the algorithm was verified via simulation, and the simulation results show that compared with the wavelet denoising (WD), Wiener filtering, variational mode decomposition (VMD), and variable step-size normalized least mean square (VSS-NLMS) algorithms, the PCA-VSS-NLMS algorithm can improve the SNR to 30.68 dB when the initial SNR is -1.23 dB. Finally, the PCA-VSS-NLMS algorithm was embedded into the built Φ-OTDR system, an 11.22 km fiber was measured, and PZT was added at 10.19-10.24 km to impose multiple sets of fixed-frequency disturbances. The experimental results show that the SNR of the vibration signal is 8.77 dB at 100 Hz and 0.07 s, and the SNR is improved to 26.17 dB after PCA-VSS-NLMS filtering; thus, the SNR is improved by 17.40 dB. This method can improve the SNR of the system's position information without the need to change the existing hardware conditions, and it provides a new scheme for the detection and recognition of long-distance vibration signals.

2.
ACS Appl Mater Interfaces ; 16(23): 30396-30407, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38820388

RESUMEN

Timely, accurate, and rapid grasping of dynamic change information in magnetic actuation soft robots is essential for advancing their evolution toward intelligent, integrated, and multifunctional systems. However, existing magnetic-actuation soft robots lack effective functions for integrating sensing and actuation. Herein, we demonstrate the integration of distributed fiber optics technology with advanced-programming 3D printing techniques. This integration provides our soft robots unique capabilities such as integrated sensing, precise shape reconstruction, controlled deformation, and sophisticated magnetic navigation. By utilizing an improved magneto-mechanical coupling model and an advanced inversion algorithm, we successfully achieved real-time reconstruction of complex structures, such as 'V', 'N', and 'M' shapes and gripper designs, with a notable response time of 34 ms. Additionally, our robots demonstrate proficiency in magnetic navigation and closed-loop deformation control, making them ideal for operation in confined or obscured environments. This work thus provides a transformative strategy to meet unmet demands in the rapidly growing field of soft robotics, especially in establishing the theoretical and technological foundation for constructing digitized robots.

3.
Methods Appl Fluoresc ; 12(3)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38587171

RESUMEN

Food contaminants pose a danger to human health, but rapid, sensitive and reliable food safety detection methods can offer a solution to this problem. In this study, an optical fiber ratiometric fluorescence sensing system based on carbon dots (CDs) and o-phenylenediamine (OPD) was constructed. The ratiometric fluorescence response of Cu2+and thiram was carried out by the fluorescence resonance energy transfer (FRET) between CDs and 2,3-diaminophenazine (ox-OPD, oxidized state o-phenylenediamine). The oxidation of OPD by Cu2+resulted in the formation of ox-OPD, which quenched the fluorescence of CDs and exhibited a new emission peak at 573 nm. The formation of a [dithiocarbamate-Cu2+] (DTC-Cu2+) complex by reacting thiram with Cu2+, inhibits the OPD oxidation reaction triggered by Cu2+, thus turning off the fluorescence signal of OPD-Cu2+. The as-established detection system presented excellent sensitivity and selectivity for the detection of Cu2+and thiram in the ranges of 1 ∼ 100µM and 5 ∼ 50µM, respectively. The lowest detection limits were 0.392µM for Cu2+and 0.522µM for thiram. Furthermore, actual sample analysis indicated that the sensor had the potential for Cu2+and thiram assays in real sample analysis.

4.
ACS Nano ; 18(16): 10788-10797, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38551815

RESUMEN

Integration of functional materials and structures on the tips of optical fibers has enabled various applications in micro-optics, such as sensing, imaging, and optical trapping. Direct laser writing is a 3D printing technology that holds promise for fabricating advanced micro-optical structures on fiber tips. To date, material selection has been limited to organic polymer-based photoresists because existing methods for 3D direct laser writing of inorganic materials involve high-temperature processing that is not compatible with optical fibers. However, organic polymers do not feature stability and transparency comparable to those of inorganic glasses. Herein, we demonstrate 3D direct laser writing of inorganic glass with a subwavelength resolution on optical fiber tips. We show two distinct printing modes that enable the printing of solid silica glass structures ("Uniform Mode") and self-organized subwavelength gratings ("Nanograting Mode"), respectively. We illustrate the utility of our approach by printing two functional devices: (1) a refractive index sensor that can measure the indices of binary mixtures of acetone and methanol at near-infrared wavelengths and (2) a compact polarization beam splitter for polarization control and beam steering in an all-in-fiber system. By combining the superior material properties of glass with the plug-and-play nature of optical fibers, this approach enables promising applications in fields such as fiber sensing, optical microelectromechanical systems (MEMS), and quantum photonics.

