Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
PeerJ ; 12: e17625, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948221

RESUMEN

Plasmodesmata are transmembrane channels embedded within the cell wall that can facilitate the intercellular communication in plants. Plasmodesmata callose-binding (PDCB) protein that associates with the plasmodesmata contributes to cell wall extension. Given that the elongation of cotton fiber cells correlates with the dynamics of the cell wall, this protein can be related to the cotton fiber elongation. This study sought to identify PDCB family members within the Gossypium. hirsutum genome and to elucidate their expression profiles. A total of 45 distinct family members were observed through the identification and screening processes. The analysis of their physicochemical properties revealed the similarity in the amino acid composition and molecular weight across most members. The phylogenetic analysis facilitated the construction of an evolutionary tree, categorizing these members into five groups mainly distributed on 20 chromosomes. The fine mapping results facilitated a tissue-specific examination of group V, revealing that the expression level of GhPDCB9 peaked five days after flowering. The VIGS experiments resulted in a marked decrease in the gene expression level and a significant reduction in the mature fiber length, averaging a shortening of 1.43-4.77 mm. The results indicated that GhPDCB9 played a pivotal role in the cotton fiber development and served as a candidate for enhancing cotton yield.


Asunto(s)
Fibra de Algodón , Gossypium , Filogenia , Proteínas de Plantas , Plasmodesmos , Gossypium/genética , Gossypium/metabolismo , Plasmodesmos/metabolismo , Fibra de Algodón/análisis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucanos/metabolismo , Familia de Multigenes , Pared Celular/metabolismo , Pared Celular/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo
2.
Materials (Basel) ; 17(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38998199

RESUMEN

Loess is widely distributed in the northwest and other regions, and its unique structural forms such as large pores and strong water sensitivity lead to its collapsibility and collapse, which can easily induce slope instability. Guar gum and basalt fiber are natural green materials. For these reasons, this study investigated the solidification of loess by combining guar gum and basalt fiber and analyzed the impact of the guar gum content, fiber length, and fiber content on the soil shearing strength. Using scanning electron microscopy (SEM), the microstructure of loess was examined, revealing the synergistic solidification mechanism of guar gum and basalt fibers. On this basis, a shear strength model was established through regression analysis with fiber length, guar gum content, and fiber content. The results indicate that adding guar gum and basalt fiber increases soil cohesion, as do fiber length, guar gum content, and fiber content. When the fiber length was 12 mm, the fiber content was 1.00%, and the guar gum content was equal to 0.50%, 0.75%, or 1.00%, the peak strength of the solidified loess increased by 82.80%, 85.90%, and 90.40%, respectively. According to the shear strength model, the predicted and test data of the shear strength of solidified loess are evenly distributed on both sides of parallel lines, indicating a good fit. These findings are theoretically significant and provide practical guidance for loess solidification engineering.

3.
Sci Rep ; 14(1): 14652, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918538

RESUMEN

The workflow to simulate motion with recorded data usually starts with selecting a generic musculoskeletal model and scaling it to represent subject-specific characteristics. Simulating muscle dynamics with muscle-tendon parameters computed from existing scaling methods in literature, however, yields some inconsistencies compared to measurable outcomes. For instance, simulating fiber lengths and muscle excitations during walking with linearly scaled parameters does not resemble established patterns in the literature. This study presents a tool that leverages reported in vivo experimental observations to tune muscle-tendon parameters and evaluates their influence in estimating muscle excitations and metabolic costs during walking. From a scaled generic musculoskeletal model, we tuned optimal fiber length, tendon slack length, and tendon stiffness to match reported fiber lengths from ultrasound imaging and muscle passive force-length relationships to match reported in vivo joint moment-angle relationships. With tuned parameters, muscle contracted more isometrically, and soleus's operating range was better estimated than with linearly scaled parameters. Also, with tuned parameters, on/off timing of nearly all muscles' excitations in the model agreed with reported electromyographic signals, and metabolic rate trajectories varied significantly throughout the gait cycle compared to linearly scaled parameters. Our tool, freely available online, can customize muscle-tendon parameters easily and be adapted to incorporate more experimental data.


Asunto(s)
Fibras Musculares Esqueléticas , Tendones , Tendones/fisiología , Tendones/diagnóstico por imagen , Humanos , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/fisiología , Fenómenos Biomecánicos , Caminata/fisiología , Marcha/fisiología , Electromiografía , Modelos Biológicos , Masculino , Simulación por Computador
4.
Materials (Basel) ; 17(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38730841

RESUMEN

It is vital to maximize the safety of outdoor constructions, airplanes, and space vehicles by protecting against the impact of airborne debris from increasing winds due to climate change, or from bird strikes or micrometeoroids. In a widely-used compression-molded short glass fiber polyester bulk-molded compound (SGFRP-BMC) with 55% wt. CaCO3 filler, the center of the mother panel has lower impact strength than the outer sections with solidification texture angles and short glass fiber (SGF) orientations being random from 0 to 90 degrees. Therefore, a new double-step process of: (1) reducing commercial fiber length without change in molding equipment; followed by a (2) 0.86 MGy dose of homogeneous low-voltage electron beam irradiation (HLEBI) to both sides of the finished samples requiring no chemicals or additives, which is shown to increase the Charpy impact value (auc) about 50% from 6.26 to 9.59 kJm-2 at median-accumulative probability of fracture, Pf = 0.500. Shortening the SGFs results in higher fiber spacing density, Sf, as the thermal compressive stress site proliferation by action of the CTE difference between the matrix and SGF while the composite cools and shrinks. To boost impact strength further, HLEBI provides additional nano-compressive stresses by generating dangling bonds (DBs) creating repulsive forces while increasing SGF/matrix adhesion. Increased internal cracking apparently occurs, raising the auc.

5.
Cellulose (Lond) ; 31(5): 3129-3142, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577421

RESUMEN

The research conducted on kraft cooking of for different chip sizes is often not representative for the industrial process since the chip size fractions were made of high-quality wood without impurities. We evaluated the effects and the potential of cooking non ideal spruce chip fractions after industrial chipping and screening. The chips were classified according to SCAN 40:01, and the respective fractions were cooked under the identical conditions to mimic the effect of a joint cooking in the industrial digester. For the undersized chips we found higher bark content, a lower screened yield, a higher Kappa number, lower fiber length and lower tensile strength. For the oversized chips, the fiber length and tensile index were also considerably lower. A lower wood quality due to high knot content in the larger fractions was found to be the reason for that. Based on the data obtained from the experiments and literature, different process options for increased yield and reduced chemical consumption are discussed, e.g., separate cooking of different chip fractions. Improved chip screening seems to be the process improvement with lowest costs and highest impact.

6.
J Exp Biol ; 227(6)2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38357776

RESUMEN

A skeletal muscle's peak force production and excursion are based on its architectural properties that are, in turn, determined by its mass, muscle fiber length and physiological cross-sectional area (PCSA). In the classic interspecific study of mammalian muscle scaling, it was demonstrated that muscle mass scales positively allometrically with body mass whereas fiber length scales isometrically with body mass, indicating that larger mammals have stronger leg muscles than they would if they were geometrically similar to smaller ones. Although this relationship is highly significant across species, there has never been a detailed intraspecific architectural scaling study. We have thus created a large dataset of 896 muscles across 34 human lower extremities (18 females and 16 males) with a size range including approximately 90% and 70% of the United States population height and mass, respectively, across the range 36-103 years. Our purpose was to quantify the scaling relationships between human muscle architectural properties and body size. We found that human muscles depart greatly from isometric scaling because muscle mass scales with body mass1.3 (larger exponent than isometric scaling of 1.0) and muscle fiber length scales with negative allometry with body mass0.1 (smaller exponent than isometric scaling of 0.33). Based on the known relationship between architecture and function, these results suggest that human muscles place a premium on muscle force production (mass and PCSA) at the expense of muscle excursion (fiber length) with increasing body size, which has implications for understanding human muscle design as well as biomechanical modeling.


Asunto(s)
Pierna , Músculo Esquelético , Humanos , Animales , Masculino , Femenino , Músculo Esquelético/fisiología , Fibras Musculares Esqueléticas/fisiología , Tamaño Corporal , Mamíferos , Extremidad Inferior
7.
Neurophysiol Clin ; 54(4): 102955, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38422588

RESUMEN

OBJECTIVES: Corneal confocal microscopy (CCM) is a non-invasive technique that examines the corneal cellular structure. Its use in the detection of small fiber neuropathy is being researched. In our study, we examined the role of CCM in the detection of small fiber neuropathy in diabetic patients, as well as the differences between CCM findings in diabetic patients with and without overt polyneuropathy with neuropathic symptoms. METHODS: 56 Diabetes Mellitus (DM) patients and 18 healthy controls were included in the study. The individuals included in the study were divided into three groups. Patients with diabetes who were found to have polyneuropathy according to electrophysiological diagnostic criteria were classified as Group 1, patients with diabetes and neuropathic symptoms without overt polyneuropathy according to electrophysiological diagnostic criteria were classified as Group 2, and healthy individuals were classified as Group 3. Electrophysiological examination and corneal imaging with CCM were performed in all groups. RESULTS: The CNFD and CNFL values of individuals in the diabetic group were discovered to be lower. CNFD values differ statistically between the groups (p = 0.047). Group 1-Group 3 differs from Group 2-Group 3 (respectively; p = 0.018, p = 0.048). CONCLUSION: Our study demonstrates that CCM can be used in patients with neuropathic symptoms and no polyneuropathy detected in EMG and thought to have small fiber neuropathy. CCM provides an opportunity for early diagnosis in small fiber neuropathy.


Asunto(s)
Córnea , Neuropatías Diabéticas , Microscopía Confocal , Neuropatía de Fibras Pequeñas , Humanos , Microscopía Confocal/métodos , Masculino , Córnea/diagnóstico por imagen , Córnea/patología , Córnea/inervación , Femenino , Persona de Mediana Edad , Neuropatías Diabéticas/diagnóstico , Neuropatías Diabéticas/diagnóstico por imagen , Neuropatías Diabéticas/fisiopatología , Neuropatía de Fibras Pequeñas/diagnóstico , Neuropatía de Fibras Pequeñas/fisiopatología , Adulto , Anciano , Diabetes Mellitus/fisiopatología
8.
Am J Physiol Cell Physiol ; 326(3): C749-C755, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38189131

RESUMEN

Experimental techniques in single human skeletal muscle cells require manual dissection. Unlike other mammalian species, human skeletal muscle is characterized by a heterogeneous mixture of myosin heavy chain (MHC) isoforms, typically used to define "fiber type," which profoundly influences cellular function. Therefore, it is beneficial to predict MHC isoform at the time of dissection, facilitating a more balanced fiber-type distribution from a potentially imbalanced sample. Although researchers performing single fiber dissection report predicting fiber-type based on mechanical properties of fibers upon dissection, a rigorous examination of this approach has not been performed. Therefore, we measured normalized fiber length (expressed as a % of the length of the bundle from which the fiber was dissected) in single fibers immediately following dissection. Six hundred sixty-eight individual fibers were dissected from muscle tissue samples from healthy, young adults to assess whether this characteristic could differentiate fibers containing MHC I ("slow" fiber type) or not ("fast" fiber type). Using receiver operator characteristic (ROC) curves, we found that differences in normalized fiber length (114 ± 13%, MHC I; 124 ± 17%, MHC IIA, P < 0.01) could be used to predict fiber type with excellent reliability (area under the curve = 0.72). We extended these analyses to include older adults (2 females, 1 male) to demonstrate the durability of this approach in fibers with likely different morphology and mechanical characteristics. We report that MHC isoform expression in human skeletal muscle fibers can be predicted at the time of dissection, regardless of origin.NEW & NOTEWORTHY A priori estimation of myosin heavy chain (MHC) isoform in individual muscle fibers may bias the relative abundance of fiber types in subsequent assessment. Until now, no standardized assessment approach has been proposed to characterize fibers at the time of dissection. We demonstrate an approach based on normalized fiber length that may dramatically bias a sample toward slow twitch (MHC I) or fast twitch (not MHC I) fiber populations.


Asunto(s)
Fibras Musculares Esqueléticas , Cadenas Pesadas de Miosina , Animales , Femenino , Adulto Joven , Humanos , Masculino , Anciano , Cadenas Pesadas de Miosina/metabolismo , Reproducibilidad de los Resultados , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Isoformas de Proteínas/metabolismo , Mamíferos/metabolismo
9.
Polymers (Basel) ; 16(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38201825

RESUMEN

The tensile strength and modulus of elasticity of a jute/polylactic acid (PLA) composite were found to vary nonlinearly with the loading angle of the specimen through the tensile test. The variation in these properties was related to the fiber orientation distribution (FOD) and fiber length distribution (FLD). In order to study the effects of the FOD and FLD of short fibers on the mechanical properties and to better predict the mechanical properties of short-fiber composites, the true distribution of short fibers in the composite was accurately obtained using X-ray computed tomography (XCT), in which about 70% of the jute fibers were less than 300 µm in length and the fibers were mainly distributed along the direction of mold flow. The probability density functions of the FOD and FLD were obtained by further analyzing the XCT data. Strength and elastic modulus prediction models applicable to short-fiber-reinforced polymer (SFRP) composites were created by modifying the laminate theory and the rule of mixtures using the probability density functions of the FOD and FLD. The experimental measurements were in good agreement with the model predictions.

10.
Int J Biol Macromol ; 256(Pt 2): 128036, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37972829

RESUMEN

Cotton is the most economically important natural fiber crop grown in more than sixty-five countries of the world. Fiber length is the main factor affecting fiber quality, but the existing main varieties are short in length and cannot suit the higher demands of the textile industry. It is necessary to discover functional genes that enable fiber length improvement in cotton through molecular breeding. In this study, overexpression of GhEB1C in Arabidopsis thaliana significantly promotes trichomes, tap roots, and root hairs elongation. The molecular regulation of GhEB1C involves its interactions with itself and GhB'ETA, and the function of GhEB1C regulation mainly depends on the two cysteine residues located at the C-terminal. In particular, the function activity of GhEB1C protein triggered with the regulation of protein phosphatase 2A, while silencing of GhEB1C in cotton significantly influenced the fiber protrusions and elongation mechanisms., Further, influenced the expression of MYB-bHLH-WD40 complex, brassinosteroids, and jasmonic acid-related genes, which showed that transcriptional regulation of GhEB1C is indispensable for cotton fiber formation and elongation processes. Our study analyzed the brief molecular mechanism of GhEB1C regulation. Further elucidated that GhEB1C can be a potential target gene to improve cotton fiber length through transgenic breeding.


Asunto(s)
Arabidopsis , Gossypium , Gossypium/genética , Gossypium/metabolismo , Proteína Fosfatasa 2/metabolismo , Fitomejoramiento , Fibra de Algodón , Arabidopsis/genética , Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Front Plant Sci ; 14: 1254103, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662180

RESUMEN

Introduction: Phosphorus (P) deficiency hinders cotton (Gossypium hirustum L.) growth and development, seriously affecting lint yield and fiber quality. However, it is still unclear how P fertilizer affects fiber length. Methods: Therefore, a two-year (2019-2020) pool-culture experiment was conducted using the split-plot design, with two cotton cultivars (CCRI-79; low-P tolerant and SCRC-28; low-P sensitive) as the main plot. Three soil available phosphorus (AP) contents (P0: 3 ± 0.5, P1: 6 ± 0.5, and P2 (control) with 15 ± 0.5 mg kg-1) were applied to the plots, as the subplot, to investigate the impact of soil AP content on cotton fiber elongation and length. Results: Low soil AP (P0 and P1) decreased the contents of the osmotically active solutes in the cotton fibers, including potassium ions (K+), malate, soluble sugar, and sucrose, by 2.2-10.2%, 14.4-47.3%, 8.7-24.5%, and 10.1-23.4%, respectively, inhibiting the vacuoles from facilitating fiber elongation through osmoregulation. Moreover, soil AP deficiency also reduced the activities of enzymes participated in fiber elongation (plasma membrane H+-ATPase (PM-H+-ATPase), vacuole membrane H+-ATPase (V-H+-ATPase), vacuole membrane H+-translocating inorganic pyrophosphatase (V-H+-PPase), and phosphoenolpyruvate carboxylase (PEPC)). The PM-H+-ATPase, V-H+-ATPase, V-H+-PPase, and PEPC were reduced by 8.4-33.0%, 7.0-33.8%, 14.1-38.4%, and 16.9-40.2%, respectively, inhibiting the transmembrane transport of the osmotically active solutes and acidified conditions for fiber cell wall, thus limiting the fiber elongation. Similarly, soil AP deficiency reduced the fiber length by 0.6-3.0 mm, mainly due to the 3.8-16.3% reduction of the maximum velocity of fiber elongation (VLmax). Additionally, the upper fruiting branch positions (FB10-11) had higher VLmax and longer fiber lengths under low soil AP. Discussion: Cotton fibers with higher malate content and V-H+-ATPase and V-H+-PPase activities yielded longer fibers. And the malate and soluble sugar contents and V-H+-ATPase and PEPC activities in the SCRC-28's fiber were more sensitive to soil AP deficiency in contrast to those of CCRI-79, possibly explaining the SCRC-28 fiber length sensitivity to low soil AP.

12.
Materials (Basel) ; 16(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37687662

RESUMEN

In order to improve the mechanical properties and deformation characteristics of permeable concrete, glass fiber was added to this type of concrete. Based on an unconfined compressive strength test, non-contact full-field strain measurement system, and scanning electron microscopy test, the effects of aggregate particle composition, shaking time, fly ash content, fiber length, and fiber content on the strength and permeability of permeable concrete were studied. The results show that the strength and water permeability of permeable concrete are negatively correlated with an increase in shaking time. When the aggregate particle size is 5-10 mm, the permeable concrete has both good strength and permeability. Proper incorporation of fly ash improves the compactness inside the structure. The influence of different lengths of glass fiber on the strength of permeable concrete first increases and then decreases, and the permeable property decreases. With the same fiber length, the strength increases first and then decreases with an increase in the content, while the porosity and water permeability coefficient decrease. Under the test conditions, when the length of glass fiber is 6 mm, and the dosage is 2 kg/m3, the strength performance of permeable concrete is the best, and the permeability effect is good at the same time.

13.
Animals (Basel) ; 13(13)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37443977

RESUMEN

Maintaining meat quality is essential to sustainable livestock management. Therefore, identifying alternative feed materials while considering consumer acceptance is crucial. So, the aim of this study was to evaluate the effect of C. glomerata-biomass-supplemented feeds on rabbit muscles' physical properties, sensory profiles, and evaluators' emotional responses to them. A total of thirty 52-day-old weaned Californian breed rabbits were randomly allocated to one of three dietary treatments: standard compound diet (SCD), SCD supplemented with 4% C. glomerata (CG4), or SCD supplemented with 8% C. glomerata (CG8). After the 122-day-old rabbits were slaughtered, post-mortem dissection of the rabbit Longissimus dorsi (LD) and hind leg (HL) muscles was conducted. The physical and histomorphometric features, sensory analyses, and emotional responses to the rabbit's muscles were determined. Study results revealed CG4 and CG8 treatments significantly increased rabbit muscle moisture, while CG8 increased cooking losses in HL muscles (p < 0.05). Moreover, both CG treatments reduced the darkness and redness of fresh and cooked rabbit muscles compared to SCD (p < 0.05). CG8 treatment compared to SCD resulted in longer LD muscle fibers (p < 0.05). Evaluators discovered that the average scores for each sensory description of rabbit meat are acceptable and that consuming CG8-HL muscles can increase happiness based on emotional responses. Consequently, replacing traditional feed materials in rabbit feed with C. glomerata can lead to not only more sustainable production but also more consumer-acceptable rabbit meat.

14.
Polymers (Basel) ; 15(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37177191

RESUMEN

Long-fiber thermoplastic (LFT) materials compounded via the direct LFT (LFT-D) process are very versatile composites in which polymers and continuous reinforcement fiber can be combined in almost any way. Polycarbonate (PC) as an amorphous thermoplastic matrix system reinforced with glass fibers (GFs) is a promising addition regarding the current development needs, for example battery enclosures for electromobility. Two approaches to the processing and compression molding of PC GF LFT-D materials with various parameter combinations of screw speed and fiber rovings are presented. The resulting fiber lengths averaged around 0.5 mm for all settings. The tensile, bending, Charpy, and impact properties were characterized and discussed in detail. Special attention to the characteristic charge and flow area formed by compression molding of LFT-D materials, as well as sample orientation was given. The tensile modulus was 10 GPa, while the strength surpassed 125 MPa. The flexural modulus can reach up to 11 GPa, and the flexural strength reached up to 216 MPa. PC GF LFT-D is a viable addition to the LFT-D process, exhibiting good mechanical properties and stable processability.

15.
Polymers (Basel) ; 15(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37112071

RESUMEN

The increasing demand for renewable raw materials and lightweight composites leads to an increasing request for natural fiber composites (NFC) in series production. In order to be able to use NFC competitively, they must also be processable with hot runner systems in injection molding series production. For this reason, the influences of two hot runner systems on the structural and mechanical properties of Polypropylene with 20 wt.% regenerated cellulose fibers (RCF) were investigated. Therefore, the material was processed into test specimens using two different hot runner systems (open and valve gate) and six different process settings. The tensile tests carried out showed very good strength for both hot runner systems, which were max. 20% below the reference specimen processed with a cold runner and, however, significantly influenced by the different parameter settings. Fiber length measurements with the dynamic image analysis showed approx. 20% lower median values of GF and 5% lower of RCF through the processing with both hot runner systems compared to the reference, although the influence of the parameter settings was small. The X-ray microtomography performed on the open hot runner samples showed the influences of the parameter settings on the fiber orientation. In summary, it was shown that RCF composites can be processed with different hot runner systems in a wide process window. Nevertheless, the specimens of the setting with the lowest applied thermal load showed the best mechanical properties for both hot runner systems. It was furthermore shown that the resulting mechanical properties of the composites are not only due to one structural property (fiber length, orientation, or thermally induced changes in fiber properties) but are based on a combination of several material- and process-related properties.

16.
Int J Artif Organs ; 46(4): 202-208, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36907998

RESUMEN

Continuous renal replacement therapy (CRRT) has become the most commonly used acute blood purification therapy for critically ill patients. As a key point of extracorporeal blood circulation, the CRRT filter plays a decisive role in therapeutic efficacy. However, few in vitro studies have been conducted on CRRT filters, particularly concerning the effects of design factors on filter effectiveness and safety profile; no comprehensive evaluation system has been established. Here, we designed nine CRRT filters with various combinations of hollow fiber packing density (PD) and housing shape (effective hollow fiber length (L) and inner housing diameter (D) ratio (L/D ratio)) and introduced a high-frequency sampling pressure monitor to accurately monitor small changes in transmembrane pressure (TMP) and ultrafiltration rate (UFR) over time. We also used concentration polarization mass transfer resistance (Rc), change in sieving coefficient (S) of albumin over time, and amount of albumin removed (Mfld) to investigate the effects of two design factors on albumin filtration performance and analyze the mechanism of protein filtration performance over time, thereby establishing a comprehensive in vitro evaluation system to explore the safety profile of CRRT filters. Our results showed that the nine CRRT filters designed with different combinations of PD (50%, 55%, and 60%) and L/D ratio (2.9, 5.3, and 9.3) were able to maintain stability in terms of hemodynamics and water permeability; the lowest Mfld was PD = 60% and L/D ratio = 9.3, which indicates that design factor optimization can effectively control albumin filtration, thereby improving the safety profile of CRRT filters.


Asunto(s)
Terapia de Reemplazo Renal Continuo , Humanos , Vivienda , Filtración , Ultrafiltración , Albúminas , Terapia de Reemplazo Renal/métodos
17.
Materials (Basel) ; 16(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903064

RESUMEN

Aeolian sand flow is a major cause of land desertification, and it is prone to developing into a dust storm coupled with strong wind and thermal instability. The microbially induced calcite precipitation (MICP) technique can significantly improve the strength and integrity of sandy soils, whereas it easily leads to brittle destruction. To effectively inhibit land desertification, a method coupled with MICP and basalt fiberreinforcement (BFR) was put forward to enhance the strength and toughness of aeolian sand. Based on a permeability test and an unconfined compressive strength (UCS) test, the effects of initial dry density (ρd), fiber length (FL), and fiber content (FC) on the characteristics of permeability, strength, and CaCO3 production were analyzed, and the consolidation mechanism of the MICP-BFR method was explored. The experiments indicated that the permeability coefficient of aeolian sand increased first, then decreased, and subsequently increased with the increase in FC, whereas it exhibited a tendency to decrease first and then increase with the increase in FL. The UCS increased with the increase in the initial dry density, while it increased first and then decreased with the increase in FL and FC. Furthermore, the UCS increased linearly with the increase in CaCO3 generation, and the maximum correlation coefficient reached 0.852. The CaCO3 crystals played the roles of providing bonding, filling, and anchoring effects, and the spatial mesh structure formed by the fibers acted as a bridge effect to enhance the strength and brittle damage of aeolian sand. The findings could supply a guideline for sand solidification in desert areas.

18.
BMC Plant Biol ; 23(1): 121, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36859186

RESUMEN

It is crucial to understand how targeted traits in a hybrid breeding program are influenced by gene activity and combining ability. During the three growing seasons of 2015, 2016, and 2017, a field study was conducted with twelve cotton genotypes, comprised of four testers and eight lines. Thirty-two F1 crosses were produced in the 2015 breeding season using the line x tester mating design. The twelve genotypes and their thirty-two F1 crosses were then evaluated in 2016 and 2017. The results demonstrated highly significant differences among cotton genotypes for all the studied traits, showing a wide range of genetic diversity in the parent genotypes. Additionally, the line-x-tester interaction was highly significant for all traits, suggesting the impact of both additive and non-additive variations in gene expression. Furthermore, the thirty-two cotton crosses showed high seed cotton output, lint cotton yield, and fiber quality, such as fiber length values exceeding 31 mm and a fiber strength above 10 g/tex. Accordingly, selecting lines and testers with high GCA effects and crosses with high SCA effects would be an effective approach to improve the desired traits in cotton and develop new varieties with excellent yield and fiber quality.


Asunto(s)
Gossypium , Fitomejoramiento , Egipto , Fenotipo , Hábitos
19.
Ophthalmol Sci ; 3(1): 100214, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36275201

RESUMEN

Objective: Seventy percent of Fuchs' endothelial corneal dystrophy (FECD) cases are caused by an intronic trinucleotide repeat expansion in the transcription factor 4 gene (TCF4). The objective of this study was to characterize the corneal subbasal nerve plexus and corneal haze in patients with FECD with (RE+) and without the trinucleotide repeat expansion (RE-) and to assess the correlation of these parameters with disease severity. Design: Cross-sectional, single-center study. Participants: Fifty-two eyes of 29 subjects with a modified Krachmer grade of FECD severity from 1 to 6 were included in the study. Fifteen of the 29 subjects carried an expanded TCF4 allele length of ≥ 40 cytosine-thymine-guanine repeats (RE+). Main Outcomes Measures: In vivo confocal microscopy assessments of corneal nerve fiber length (CNFL), corneal nerve branch density, corneal nerve fiber density (CNFD), and anterior corneal stromal backscatter (haze); Scheimpflug tomography densitometry measurements of haze in anterior, central, and posterior corneal layers. Results: Using confocal microscopy, we detected a negative correlation between FECD severity and both CNFL and CNFD in the eyes of RE+ subjects (Spearman ρ = -0.45, P = 0.029 and ρ = -0.62, P = 0.0015, respectively) but not in the eyes of RE- subjects. Additionally, CNFD negatively correlated with the repeat length of the expanded allele in the RE+ subjects (Spearman ρ = -0.42, P = 0.038). We found a positive correlation between anterior stromal backscatter and severity in both the RE+ and RE- groups (ρ = 0.60, P = 0.0023 and ρ = 0.44, P = 0.024, respectively). The anterior, central, and posterior Scheimpflug densitometry measurements also positively correlated with severity in both the RE+ and RE- groups (P = 5.5 × 10-5, 2.5 × 10-4, and 2.9 × 10-4, respectively, after adjusting for the expansion status in a pooled analysis. However, for patients with severe FECD (Krachmer grades 5 and 6), the posterior densitometry measurements were higher in the RE+ group than in the RE- group (P < 0.05). Conclusions: Loss of corneal nerves in FECD supports the classification of the TCF4 trinucleotide repeat expansion disorder as a neurodegenerative disease. Haze in the anterior, central, and posterior cornea correlate with severity, irrespective of the genotype. Quantitative assessments of corneal nerves and corneal haze may be useful to gauge and monitor FECD disease severity in RE+ patients.

20.
Anat Rec (Hoboken) ; 306(2): 437-445, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36054569

RESUMEN

Reversed sexual dimorphism (RSD) in size is a deep issue in evolutionary biology. RSD in body mass and linear measures is pronounced in diurnal predatory bird species, especially in those that feed on other birds. Size differences between males and females in internal organs or systems, such as the appendicular musculature, are less well known. In this study, 14 muscles related to toe closure in the Eurasian sparrowhawk (Accipiter nisus), a bird-eating species, were selected for dissection and architectural measurement. The muscle mass (MM), physiological cross-sectional area (PCSA), and fiber length (FL) were compared between sexes to detect the possible presence and/or degree of RSD. The results revealed significant RSD in MM and PCSA and suggested a higher force-generating capacity in females than in males. In females, greater strength in M. tibialis cranialis, M. iliofibularis, and six digital flexors enabled them to capture and carry larger prey, whereas more massive development in M. abductor digiti II and M. abductor digiti IV provided their feet with greater dexterity to improve the effectiveness of grasping larger mobile prey and preventing escape during capture. Fiber length did not show RSD. Generally, males had longer relative and absolute fiber length, indicative of enhanced working range and speed of contraction that was advantageous when hunting small prey. The differences between the sexes in architectural design and the high degree of RSD in MM and PCSA are correlated with the bird-eating diet and prey size difference of this species.


Asunto(s)
Halcones , Animales , Femenino , Masculino , Halcones/fisiología , Caracteres Sexuales , Músculo Esquelético/fisiología , Aves
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA