Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(17): e37283, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296064

RESUMEN

There is a growing concern among food safety regulators, the food industry, and consumers about foodborne illnesses. To improve food safety and increase shelf life, it is necessary to use natural preservatives. Natural antimicrobials are safer than artificial preservatives because they can prevent microbial resistance while also meeting consumers' demands for healthier food. This study used Berberine to enhance the antibacterial activity of Satureja Khuzistanica essential oil nanoemulsions (SKEO NE) against Staphylococcus aureus (S. aureus) bacteria, making them a promising option as preservatives. Response Surface Methodology (RSM) was employed to determine the optimized Berberine loaded SKEO NE (Berberine/SKEO NE), resulting in a mean droplet size of 88.60 nm at 6.91, 3.21, and 0.08% w/w of surfactant, essential oil, and Berberine, respectively. Berberine utilization in SKEO NE has led to an increase in antibacterial activity. The nanoemulsion samples significantly ruptured the S. aureus bacterial cell membrane, rapidly discharging cell contents. The use of a microfluidic system in tandem based on the conventional approach significantly accelerated this process. Enhancing the interaction between nanodroplets and the bacterial membrane can be achieved through the nanoemulsification process of EOs, which involves modifying their surface characteristics. This enhancement is particularly pronounced when employing microfluidic systems due to their substantial contact surface area. We investigated the potential of using femtosecond laser irradiation at a wavelength of 1040 nm to augment the antibacterial action of nanoemulsions. The combined treatment of laser and nanoemulsions significantly increased the antibacterial effect of nanoemulsions by approximately 15% for each bacterium, suggesting the potential utility of this treatment to bolster the antibacterial activity of nanoemulsions. Bacteria were trapped using optical tweezers for up to 20 min, with bacterial destruction observed starting at 3 min and exhaustive destruction evident after 20 min.

2.
Materials (Basel) ; 17(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38399048

RESUMEN

This study investigates the morphological changes induced by femtosecond (fs) laser pulses in arsenic trisulfide (As2S3) thin films and gold-arsenic trisulfide (Au\As2S3) heterostructures, grown by pulsed laser deposition (PLD). By means of a direct laser writing experimental setup, the films were systematically irradiated at various laser power and irradiation times to observe their effects on surface modifications. AFM was employed for morphological and topological characterization. Our results reveal a clear transition threshold between photoexpansion and photoevaporation phenomena under different femtosecond laser power regimes, occurring between 1 and 1.5 mW, irrespective of exposure time. Notably, the presence of a gold layer in the heterostructure minimally influenced this threshold. A maximum photoexpansion of 5.2% was obtained in As2S3 films, while the Au\As2S3 heterostructure exhibited a peak photoexpansion of 0.8%. The study also includes a comparative analysis of continuous-wave (cw) laser irradiation, confirming the efficiency of fs laser pulses in inducing photoexpansion effects.

3.
Int J Numer Method Biomed Eng ; 39(12): e3773, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37723125

RESUMEN

We present a numerical investigation of the photothermal response of gold nanoshell (AuNS) dimers when subjected to femtosecond laser pulse irradiation. The time-varying temperature fields for core-shell AuNS dimers are quantified by implementing finite element modeling, integrating the electromagnetic and thermal dual-physics simulations. Given the ultrafast nature of laser pulses, we employ a two-temperature model to accurately portray the energy transfer from excited electrons to the lattice system, a process typically completed post pulse-termination. The temporal analysis of the temperature in the AuNS and the surrounding medium, together with the spatial temperature distribution under different separation distances, elucidates the processes that drive the AuNS dimers' transient temperature distribution and heat dissipation. We report on the critical effects of geometrical parameters on the photothermal response, demonstrating that thinner shells maximize the total deposited energy per unit volume, resulting in increased temperature fields, while decreasing separation distances result in excessive field amplification due to plasmonic modes' production. Our robust numerical approach, enabling simulations with tunable material properties and configurations, may help design nanomaterials with desired features for photothermal cancer treatment and imaging.


Asunto(s)
Nanocáscaras , Oro , Rayos Láser
4.
J Biophotonics ; 16(12): e202300099, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37556608

RESUMEN

The Optical Kerr Effect is investigated for the first time in biological tissues. This nonlinear effect was explored in both human brain and avian breast tissues using a time-resolved femtosecond pump-probe Optical Kerr Gate that looks for phase changes that arise in the probe from the pump induced Kerr refractive index change. The tissue samples produced a unique ultrafast (700-800 fs) doubled peaked temporal signal, which is indicative of interplay between the different ultrafast mechanisms (electronic plasma and molecular) that make up the Kerr index. The unique profile was replicated in theoretical simulations. The properties of the temporal profile varied between samples suggesting that it could be used as a new diagnostic. Understanding this behavior can help improve the scientific understanding of nonlinear spectral diagnostic techniques and potentially create a new Kerr-based optical biopsy method.


Asunto(s)
Refractometría , Humanos , Encéfalo/diagnóstico por imagen , Animales
5.
Micromachines (Basel) ; 14(8)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37630129

RESUMEN

Due to higher molecular density, lower ionization potential, and a better self-healing property compared with gases, liquid targets have been used for laser-induced terahertz generation for many years. In this work, a liquid target used for terahertz radiation is embedded with silver nanoparticles (Ag NPs), which makes the material have both the fluidity of liquids and conductivity of metals. Meanwhile, the experimental setup is easier to implement than that of liquid metals. Polyvinyl alcohol (PVA) is used as a stabilizing agent to avoid precipitation formation. It is observed that the power of 0.5 THz radiation from the Ag NP suspension is five times stronger than that from liquid water in identical experimental conditions. In addition, the reusability of the material is investigated using multiple excitations. UV-visible spectroscopy and TEM imaging are carried out to analyze the target material after each excitation. As a result, quasispherical Ag NP suspensions show good reusability for several excitations and only a decrease in particle concentration is observed. By contrast, the chain-like Ag NP suspension shows poor stability due to PVA damage caused by intense laser pulses, so it cannot be used in a recyclable manner.

6.
Adv Mater ; 35(33): e2304197, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37282751

RESUMEN

The discovery of a novel long-lived metastable skyrmion phase in the multiferroic insulator Cu2 OSeO3 visualized with Lorentz transmission electron microscopy for magnetic fields below the equilibrium skyrmion pocket is reported. This phase can be accessed by exciting the sample non-adiabatically with near-infrared femtosecond laser pulses and cannot be reached by any conventional field-cooling protocol, referred as a hidden phase. From the strong wavelength dependence of the photocreation process and via spin-dynamics simulations, the magnetoelastic effect is identified as the most likely photocreation mechanism. This effect results in a transient modification of the magnetic free energy landscape extending the equilibrium skyrmion pocket to lower magnetic fields. The evolution of the photoinduced phase is monitored for over 15 min and no decay is found. Because such a time is much longer than the duration of any transient effect induced by a laser pulse in a material, it is assumed that the newly discovered skyrmion state is stable for practical purposes, thus breaking ground for a novel approach to control magnetic state on demand at ultrafast timescales and drastically reducing heat dissipation relevant for next-generation spintronic devices.

7.
Nanomaterials (Basel) ; 13(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37177058

RESUMEN

Plasmon electronic dephasing lifetime is one of the most important characteristics of localized surface plasmons, which is crucial both for understanding the related photophysics and for their applications in photonic and optoelectronic devices. This lifetime is generally shorter than 100 fs and measured using the femtosecond pump-probe technique, which requires femtosecond laser amplifiers delivering pulses with a duration even as short as 10 fs. This implies a large-scale laser system with complicated pulse compression schemes, introducing high-cost and technological challenges. Meanwhile, the strong optical pulse from an amplifier induces more thermal-related effects, disturbing the precise resolution of the pure electronic dephasing lifetime. In this work, we use a simple autocorrelator design and integrate it with the sample of plasmonic nanostructures, where a femtosecond laser oscillator supplies the incident pulses for autocorrelation measurements. Thus, the measured autocorrelation trace carries the optical modulation on the incident pulses. The dephasing lifetime can be thus determined by a comparison between the theoretical fittings to the autocorrelation traces with and without the plasmonic modulation. The measured timescale for the autocorrelation modulation is an indirect determination of the plasmonic dephasing lifetime. This supplies a simple, rapid, and low-cost method for quantitative characterization of the ultrafast optical response of localized surface plasmons.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122885, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37247552

RESUMEN

The phenomenon of fluorescence is widely used in molecular biology for studying the interaction of light with biological objects. In this article, we present an experimental investigation of the enhancement of laser-induced fluorescence of Clytia gregaria green fluorescent protein. The laser-induced fluorescence method applied in our work combines the advantages of femtosecond laser pulses and a photonic crystal cavity, with the time dependence of the fluorescence signal studied. It is shown that a green fluorescent protein solution placed in a microcavity and excited by femtosecond laser pulses leads to an increase in fluorescence on the microcavity modes, which can be estimated by two orders of magnitude. The dependences of fluorescence signal saturation on the average integrated optical pump power are demonstrated and analyzed. The results obtained are of interest for the development of potential applications of biophotonics and extension of convenient methods of laser-induced fluorescence.


Asunto(s)
Rayos Láser , Fotones , Fluorescencia , Proteínas Fluorescentes Verdes , Factores de Tiempo
9.
Nanomaterials (Basel) ; 13(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36678011

RESUMEN

Natural IaA+B diamonds were exposed in their bulk by multiple 0.3 ps, 515 nm laser pulses focused by a 0.25 NA micro-objective, producing in the prefocal region (depth of 20-50 µm) a bulk array of photoluminescent nanostructured microtracks at variable laser exposures and pulse energies. These micromarks were characterized at room (25°) and liquid nitrogen cooling (-120 °C) temperatures through stationary 3D scanning confocal photoluminescence (PL) microspectroscopy at 405 and 532 nm excitation wavelengths. The acquired PL spectra exhibit a linearly increasing pulse-energy-dependent yield in the range of 575 to 750 nm (NV0, NV- centers) at the expense of the simultaneous reductions in the blue-green (450-570 nm; N3a, H4, and H3 centers) and near-IR (741 nm; V0 center) PL yield. A detailed analysis indicates a low-energy rise in PL intensity for B2-related N3a, H4, and H3 centers, while at higher, above-threshold pulse energies it decreases for the H4, H3, and N3a centers, converting into NV centers, with the laser exposure effect demonstrating the same trend. The intrinsic and (especially) photo-generated vacancies were considered to drive their attachment as separate species to nitrogen centers at lower vacancy concentrations, while at high vacancy concentrations the concerted splitting of highly aggregated nitrogen centers by the surrounding vacancies could take place in favor of resulting NV centers.

10.
Materials (Basel) ; 15(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36363204

RESUMEN

Femtosecond laser-modified amorphous silicon (a-Si) films with optical and electrical anisotropy have perspective polarization-sensitive applications in optics, photovoltaics, and sensors. We demonstrate the formation of one-dimensional femtosecond laser-induced periodic surface structures (LIPSS) on the surface of phosphorus- (n-a-Si) and boron-doped (p-a-Si) amorphous silicon films. The LIPSS are orthogonal to the laser polarization, and their period decreases from 1.1 ± 0.1 µm to 0.84 ± 0.07 µm for p-a-Si and from 1.06 ± 0.03 to 0.98 ± 0.01 for n-a-Si when the number of laser pulses per unit area increases from 30 to 120. Raman spectra analysis indicates nonuniform nanocrystallization of the irradiated films, with the nanocrystalline Si phase volume fraction decreasing with depth from ~80 to ~40% for p-a-Si and from ~20 to ~10% for n-a-Si. LIPSS' depolarizing effect, excessive ablation of the film between LIPSS ridges, as well as anisotropic crystalline phase distribution within the film lead to the emergence of conductivity anisotropy of up to 1 order for irradiated films. Current-voltage characteristic nonlinearity observed for modified p-a-Si samples may be associated with the presence of both the crystalline and amorphous phases, resulting in the formation of potential barriers for the in-plane carrier transport and Schottky barriers at the electric contacts.

11.
Front Chem ; 10: 899461, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720990

RESUMEN

Atomic and molecular free electron vortices (FEVs), characterized by their spiral-shaped momentum distribution, have recently attracted a great deal of attention due to their varied shapes and their unusual topological properties. Shortly after their theoretical prediction by the single-photon ionization (SPI) of He atoms using pairs of counterrotating circularly polarized attosecond pulses, FEVs have been demonstrated experimentally by the multiphoton ionization (MPI) of alkali atoms using single-color and bichromatic circularly polarized femtosecond pulse sequences. Recently, we reported on the analysis of the experimental results employing a numerical model based on the ab initio solution of the time-dependent Schrödinger equation (TDSE) for a two-dimensional (2D) atom interacting with a polarization-shaped ultrashort laser field. Here, we apply the 2D TDSE model to study molecular FEVs created by SPI and MPI of a diatomic molecule using polarization-tailored single-color and bichromatic femtosecond pulse sequences. We investigate the influence of the coupled electron-nuclear dynamics on the vortex formation dynamics and discuss the effect of CEP- and rotational averaging on the photoelectron momentum distribution. By analyzing how the molecular structure and dynamics is imprinted in the photoelectron spirals, we explore the potential of molecular FEVs for ultrafast spectroscopy.

12.
Materials (Basel) ; 15(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35269065

RESUMEN

The optical response of properly excited periodically arranged plasmonic nanostructures is known to demonstrate sharp resonance features associated with high-Q collective modes demanding for various applications in light-matter interaction, filtering and sensing. Meanwhile, practical realization and replication of plasmonic platforms supporting high-Q modes via scalable inexpensive lithography-free approach is still challenging. Here, we justify direct ablation-free irradiation of Si-supported thin Au film by nanojoule-energy femtosecond laser pulses as a single-step and scalable technology for realization of plasmonic metasurfaces supporting collective plasmonic response. Using an adjustable aperture to control and upscale the size of the fabricated nanostructures, nanobumps and nanojets, we demonstrated plasmonic metasurface supporting collective resonances with a moderately high Q-factor (up to 17) and amplitude (up to 45%) within expanded spectral range (1.4-4.5 µm). Vacuum deposition of thin films above the as-fabricated nanostructure arrays was demonstrated to provide fine tuning of the resonance position, also expanding the choice of available materials for realization of plasmonic designs with extended functionality.

13.
J Photochem Photobiol B ; 229: 112424, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35276580

RESUMEN

Three dimensional (3D) printing technology has pushed state-of-the-art manufacturing towards more advanced processing methods through its ability to produce complex computer-designed 3D structures in a wide range of materials. Two-photon polymerization applied to the fabrication of ultraprecise 3D microstructures is one of the various innovative approaches to cutting-edge 3D printing. The integration of an ultrashort pulsed laser source and an appropriate photoresist has made it an attractive candidate for advanced photonics and biomedical applications. This paper presents the development of 3D solid microneedle arrays as a novel transdermal drug delivery system via two-photon polymerization in a single manufacturing step. Through a series of experiments, the best fabrication parameters are identified. Finite element simulations are then performed to investigate the interaction between a single microneedle and human skin. The results of this study highlight the influence of fabrication parameters such as laser power, scanning speed, hatch distance and layer height on the structural resolution and fabrication time of microneedles, as well as human skin deformation caused through application of force to a single polymer microneedle.


Asunto(s)
Microtecnología , Polímeros , Administración Cutánea , Sistemas de Liberación de Medicamentos/métodos , Humanos , Microtecnología/métodos , Polimerizacion
14.
Nanomaterials (Basel) ; 12(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35159650

RESUMEN

Recently, highly uniform thermochemical laser-induced periodic surface structures (TLIPSS) have attracted significant research attention due to their practical applicability for upscalable fabrication of periodic surface morphologies important for surface functionalization, diffraction optics, sensors, etc. When processed by femtosecond (fs) laser pulses in oxygen-containing environments, TLIPSS are formed on the material surface as parallel protrusions upon local oxidation in the maxima of the periodic intensity pattern coming from interference of the incident and scattered waves. From an application point of view, it is important to control both the TLIPSS period and nanoscale morphology of the formed protrusions that can be expectedly achieved by scalable shrinkage of the laser-processing wavelength as well as by varying the ambient environment. However, so far, the fabrication of uniform TLIPSS was reported only for near-IR wavelength in air. In this work, TLIPSS formation on the surface of titanium (Ti) films was systematically studied using near-IR (1026 nm), visible (513 nm) and UV (256 nm) wavelengths revealing linear scalability of the protrusion period versus the fs-laser wavelength. By changing the ambient environment from air to vacuum (10-2 atm) and pressurized nitrogen gas (2.5 atm) we demonstrate tunability of the composition and morphology of the Ti TLIPSS protrusions. In particular, Raman spectroscopy revealed formation of TiN together with dominating TiO2 (rutile phase) in the TLIPSS protrusions produced in the nitrogen-rich atmosphere.

15.
Annu Rev Phys Chem ; 73: 323-347, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35081323

RESUMEN

We discuss how Coulomb explosion imaging (CEI), triggered by intense femtosecond laser pulses and combined with laser-induced alignment and covariance analysis of the angular distributions of the recoiling fragment ions, provides new opportunities for imaging the structures of molecules and molecular complexes. First, focusing on gas phase molecules, we show how the periodic torsional motion of halogenated biphenyl molecules can be measured in real time by timed CEI, and how CEI of one-dimensionally aligned difluoroiodobenzene molecules can uniquely identify four structural isomers. Next, focusing on molecular complexes formed inside He nano-droplets, we show that the conformations of noncovalently bound dimers or trimers, aligned in one or three dimensions, can be determined by CEI. Results presented for homodimers of CS2, OCS, and bromobenzene pave the way for femtosecond time-resolved structure imaging of molecules undergoing bimolecular interactions and ultimately chemical reactions.

16.
Materials (Basel) ; 14(12)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200536

RESUMEN

The ultrafast third-order optical nonlinearity of c-plane GaN crystal, excited by ultrashort (fs) high-repetition-rate laser pulses at 1550 nm, wavelength important for optical communications, is investigated for the first time by optical third-harmonic generation in non-phase-matching conditions. As the thermo-optic effect that can arise in the sample by cumulative thermal effects induced by high-repetition-rate laser pulses cannot be responsible for the third-harmonic generation, the ultrafast nonlinear optical effect of solely electronic origin is the only one involved in this process. The third-order nonlinear optical susceptibility of GaN crystal responsible for the third-harmonic generation process, an important indicative parameter for the potential use of this material in ultrafast photonic functionalities, is determined.

17.
Micromachines (Basel) ; 12(6)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073368

RESUMEN

High-order harmonic generation is a nonlinear process that converts the gained energy during light-matter interaction into high-frequency radiation, thus resulting in the generation of coherent attosecond pulses in the XUV and soft x-ray regions. Here, we propose a control scheme for enhancing the efficiency of HHG process induced by an intense near-infrared (NIR) multi-cycle laser pulse. The scheme is based on introducing an infrared (IR) single-cycle pulse and exploiting its characteristic feature that manifests by a non-zero displacement effect to generate high-photon energy. The proposed scenario is numerically implemented on the basis of the time-dependent Schrödinger equation. In particular, we show that the combined pulses allow one to produce high-energy plateaus and that the harmonic cutoff is extended by a factor of 3 compared to the case with the NIR pulse alone. The emerged high-energy plateaus is understood as a result of a vast momentum transfer from the single-cycle field to the ionized electrons while travelling in the NIR field, thus leading to high-momentum electron recollisions. We also identify the role of the IR single-cycle field for controlling the directionality of the emitted electrons via the IR-field induced electron displacement effect. We further show that the emerged plateaus can be controlled by varying the relative carrier-envelope phase between the two pulses as well as the wavelengths. Our findings pave the way for an efficient control of light-matter interaction with the use of assisting femtosecond single-cycle fields.

18.
ACS Appl Mater Interfaces ; 13(27): 32031-32036, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34191479

RESUMEN

Laser-induced periodic surface structures (LIPSS) can be fabricated in virtually all types of solid materials and show great promise for efficient and scalable production of surface patterns with applications in various fields from photonics to engineering. While the majority of LIPSS manifest as modifications of the surface relief, in special cases, laser impact can also lead to periodic modulation of the material phase state. Here, we report on the fabrication of high-quality periodic structures in the films of phase-change material Ge2Sb2Te5 (GST). Due to considerable contrast of the refractive index of GST in its crystalline and amorphous states, the fabricated structures provide strong spatial modulation of the optical properties, which facilitates their applications. By changing the excitation laser wavelength, we observe the scaling of the grating period as well as transition between formation of different types of LIPSS. We optimize the laser exposure routine to achieve large-scale high-quality phase-change gratings with controllable period and demonstrate their reversible tunability through intermediate amorphization steps. Our results reveal the prospects of fast and rewritable fabrication of high-quality periodic structures for photonics and can serve as a guideline for further development of phase-change material-based optical elements.

19.
Nanomaterials (Basel) ; 11(2)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557328

RESUMEN

Here, we present the single-step laser-assisted fabrication of anti-reflective hierarchical surface textures on silicon locally functionalized with a photoluminescent (PL) molecular nanolayer. Using femtosecond-laser ablation of commercial crystalline Si wafers placed under a layer of a solution containing rhodamine 6G (R6G) a triethoxysilyl derivative, we fabricated ordered arrays of microconical protrusions with self-organized nanoscale surface morphology. At the same time, the laser-induced temperature increase facilitated surface activation and local binding of the R6G derivative to the as-fabricated nanotextured surface. The produced dual-scale surface textures showed remarkable broadband (visible to near-IR) light-absorbing properties with an averaged reflectivity of around 1%, and the capping molecular nanolayer demonstrated a strongly enhanced PL yield. By performing a pH sensing test using the produced nanotextured substrate, we confirmed the retention of sensory properties of the molecules attached to the surface and validated the potential applicability of the high-performing liquid-assisted laser processing as a key technology for the development of innovative multifunctional sensing devices in which the textured substrate (e.g., ultra-black semiconductor) plays a dual role as a support and PL signal amplifier.

20.
Nanomaterials (Basel) ; 11(1)2020 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-33375301

RESUMEN

One-dimensional periodic surface structures were formed by femtosecond laser irradiation of amorphous hydrogenated silicon (a-Si:H) films. The a-Si:H laser processing conditions influence on the periodic relief formation as well as correlation of irradiated surfaces structural properties with their electrophysical properties were investigated. The surface structures with the period of 0.88 and 1.12 µm were fabricated at the laser wavelength of 1.25 µm and laser pulse number of 30 and 750, respectively. The orientation of the surface structure is defined by the laser polarization and depends on the concentration of nonequilibrium carriers excited by the femtosecond laser pulses in the near-surface region of the film, which affects a mode of the excited surface electromagnetic wave which is responsible for the periodic relief formation. Femtosecond laser irradiation increases the a-Si:H films conductivity by 3 to 4 orders of magnitude, up to 1.2 × 10-5 S∙cm, due to formation of Si nanocrystalline phase with the volume fraction from 17 to 28%. Dark conductivity and photoconductivity anisotropy, observed in the irradiated a-Si:H films is explained by a depolarizing effect inside periodic microscale relief, nonuniform crystalline Si phase distribution, as well as different carrier mobility and lifetime in plane of the studied samples along and perpendicular to the laser-induced periodic surface structures orientation, that was confirmed by the measured photoconductivity and absorption coefficient spectra.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA