RESUMEN
The role of ferroptosis and iron metabolism dysregulation in the pathophysiology of cardiovascular diseases is increasingly recognized. Conditions such as hypertension, cardiomyopathy, atherosclerosis, myocardial ischemia/reperfusion injury, heart failure, and cardiovascular complications associated with COVID-19 have been linked to these processes. Inflammation is central to these conditions, prompting exploration into the inflammatory and immunoregulatory molecular pathways that mediate ferroptosis and its contribution to cardiovascular disease progression. Notably, emerging evidence highlights interleukin-37 as a protective cytokine with the ability to activate the nuclear factor erythroid 2-related factor 2 pathway, inhibit macrophage ferroptosis, and attenuate atherosclerosis progression in murine models. However, a comprehensive review focusing on interleukin-37 and its protective role against ferroptosis in CVD is currently lacking. This review aims to fill this gap by summarizing existing knowledge on interleukin-37, including its regulatory functions and impact on ferroptosis in conditions such as atherosclerosis and myocardial infarction. We also explore experimental strategies and propose that targeting interleukin-37 to modulate ferroptosis presents a promising therapeutic approach for the prevention and treatment of cardiovascular diseases.
Asunto(s)
Enfermedades Cardiovasculares , Ferroptosis , Interleucina-1 , Humanos , Interleucina-1/metabolismo , Enfermedades Cardiovasculares/metabolismo , Animales , COVID-19/metabolismo , COVID-19/inmunología , Aterosclerosis/metabolismo , Aterosclerosis/patología , SARS-CoV-2/metabolismoRESUMEN
OBJECTIVE: Cisplatin-based chemotherapy is widely used for the treatment of oral squamous cell carcinoma (OSCC), but drug resistance and decreased sensitivity often occur during the treatment, greatly weakening its therapeutic effect. Caveolin-1 (CAV1), a protein related to ferroptosis, is involved in regulating the resistance and sensitivity of various tumor chemotherapies. This study aims to investigate whether CAV1 can regulate the sensitivity of OSCC to cisplatin through ferroptosis. METHODS: Through bioinformatics analysis, we analyzed the expression of CAV1 in OSCC and its impact on prognosis analyzed the relationship between CAV1 and tumor immune infiltration, and verified the expression of CAV1 in OSCC through immunohistochemistry experiments. We silenced the expression of CAV1 in OSCC cells through lentiviral transfection and evaluated the cell migration and invasion abilities through wound healing and Transwell assays, respectively. CCK8 assay was used to assess the sensitivity of cells to cisplatin, and ferroptosis-related biochemical marker changes were measured. Western blot was performed to detect the expression of ferroptosis-related proteins. RESULTS: The results revealed a high expression of CAV1 in OSCC, and its high expression predicted poor prognosis in OSCC. CAV1 is associated with drug metabolism pathways in OSCC, and its expression affects the infiltration levels of various immune cells in tumors. Further experiments indicated that CAV1 can inhibit ferroptosis and cisplatin sensitivity in cancer cells, promoting their migration and invasion. CONCLUSION: CAV1 promotes the progression of OSCC and can affect the sensitivity of cisplatin by regulating cellular ferroptosis.
RESUMEN
PURPOSE: Ferroptosis is a type of iron-dependent regulated cell death characterized by increased bioavailability of redox-active iron, loss of GPX4 antioxidant capacity, and oxidation of polyunsaturated fatty acid-containing phospholipids mediated by reactive oxygen species (ROS). The aim of this study was to evaluate the effect of oxidative stress induced by arachidonic acid (AA) on ferroptotic cell death in human spermatozoa. MATERIALS AND METHODS: Spermatozoa from normozoospermic donors were exposed to AA (5, 25, and 50 µM) for 1 hour at 37 â, including an untreated control. Oxidative stress was confirmed by evaluation of cytosolic and mitochondrial ROS production, viability, mitochondrial membrane potential (ΔΨm) and motility. Subsequently, molecular markers of ferroptosis including iron content, levels of GPX4, SLC7A11, ACSL4, IREB2 and lipid peroxidation were evaluated. The analyses were carried out using either flow cytometry, a microplate reader or confocal laser microscopy. RESULTS: AA-induced oxidative stress showed increased cytosolic and mitochondrial ROS production accompanied by impairedΔΨm, viability and motility in human spermatozoa. These results were associated with biochemical and molecular markers related to ferroptotic cell death including an increase in iron content in the form of ferrous (Fe2+) ions, SLC7A11, ACSL4, IREB2, a decrease in the level of GPX4, and an increase in the level of lipid peroxidation compared to the untreated control. CONCLUSIONS: This study revealed that AA-induced oxidative stress induces cell death with biochemical characteristics of ferroptosis in human spermatozoa, demonstrating another mechanism of alteration of sperm function induced by oxidative stress and could establish new therapeutic objectives to prevent the decrease in sperm quality mediated by oxidative stress.
RESUMEN
Glioblastoma (GBM) represents a formidable challenge in oncology, characterized by aggressive proliferation and poor prognosis. Iron metabolism plays a critical player in GBM progression, with dysregulated iron uptake and utilization contributing to tumor growth and therapeutic resistance. Iron's pivotal role in DNA synthesis, oxidative stress, and angiogenesis underscores its significance in GBM pathogenesis. Elevated expression of iron transporters, such as transferrin receptor 1 (TfR1), highlights the tumor's reliance on iron for survival. Innovative treatment strategies targeting iron dysregulation hold promise for overcoming therapeutic challenges in GBM management. Approaches such as iron chelation therapies, induction of ferroptosis to nanoparticle-based drug delivery systems exploit iron-dependent vulnerabilities, offering avenues for enhance treatment efficacy and improve patient outcomes. As research advances, understanding the complexities of iron-mediated carcinogenesis provides a foundation for developing precision medicine approaches tailored to combat GBM effectively. This review explores the intricate relationship between iron metabolism and GBM, elucidating its multifaceted implications and therapeutic opportunities. By consolidating the latest insights into iron metabolism in GBM, this review underscores its potential as a therapeutic target for improving patient care in combination with the standard of care approach.
Asunto(s)
Ferroptosis , Glioblastoma , Hierro , Receptores de Transferrina , Humanos , Receptores de Transferrina/metabolismo , Hierro/metabolismo , Ferroptosis/efectos de los fármacos , Glioblastoma/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Antígenos CD/metabolismo , Antígenos CD/genética , Quelantes del Hierro/uso terapéutico , Quelantes del Hierro/farmacologíaRESUMEN
Renal iron overload is a common complication of diabetes that leads to oxidative stress and mitochondrial dysfunction in the kidneys. This study investigated the effects of iron chelation using deferiprone on mitochondrial dysfunction and oxidative stress in the renal cortex of a murine model of type 2 diabetes. Diabetic rats were treated with deferiprone (50 mg/kg BW) for 16 weeks. Our results show that iron chelation with deferiprone significantly increased the nuclear accumulation of Nrf2, a transcription factor that regulates the expression of antioxidant enzymes. This led to enhanced antioxidant capacity, reduced production of reactive oxygen species, and improved mitochondrial bioenergetic function in diabetic rats. However, chronic iron chelation led to altered mitochondrial respiration and increased oxidative stress in non-diabetic rats. In conclusion, our findings suggest that iron chelation with deferiprone protects mitochondrial bioenergetics and mitigates oxidative stress in the renal cortex, involving the NRF2 pathway in type 2 diabetes.
Asunto(s)
Deferiprona , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Corteza Renal , Factor 2 Relacionado con NF-E2 , Animales , Masculino , Ratones , Ratas , Antioxidantes/farmacología , Antioxidantes/metabolismo , Deferiprona/farmacología , Deferiprona/uso terapéutico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Modelos Animales de Enfermedad , Quelantes del Hierro/farmacología , Corteza Renal/metabolismo , Corteza Renal/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Sickle cell disease (SCD) is an inherited hemoglobin disorder marked by red blood cell sickling, resulting in severe anemia, painful episodes, extensive organ damage, and shortened life expectancy. In SCD, increased iron levels can trigger ferroptosis, a specific type of cell death characterized by reactive oxygen species (ROS) and lipid peroxide accumulation, leading to damage and organ impairments. The intricate interplay between iron, ferroptosis, inflammation, and oxidative stress in SCD underscores the necessity of thoroughly understanding these processes for the development of innovative therapeutic strategies. This review highlights the importance of balancing the complex interactions among various factors and exploitation of the knowledge in developing novel therapeutics for this devastating disease.
RESUMEN
In the current context of global warming, high temperature events are becoming more frequent and intense in many places around the world. In this context, understanding how plants sense and respond to heat is essential to develop new tools to prevent plant damage and address global food security, as high temperature events are threatening agricultural sustainability. This review summarizes and integrates our current understanding underlying the cellular, physiological, biochemical and molecular regulatory pathways triggered in plants under moderately high and extremely high temperature conditions. Given that extremely high temperatures can also trigger ferroptosis, the study of this cell death mechanism constitutes a strategic approach to understand how plants might overcome otherwise lethal temperature events.
RESUMEN
Phenol red (PR) is a commonly used compound in culture media as a pH indicator. However, it is unknown whether this compound can interfere with the pharmacological induction of ferroptosis. Here, using high-content live-cell imaging death analysis, we determined that the presence of PR in the culture medium preconditioned normal and tumor cells to ferroptosis induced by system xc- inhibition mediated by imidazole ketone erastin (IKE) or GPX4 blockade in response to RSL-3, but had no significant effects against treatment with the endoperoxide FINO2. Mechanistically, we revealed that PR decreases the levels of the antiferroptotic genes Slc7a11, Slc3a2, and Gpx4, while promoting the overexpression de Acls4, a key inducer of ferroptosis. Additionally, through superresolution analysis, we determined that the presence of PR mislocalizes the system xc- from the plasma membrane. Thus, our results show that the presence of PR in the culture medium can be a problematic artifact for the accurate interpretation of cell sensitivity to IKE or RSL-3-mediated ferroptosis induction.
Asunto(s)
Ferroptosis , Fenolsulfonftaleína , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Humanos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Fenolsulfonftaleína/metabolismo , Piperazinas/farmacología , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Artefactos , Imidazoles/farmacología , Línea Celular Tumoral , Medios de Cultivo/química , Animales , CarbolinasRESUMEN
Pancreatic cancer has doubled over the previous two decades. Routine therapies are becoming incredibly resistant and failing to compensate for the burden caused by this aggressive neoplasm. As genetic susceptibility has always been a highlighted concern for this disease, identifying the molecular pathways involved in the survival and function of pancreatic cancer cells provides insight into its variant etiologies, one of which is the role of AMPK. This regulating factor of cell metabolism is crucial in the homeostasis and growth of the cell. Herein, we review the possible role of AMPK in pancreatic cancer while considering its leading effects on glycolysis and autophagy. Then, we assess the probable therapeutic agents that have resulted from the suggested pathways. Studying the underlying genetic changes in pancreatic cancer provides a chance to detect and treat patients suffering from advanced stages of the disease, and those who have given up their hope on conventional therapies can gain an opportunity to combat this cancer.
RESUMEN
OBJECTIVE: This study aims to analyze the relationship between the Kelch-like ECH-associated protein 1 (Keap1)/Nuclear factor-erythroid 2-related factor 2 (Nrf2) and Epilepsy (EP), as well as its mechanism of action. METHODS: Thirty Wistar rats were divided into a control group (without treatment), a model group (EP modeling), and an inhibition group (EP modeling + intervention by Keap1/Nrf2 signaling pathway inhibitor ATRA) and subject to Morris water maze experiment. Then, the expression of Oxidative Stress (OS) markers, ferroptosis-associated proteins and Keap1/Nrf2 pathway in rat hippocampus was measured. In addition, rat hippocampal neuronal cell HT22 was purchased and treated accordingly based on the results of grouping, and cell proliferation and apoptosis in the three groups were determined. RESULTS: Compared with rats in the model group, those in the inhibition group showed shorter escape latency and an increased number of platform crossings (p < 0.05). Significant OS and neuron ferroptosis, increased apoptosis rate, elevated Keap1 expression, and decreased Nrf2 expression were observed in the model group compared to the control group (p < 0.05). The inhibition group exhibited notably improved OS and ferroptosis, as well as enhanced neuronal viability (p < 0.05). CONCLUSION: Inhibition of the Keap1/Nrf2 pathway can reverse the OS and neuron viability in EP rats.
Asunto(s)
Epilepsia , Ferroptosis , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Neuronas , Estrés Oxidativo , Ratas Wistar , Transducción de Señal , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/fisiología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Estrés Oxidativo/fisiología , Transducción de Señal/fisiología , Ferroptosis/fisiología , Ferroptosis/efectos de los fármacos , Neuronas/metabolismo , Epilepsia/metabolismo , Epilepsia/fisiopatología , Masculino , Hipocampo/metabolismo , Apoptosis/fisiología , Ratas , Progresión de la Enfermedad , Modelos Animales de EnfermedadRESUMEN
OBJECTIVE: To investigate the mechanism of induction of ferroptosis by brazilin in breast cancer cells. METHODS: Breast cancer 4T1 cells were divided into 6 groups: control, brazilin 1/2 half maximal inhibitory concentration (IC50), IC50, 2×IC50, erastin (10 µg/mL) and capecitabine (10 µg/mL) groups. The effect of brazilin on the proliferation of 4T1 cells was detected by cell counting kit-8 assay, and the treatment dose of brazilin was screened. The effect of brazilin on the mitochondrial morphology of 4T1 cells, and the mitochondrial damage was evaluated under electron microscopy. The levels of Fe2+, reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) and glutathione peroxidase 4 (GPX4) were estimated using various detection kits. The invasion and migration abilities of 4T1 cells were detected by scratch assay and transwell assay. The expressions levels of tumor protein p53, solute carrier family 7 member 11 (SLC7A11), GPX4 and acyl-CoA synthetase long-chain family member 4 (ACSL4) proteins were quantified by Western blot assay. RESULTS: Compared to the control group, the 10 (1/2 IC50), 20 (IC50) and 40 (2×IC50) µg/mL brazilin, erastin, and capecitabine groups showed a significant decrease in the cell survival rate, invasion and migration abilities, GSH, SLC7A11 and GPX4 protein expression levels, and mitochondrial volume and ridge (P<0.05), and a significant increase in the mitochondria membrane density, Fe2+, ROS and MDA levels, and p53 and ACSL4 protein expression levels (P<0.05). CONCLUSIONS: Brazilin actuated ferroptosis in breast cancer cells, and the underlying mechanism is mainly associated with the p53/SLC7A11/GPX4 signaling pathway.
Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Neoplasias de la Mama , Ferroptosis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Transducción de Señal , Proteína p53 Supresora de Tumor , Ferroptosis/efectos de los fármacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Femenino , Línea Celular Tumoral , Proteína p53 Supresora de Tumor/metabolismo , Sistema de Transporte de Aminoácidos y+/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Coenzima A Ligasas/metabolismo , Movimiento Celular/efectos de los fármacos , BenzopiranosRESUMEN
High-altitude hypoxia exposure can lead to phospholipase D-mediated lipid metabolism disorder in spleen tissues and induce ferroptosis. Nonetheless, the key genes underlying hypoxia-induced splenic phospholipase D and the ferroptosis pathway remain unclear. This study aimed to establish a hypoxia animal model. Combined transcriptomic and proteomic analyses showed that 95 predicted target genes (proteins) were significantly differentially expressed under hypoxic conditions. Key genes in phospholipase D and ferroptosis pathways under hypoxic exposure were identified by combining Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis techniques. Gene set enrichment analysis (GSEA) showed that the differential gene sets of the phospholipase D and ferroptosis signaling pathways were upregulated in the high-altitude hypoxia group. The genes in the phospholipase D signalling pathway were verified, and the expression levels of KIT and DGKG were upregulated in spleen tissues under hypoxic exposure. Subsequently, the mRNA and protein expression levels of genes from the exogenous pathway such as TFRC, SLC40A1, SLC7A11, TRP53, and FTH1 and those from the endogenous pathway such as GPX4, HMOX1, and ALOX15 differentials in the ferroptosis signalling pathway were verified, and the results indicated significant differential expression. In summary, exposure to high-altitude hypoxia mediated phospholipid metabolism disturbance through the phospholipase D signalling pathway and further induced ferroptosis, leading to splenic injury.
RESUMEN
Nephrotoxicity is a common complication that limits the clinical utility of cisplatin. Ferroptosis is an iron-dependent necrotic cell death program that is mediated by phospholipid peroxidation. The molecular mechanisms that disrupt iron homeostasis and lead to ferroptosis are yet to be elucidated. In this study, we aimed to investigate the involvement of nuclear receptor coactivator 4 (NCOA4), a selective cargo receptor that mediates ferroptosis and autophagic degradation of ferritin in nephrotoxicity. Adult male Sprague-Dawley rats were randomly-assigned to four groups: control group, cisplatin (Cis)-treated group, deferiprone (DEF)-treated group, and Cis+DEF co-treated group. Serum, urine, and kidneys were isolated to perform biochemical, morphometric, and immunohistochemical analysis. Iron accumulation was found to predispose to ferroptotic damage of the renal tubular cells. Treatment with deferiprone highlights the role of ferroptosis in nephrotoxicity. Upregulation of NCOA4 in parallel with low ferritin level in renal tissue seems to participate in iron-induced ferroptosis. This study indicated that ferroptosis may participate in cisplatin-induced tubular cell death and nephrotoxicity through iron-mediated lipid peroxidation. Iron dyshomeostasis could be attributed to NCOA4-mediated ferritin degradation.
RESUMEN
The objective of this study was to explore the effects and mechanisms of the combination of isobavachalcone (IBC) and doxorubicin (DOX) on the progression of anaplastic thyroid cancer (ATC). Cell viability of 8505C and CAL62 cells was observed by CCK-8 assay. Kits were used to detect the presence of reactive oxygen species (ROS), glutathione (GSH), malondialdehyde (MDA), and cellular iron. Protein expression of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) was detected using western blot, and CD31 was detected through immunofluorescence. Tumor xenograft models of 8505C cells were constructed to observe the effect of IBC and DOX on ATC growth in vivo. The co-administration of IBC and DOX exhibited a synergistic effect of suppressing the growth of 8505C and CAL62 cells. The concurrent use of IBC and DOX resulted in elevated iron, ROS, and MDA levels, while reducing GSH levels and protein expression of SLC7A11 and GPX4. However, the Fer-1 ferroptosis inhibitor effectively counteracted this effect. In vitro and in vivo, the inhibitory effect on ATC cell proliferation and tumor growth was significantly enhanced by the combination of IBC and DOX. The combination of IBC and DOX can inhibit the growth of ATC by activating ferroptosis, and might prove to be a potent chemotherapy protocol for addressing ATC.
RESUMEN
Brain iron accumulation constitutes a pathognomonic indicator in several neurodegenerative disorders. Metal accumulation associated with dopaminergic neuronal death has been documented in Parkinson's disease. Through the use of in vivo and in vitro models, we demonstrated that lipid dysregulation manifests as a neuronal and glial response during iron overload. In this study, we show that cholesterol content and triacylglycerol (TAG) hydrolysis were strongly elevated in mice midbrain. Lipid cacostasis was concomitant with the loss of dopaminergic neurons, astrogliosis and elevated expression of α-synuclein. Exacerbated lipid peroxidation and markers of ferroptosis were evident in the midbrain from mice challenged with iron overload. An imbalance in the activity of lipolytic and acylation enzymes was identified, favoring neutral lipid hydrolysis, and consequently reducing TAG and cholesteryl ester levels. Notably, these observed alterations were accompanied by motor impairment in iron-treated mice. In addition, neuronal and glial cultures along with their secretomes were used to gain further insight into the mechanism underlying TAG hydrolysis and cholesterol accumulation as cellular responses to iron accumulation. We demonstrated that TAG hydrolysis in neurons is triggered by astrocyte secretomes. Moreover, we found that the ferroptosis inhibitor, ferrostatin-1, effectively prevents cholesterol accumulation both in neurons and astrocytes. Taken together, these results indicate that lipid disturbances occur in iron-overloaded mice as a consequence of iron-induced oxidative stress and depend on neuron-glia crosstalk. Our findings suggest that developing therapies aimed at restoring lipid homeostasis may lead to specific treatment for neurodegeneration associated with ferroptosis and brain iron accumulation.
Asunto(s)
Ferroptosis , Sobrecarga de Hierro , Trastornos Motores , Ratones , Animales , Metabolismo de los Lípidos , Trastornos Motores/metabolismo , Hierro/metabolismo , Peroxidación de Lípido , Neuronas Dopaminérgicas/metabolismo , Colesterol/metabolismo , LípidosRESUMEN
Oral squamous cell carcinoma (OSCC) is the most common and lethal type of head and neck cancer in the world. Variable response and acquisition of resistance to traditional therapies show that it is essential to develop novel strategies that can provide better outcomes for the patient. Understanding of cellular and molecular mechanisms of cell death control has increased rapidly in recent years. Activation of cell death pathways, such as the emerging forms of non-apoptotic programmed cell death, including ferroptosis, pyroptosis, necroptosis, NETosis, parthanatos, mitoptosis and paraptosis, may represent clinically relevant novel therapeutic opportunities. This systematic review summarizes the recently described forms of cell death in OSCC, highlighting their potential for informing diagnosis, prognosis and treatment. Original studies that explored any of the selected cell deaths in OSCC were included. Electronic search, study selection, data collection and risk of bias assessment tools were realized. The literature search was carried out in four databases, and the extracted data from 79 articles were categorized and grouped by type of cell death. Ferroptosis, pyroptosis, and necroptosis represented the main forms of cell death in the selected studies, with links to cancer immunity and inflammatory responses, progression and prognosis of OSCC. Harnessing the potential of these pathways may be useful in patient-specific prognosis and individualized therapy. We provide perspectives on how these different cell death types can be integrated to develop decision tools for diagnosis, prognosis, and treatment of OSCC.
RESUMEN
Glioblastomas are known for their poor clinical prognosis, with recurrent tumors often exhibiting greater invasiveness and faster growth rates compared to primary tumors. To understand the intratumoral changes driving this phenomenon, we employed single-cell sequencing to analyze the differences between two pairs of primary and recurrent glioblastomas. Our findings revealed an upregulation of ferroptosis in endothelial cells within recurrent tumors, identified by the significant overexpression of the NOX4 gene. Further analysis indicated that knocking down NOX4 in endothelial cells reduced the activity of the ferroptosis pathway. Utilizing conditioned media from endothelial cells with lower ferroptosis activity, we observed a decrease in the growth rate of glioblastoma cells. These results highlighted the complex role of ferroptosis within tumors and suggested that targeting ferroptosis in the treatment of glioblastomas requires careful consideration of its effects on endothelial cells, as it may otherwise produce counterproductive outcomes.
RESUMEN
Iron overload, characterized by accumulation of iron in tissues, induces a multiorgan toxicity whose mechanisms are not fully understood. Using cultured cell lines, Caenorhabditis elegans, and mice, we found that ferroptosis occurs in the context of iron-overload-mediated damage. Exogenous oleic acid protected against iron-overload-toxicity in cell culture and Caenorhabditis elegans by suppressing ferroptosis. In mice, oleic acid protected against FAC-induced liver lipid peroxidation and damage. Oleic acid changed the cellular lipid composition, characterized by decreased levels of polyunsaturated fatty acyl phospholipids and decreased levels of ether-linked phospholipids. The protective effect of oleic acid in cells was attenuated by GW6471 (PPAR-α antagonist), as well as in Caenorhabditis elegans lacking the nuclear hormone receptor NHR-49 (a PPAR-α functional homologue). These results highlight ferroptosis as a driver of iron-overload-mediated damage, which is inhibited by oleic acid. This monounsaturated fatty acid represents a potential therapeutic approach to mitigating organ damage in iron overload individuals.
Asunto(s)
Ferroptosis , Sobrecarga de Hierro , Animales , Ratones , Caenorhabditis elegans , Ácido Oléico/farmacología , Receptores Activados del Proliferador del Peroxisoma , Sobrecarga de Hierro/tratamiento farmacológico , Hierro , Éteres FosfolípidosRESUMEN
ABSTRACT Purpose: It has been reported that exhaustive exercise (EE) causes myocyte injury, and eventually damages the function of the myocardia. Albiflorin (AF) has anti-inflammatory, antioxidant, and anti-apoptosis effects. In this study, we determined whether AF could mitigate the EE-induced myocardial injury and research the potential mechanisms. Methods: The rat model of EE was built by forced treadmill running method. Rats were intraperitoneally injected with AF before EE once daily for one week. The relative factors levels were examined by commercial kits. The apoptosis was appraised using a TdT-mediated dUTP nick end labeling assay kit. The ACSL4, GPX4, Nrf2, pAKT/AKT, and HO-1 contents were assessed by western blot. Results: AF lessened EE-induced cardiac myocytes ischemic/hypoxic injury and reduced the contents of myocardial injury biomarkers in the serum. AF lessened EE-induced cardiac myocyte apoptosis, inflammatory response, oxidative stress, and ferroptosis in myocardial tissues. However, the influences of AF were overturned by the co-treatment of AF and LY294002. AF activated the AKT/Nrf2/HO-1 signaling pathway in myocardial tissues in vivo. Conclusions: AF could curb cardiac myocytes ferroptosis, thus diminishing the EE-induced myocardial injury through activating the AKT/Nrf2/HO-1 cascade.
RESUMEN
Abstract Objective This study aims to analyze the relationship between the Kelch-like ECH-associated protein 1 (Keap1)/Nuclear factor-erythroid 2-related factor 2 (Nrf2) and Epilepsy (EP), as well as its mechanism of action. Methods Thirty Wistar rats were divided into a control group (without treatment), a model group (EP modeling), and an inhibition group (EP modeling + intervention by Keap1/Nrf2 signaling pathway inhibitor ATRA) and subject to Morris water maze experiment. Then, the expression of Oxidative Stress (OS) markers, ferroptosis-associated proteins and Keap1/Nrf2 pathway in rat hippocampus was measured. In addition, rat hippocampal neuronal cell HT22 was purchased and treated accordingly based on the results of grouping, and cell proliferation and apoptosis in the three groups were determined. Results Compared with rats in the model group, those in the inhibition group showed shorter escape latency and an increased number of platform crossings (p < 0.05). Significant OS and neuron ferroptosis, increased apoptosis rate, elevated Keap1 expression, and decreased Nrf2 expression were observed in the model group compared to the control group (p < 0.05). The inhibition group exhibited notably improved OS and ferroptosis, as well as enhanced neuronal viability (p < 0.05). Conclusion Inhibition of the Keap1/Nrf2 pathway can reverse the OS and neuron viability in EP rats.