5.
Small ; 20(29): e2311299, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38366314

RESUMEN

Silicon (Si) anode has attracted broad attention because of its high theoretical specific capacity and low working potential. However, the severe volumetric changes of Si particles during the lithiation process cause expansion and contraction of the electrodes, which induces a repeatedly repair of solid electrolyte interphase, resulting in an excessive consuming of electrolyte and rapid capacity decay. Clearly known the deformation and stress changing at µÎµ resolution in the Si-based electrode during battery operation provides invaluable information for the battery research and development. Here, an in operando approach is developed to monitor the stress evolution of Si anode electrodes via optical fiber Bragg grating (FBG) sensors. By implanting FBG sensor at specific locations in the pouch cells with different Si anodes, the stress evolution of Si electrodes has been systematically investigated, and Δσ/areal capacity is proposed for stress assessment. The results indicate that the differences in stress evolution are nested in the morphological changes of Si particles and the evolution characteristics of electrode structures. The proposed technique provides a brand-new view for understanding the electrochemical mechanics of Si electrodes during battery operation.

6.
Micromachines (Basel) ; 14(12)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38138304

RESUMEN

This study discussed the application of optical fibers in addressing the problem of insufficient light harvesting and sensing health monitoring in ancient buildings. Based on three-dimensional (3D) printing technology to fix the light-harvesting lens and conducting optical fiber, develop the replacement parts that can be buried into the optical fiber of ancient buildings. By introducing the experimental application to improve the experimental quality of research and teaching. Firstly, it highlights the advantage that the optical fiber plus lens structure design can make the natural light introduced for a long time; secondly, it points out that the buried optical fiber structure design does not affect the warmth and sound insulation of the building; finally, the health monitoring of the building is realized through the proposed method of buried optical fiber sensing. The design scheme adopts a fiber optic light transmission and sensing system, which can realize the whole system's corrosion resistance, after laying buried and low-cost operation.

7.
Sensors (Basel) ; 23(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37960484

RESUMEN

The finite element method (FEM) was used to investigate the optical-mechanical behavior of a Fabry-Perot Interferometer (FPI) composed of a capillary segment spliced between two sections of standard optical fiber. The developed FEM model was validated by comparing it with theory and with previously published experimental data. The model was then used to show that the absolute strain on the host substrate is usually smaller than the strain measurement obtained with the sensor. Finally, the FEM model was used to propose a cavity geometry that can be produced with repeatability and that yields the correct absolute strain experienced by the host substrate, without requiring previous strain calibration.

8.
Sensors (Basel) ; 23(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37688043

RESUMEN

A porous anodic alumina film is proposed to construct an optical fiber temperature and humidity sensor. In the sensor structure, a fiber Bragg grating is used to detect the environment temperature, and the porous film is used to detect the environment humidity. The proposed porous anodic alumina film was fabricated by anodic oxidation reaction, and it is suitable for the use of humidity detection due to its porous structure. Experimental results show the temperature sensitivity of the proposed sensor was 10.4 pm/°C and the humidity sensitivity of the proposed sensor was 185 pm/%RH.

9.
Sensors (Basel) ; 23(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37766011

RESUMEN

The foundation of intelligent collaborative control of a shearer, scraper conveyor, and hydraulic support (three-machines) is to achieve the precise perception of the status of the three-machines and the full integration of information between the equipment. In order to solve the problems of information isolation and non-flow, independence between equipment, and weak cooperation of three-machines due to an insufficient fusion of perception data, a fusion method of the equipment's state perception system on the intelligent working surface was proposed. Firstly, an intelligent perception system for the state of the three-machines in the working face was established based on fiber optic sensing technology and inertial navigation technology. Then, the datum coordinate system is created on the working surface to uniformly describe the status of the three-machines and the spatial position relationship between the three-machines is established using a scraper conveyor as a bridge so that the three-machines become a mutually restricted and collaborative equipment system. Finally, an indoor test was carried out to verify the relational model of the spatial position of the three-machines. The results indicate that the intelligent working face three-machines perception system based on fiber optic sensing technology and inertial navigation technology can achieve the fusion of monitoring data and unified expression of equipment status. The research results provide an important reference for building an intelligent perception, intelligent decision-making, and automatic execution system for coal mines.

10.
Sensors (Basel) ; 23(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420576

RESUMEN

This study presents a framework for detecting mechanical damage in pipelines, focusing on generating simulated data and sampling to emulate distributed acoustic sensing (DAS) system responses. The workflow transforms simulated ultrasonic guided wave (UGW) responses into DAS or quasi-DAS system responses to create a physically robust dataset for pipeline event classification, including welds, clips, and corrosion defects. This investigation examines the effects of sensing systems and noise on classification performance, emphasizing the importance of selecting the appropriate sensing system for a specific application. The framework shows the robustness of different sensor number deployments to experimentally relevant noise levels, demonstrating its applicability in real-world scenarios where noise is present. Overall, this study contributes to the development of a more reliable and effective method for detecting mechanical damage to pipelines by emphasizing the generation and utilization of simulated DAS system responses for pipeline classification efforts. The results on the effects of sensing systems and noise on classification performance further enhance the robustness and reliability of the framework.


Asunto(s)
Redes de Comunicación de Computadores , Física , Reproducibilidad de los Resultados , Simulación por Computador , Ondas Ultrasónicas
11.
Sensors (Basel) ; 23(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37420911

RESUMEN

An innovative optical frequency-domain reflectometry (OFDR)-based distributed temperature sensing method is proposed that utilizes a Rayleigh backscattering enhanced fiber (RBEF) as the sensing medium. The RBEF features randomly high backscattering points; the analysis of the fiber position shift of these points before and after the temperature change along the fiber is achieved using the sliding cross-correlation method. The fiber position and temperature variation can be accurately demodulated by calibrating the mathematical relationship between the high backscattering point position along the RBEF and the temperature variation. Experimental results reveal a linear relationship between temperature variation and the total position displacement of high backscattering points. The temperature sensing sensitivity coefficient is 7.814 µm/(m·°C), with an average relative error temperature measurement of -1.12% and positioning error as low as 0.02 m for the temperature-influenced fiber segment. In the proposed demodulation method, the spatial resolution of temperature sensing is determined by the distribution of high backscattering points. The temperature sensing resolution depends on the spatial resolution of the OFDR system and the length of the temperature-influenced fiber. With an OFDR system spatial resolution of 12.5 µm, the temperature sensing resolution reaches 0.418 °C per meter of RBEF under test.


Asunto(s)
Dispositivos Ópticos , Temperatura , Sensación Térmica
12.
Sensors (Basel) ; 23(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37177562

RESUMEN

A distributed optical fiber refractive index sensor based on etched Ge-doped SMF in optical frequency domain reflection (OFDR) was proposed and demonstrated. The etched Ge-doped SMF was obtained by only using wet-etching, i.e., hydrofluoric acid solution. The distributed refractive index sensing is achieved by measuring the spectral shift of the local RBS spectra using OFDR. The sensing length of 10 cm and the spatial resolution of 5.25 mm are achieved in the experiment. The refractive index sensing range is as wide as 1.33-1.44 refractive index units (RIU), where the average sensitivity was about 757 GHz/RIU. Moreover, the maximum sensitivity of 2396.9 GHZ/RIU is obtained between 1.43 and 1.44 RIU.

13.
Sensors (Basel) ; 23(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37112277

RESUMEN

In this article, we theoretically designed and simulated a silicon core fiber for the simultaneous detection of temperature and refractive index. We first discussed the parameters of the silicon core fiber for near single-mode operation. Second, we designed and simulated a silicon core-based fiber Bragg grating and applied it for simultaneous sensing of temperature and environmental refractive index. The sensitivities for the temperature and refractive index were 80.5 pm/°C and 208.76 dB/RIU, respectively, within a temperature range of 0 to 50 °C and a refractive index range of 1.0 to 1.4. The proposed fiber sensor head can provide a method with simple structure and high sensitivity for various sensing targets.

14.
J Biomed Opt ; 28(4): 047001, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37038545

RESUMEN

Significance: A multiplexed fiber laser sensing system for cell temperature is proposed. To the best of the authors' knowledge, this is the first multilongitudinal mode (MLM) optical fiber laser sensor array designed for cell temperature sensing. Aim: A two-channel cell temperature sensing system with high sensitivity and real-time sensing capability is achieved. The temperature change of human hepatoellular carcinomas (HepG2) cells under the influence of exogenous chemical aflatoxin B1 (AFB1) can be monitored in real time. Approach: A fiber laser cavity consists of a pair of fiber Bragg gratings (FBGs) with matched central wavelengths and a piece of erbium-doped fiber (EDF). The static FBG is utilized for design of fiber laser cavity and laser modes selection. In comparison, the sensing FBG is used for cell temperature sensing. The sensing FBG has a length of 10 mm and a diameter of 200 µ m . Beat frequency signals (BFS) are generated by MLM lasers after optical-to-electrical conversion at a photodetector. Frequency change of a BFS is closely related to the reflected wavelength change of the sensing FBG. Through frequency division multiplexing, two fiber laser cavities are designed in the sensing system for two-channel temperature sensing. Frequency shift of a BFS that represents temperature change of cells can be automatically recorded in seconds. Results: A two-channel cell temperature sensing system is designed with high sensitivities of 101.62 and 119.82 kHz / ° C , respectively. The temperature change of HepG2 cells under the influence of exogenous chemical AFB1 is monitored in real time. Conclusions: The proposed system has the advantages of simple structure, high sensitivity, and two-channel sensing capability. Our study provides a simple and effective method to design a fiber laser sensor system without complex demodulation techniques and expensive optical components.


Asunto(s)
Tecnología de Fibra Óptica , Fibras Ópticas , Humanos , Temperatura , Refractometría , Diseño de Equipo
15.
Biosens Bioelectron ; 228: 115184, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36878065

RESUMEN

In situ acquisition of spatial distribution of biochemical substances is important in cell analysis, cancer detection and other fields. Optical fiber biosensors can achieve label-free, fast and accurate measurements. However, current optical fiber biosensors only acquire single-point of biochemical substance content. In this paper, we present a distributed optical fiber biosensor based on tapered fiber in optical frequency domain reflectometry (OFDR) for the first time. To enhance evanescent field at a relative long sensing range, we fabricate a tapered fiber with a taper waist diameter of 6 µm and a total stretching length of 140 mm. Then the human IgG layer is coated on the entire tapered region by polydopamine (PDA) -assisted immobilization as the sensing element to achieve to sense anti-human IgG. We measure shifts of the local Rayleigh backscattering spectra (RBS) caused by the refractive index (RI) change of an external medium surrounding a tapered fiber after immunoaffinity interactions by using OFDR. The measurable concentration of anti-human IgG and RBS shift has an excellent linearity in a range from 0 ng/ml to 14 ng/ml with an effective sensing range of 50 mm. The concentration measurement limit of the proposed distributed biosensor is 2 ng/ml for anti-human IgG. Distributed biosensing based on OFDR can locate a concentration change of anti-human IgG with an ultra-high sensing spatial resolution of 680 µm. The proposed sensor has a potential to realize a micron-level localization of biochemical substances such as cancer cells, which will open a door to transform single-point biosensor to distributed biosensor.


Asunto(s)
Técnicas Biosensibles , Fibras Ópticas , Refractometría , Inmunoglobulina G
16.
Artículo en Inglés | MEDLINE | ID: mdl-36763963

RESUMEN

Optical synaptic devices possess great potential in both artificial intelligence and neuromorphic photonics. In this work, an optically readable electrochromic-based microfiber synaptic device was designed by the combination of a multimode fiber and an electrochromic device and using an external voltage to control the transmission of light in the fiber. The proposed synaptic device has the ability to imitate various basic functions of the biological synapses, such as synaptic plasticity, and paired-pulse facilitation (PPF), as well as the transition from short-term memory to long-term memory. Moreover, the proposed device decodes the output optical signal with the international Morse code to express the signal "HFUT" in two ways, and a 3 × 3 array composed of this device can simulate the perceptual learning process. The device can be easily prepared for a wide range of applications, and the incorporated microfibers can be replaced by planar optical waveguides, making it easy to be integrated into a more complex and versatile photonic neuromorphic system.

17.
Sensors (Basel) ; 22(24)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36560053

RESUMEN

Brillouin scattering-based distributed fiber optic sensing (DFOS) technologies such as Brillouin optical time domain reflectometry (BOTDR) and Brillouin optical time domain analysis (BOTDA) have broad applicability for the long term and real-time monitoring of large concrete structures, underground mine excavations, pit slopes, and deep subsurface wellbores. When installed in brittle media, however, the meter scale spatial resolution of the BOTDR/A technology prohibits the detection or measurement of highly localized deformations, such as those which form at or along cracks, faults, and other discontinuities. This work presents a novel hybrid fiber optic cable with the ability to self-anchor to any brittle installation media without the need for manual installation along fixed interval points. Laboratory scale testing demonstrates the ability of the hybrid fiber optic cable to measure strains across highly localized deformation zones in both tension and shear. In addition, results show the applicability of the developed technology for strain monitoring in high displacement environments. Linear relationships are proposed for use in estimating the displacement magnitude along discontinuities in brittle media from strain signals collected from the hybrid fiber optic cable. The hybrid fiber optic cable has broad potential applications, such as geomechanical monitoring in underground mines, surface pits, large civil infrastructure projects, and deep subsurface wellbores. The benefits of fiber optic sensing, such as the intrinsic safety of the sensors, the long sensing range, and real time capabilities make this a compelling technique for long term structural health monitoring (SHM) in a wide range of industrial and civil applications.

18.
Sensors (Basel) ; 22(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36560341

RESUMEN

A high-spatial-resolution OFDR distributed temperature sensor based on Au-SMF was experimentally demonstrated by using step-by-step and image wavelet denoising methods (IWDM). The measured temperature between 50 and 600 °C could be successfully demodulated by using SM-IWDM at a spatial resolution of 3.2 mm. The temperature sensitivity coefficient of the Au-SMF was 3.18 GHz/°C. The accuracy of the demodulated temperature was approximately 0.24 °C. Such a method has great potential to expand the temperature measurement range, which is very useful for high-temperature applications.

19.
Sensors (Basel) ; 22(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36502227

RESUMEN

Helical twist provides an additional degree of freedom for controlling light in optical waveguides, expanding their applications in sensing. In this paper, we propose a helical broken-circular-symmetry core microstructured optical fiber for refractive index sensing. The proposed fiber consists of pure silica and its noncircular helical core is formed by a broken air ring. By using finite element modeling combined with transformation optics, the modal characteristics of the fiber are investigated in detail. The results show that for the core located at the fiber center, the confinement loss of fundamental core modes increases with twist rate, whereas for a sufficiently large core offset the modes can be well confined owing to the twist-induced light guidance mechanism, showing decreases with rising twist rate in the loss spectra. Moreover, we have found that for large twist rates and core offsets, resonant peaks occur at different twist rates due to the couplings between the fundamental core modes and the highly leaky modes created by the helical structure. The refractive index sensing performance is also studied and the obtained results show that the proposed fiber has great potential in fiber sensing.


Asunto(s)
Fibras Ópticas , Refractometría , Tecnología de Fibra Óptica , Diseño de Equipo
20.
Sensors (Basel) ; 22(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36365889

RESUMEN

An improved acoustic pick-up is presented to enhance the acoustic sensing sensitivity of the straight line-type Sagnac fiber optic acoustic sensing system. A hollow elastomer cylinder is introduced into the system, and the optical fiber is tightly wound around the cylinder to construct the pick-up. The theoretical analysis was finished, and it showed that the improved pick-up will bring in an extra phase change and let the phase difference increase almost an order. The extra phase change will enhance the sensing sensitivity correspondingly. The titanium alloy elastic cylinder was designed and manufactured. The experiment system was built, and a sinusoidal acoustic signal was used as the sound source. The tests were taken during 100-1500 Hz, and the experimental study showed that the sensitivity was more than 130 mV/Pa when the pick-up was used as the acoustic sensing element, and compared to the fiber only system, the sensitivity was enhanced more than 71.2%. The improved pick-up will be helpful in sound recognition and expand the application area of the Sagnac acoustic sensing system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA