Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 11(1)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445573

RESUMEN

Extensive research work has been carried out on the generation and application of laser-induced periodic surface structures (LIPSS). LIPSS with a sub-wavelength period generated by femtosecond laser irradiation, generally indicated as ripples, have been extensively investigated. Instead, the other ordered surface structures characterized by a supra-wavelength period, indicated as grooves, have been much less studied. Grooves typically form at larger irradiance levels or for higher number of laser pulses. Here, we report a comprehensive overview of recent investigations on the supra-wavelength grooves formed on crystalline silicon irradiated by femtosecond laser pulses. The authors' recent experimental work is mainly addressed giving an explicit picture of the grooves generation process, namely illustrating the influence of the various experimental parameters, including, e.g., polarization, wavelength, fluence and repetition rate of the laser beam as well as number of laser pulses hitting the surface of the material. The effect of irradiation of a static or moving target and of the environmental conditions (e.g., vacuum or air ambient) will also be discussed. Finally, possible mechanisms envisaged to explain grooves formation and still open issues are briefly discussed.

2.
Int J Heat Mass Transf ; 82: 109-116, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30449897

RESUMEN

In this paper, we present an experimental investigation of pool boiling heat transfer on multiscale (micro/nano) functionalized metallic surfaces. Heat transfer enhancement in metallic surfaces is very important for large scale high heat flux applications like in the nuclear power industry. The multiscale structures were fabricated via a femtosecond laser surface process (FLSP) technique, which forms self-organized mound-like microstructures covered by layers of nanoparticles. Using a pool boiling experimental setup with deionized water as the working fluid, both the heat transfer coefficients and critical heat flux were investigated. A polished reference sample was found to have a critical heat flux of 91 W/cm2 at 40 °C of superheat and a maximum heat transfer coefficient of 23,000 W/m2 K. The processed samples were found to have a maximum critical heat flux of 142 W/cm2 at 29 °C and a maximum heat transfer coefficient of 67,400 W/m2 K. It was found that the enhancement of the critical heat flux was directly related to the wetting and wicking ability of the surface which acts to replenish the evaporating liquid and delay critical heat flux. The heat transfer coefficients were also found to increase when the surface area ratio was increased as well as the microstructure peak-to-valley height. Enhanced nucleate boiling is the main heat transfer mechanism, and is attributed to an increase in surface area and nucleation site density.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA