Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 339: 139764, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37557995

RESUMEN

Research studies have modified traditional substances to seek fast-acting removal of phosphorus in constructed wetlands (CWs) and ecological dams, rather than develop a brand-new nano-adsorbent. This work synthesized FeCa-based layered double hydroxide (FeCa-LDH) with a chemical co-precipitation method, and the performance, mechanism and factors of phosphorus removal were investigated. FeCa-LDH showed a marked ability to adsorb phosphorus from waste water, with a removal efficiency of 94.4% and 98.2% in CWs and ecological dams, respectively. Both FTIR and XPS spectrum evidenced that FeCa-LDH removed phosphorus via electrostatic and hydrogen-bonding adsorption, as well as a coordination reaction and interlayer anion exchange. FeCa-LDH showed a higher capacity to remove phosphorus in alkaline and neutral waste water than in acid conditions. Co-occurrence anions, which influenced the efficiency of the phosphorus removal capacity are considered in the sequence below: CO32- ≈ HCO3- > SO42- > NO3-. Innovatively, FeCa-LDH was not affected by the low-temperature limitation for CWs, and phosphorus removal efficiency at 5 °C was almost equal to that at 25 °C. These results cast a new idea on the construction, application and phosphorus removal performance of CWs and ecological dams.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Eliminación de Residuos Líquidos/métodos , Fósforo , Humedales , Proyectos Piloto , Hidróxidos , Adsorción , Contaminantes Químicos del Agua/análisis
2.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446335

RESUMEN

Iron is both essential for and potentially toxic to bacteria, so the precise maintenance of iron homeostasis is necessary for their survival. Our previous study indicated that in the human enteropathogen Yersinia enterocolitica, the regulator OmpR directly controls the transcription of the fur, fecA and fepA genes, encoding the ferric uptake repressor and two transporters of ferric siderophores, respectively. This study was undertaken to determine the significance of the RNA chaperone Hfq and the small RNAs OmrA and RyhB1 in the post-transcriptional control of the expression of these OmpR targets. We show that Hfq silences fur, fecA and fepA expression post-transcriptionally and negatively affects the production of FLAG-tagged Fur, FecA and FepA proteins. In addition, we found that the fur gene is under the negative control of the sRNA RyhB1, while fecA and fepA are negatively regulated by the sRNA OmrA. Finally, our data revealed that the role of OmrA results from a complex interplay of transcriptional and post-transcriptional effects in the feedback circuit between the regulator OmpR and the sRNA OmrA. Thus, the expression of fur, fecA and fepA is subject to complex transcriptional and post-transcriptional regulation in order to maintain iron homeostasis in Y. enterocolitica.


Asunto(s)
ARN Pequeño no Traducido , Yersinia enterocolitica , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Hierro/metabolismo , Homeostasis/genética , Regulación Bacteriana de la Expresión Génica
3.
Sci Total Environ ; 884: 163757, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37142047

RESUMEN

Systematic understanding of phosphorus adsorption performance, mechanism, factors and reusability of layered double hydroxides (LDH) remains limited. Thus, iron (Fe), calcium (Ca) and magnesium (Mg)-based LDH (FeCa-LDH and FeMg-LDH), were synthesized with a co-precipitation method to improve phosphorus removal efficiency during the wastewater treatment process. Both FeCa-LDH and FeMg-LDH showed a considerable ability to remove phosphorus in wastewater. When the phosphorus concentration was 10 mg/L, the removal efficiency reached 99 % (FeCa-LDH: 1 min) and 82 % (FeMg-LDH: 10 min), respectively. The phosphorus removal mechanism was observed to be electrostatic adsorption, coordination reaction and anionic exchange, which was more evident at pH = 10 for FeCa-LDH. Co-occurrence anions that affected phosphorus removal efficiency, were observed in the following order: HCO3- > CO32- ≈ NO3- > SO42-. After five adsorption-desorption cycles, phosphorus removal efficiency was still up to 85 % (FeCa-LDH) and 42 % (FeMg-LDH), respectively. Together, the present findings suggest that LDHs were high-performance, strongly-stable and reusable phosphorus adsorbents.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Fósforo , Hidróxidos , Adsorción , Purificación del Agua/métodos
4.
Elife ; 112022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36355038

RESUMEN

The dichotomy that separates prokaryotic from eukaryotic cells runs deep. The transition from pro- to eukaryote evolution is poorly understood due to a lack of reliable intermediate forms and definitions regarding the nature of the first host that could no longer be considered a prokaryote, the first eukaryotic common ancestor, FECA. The last eukaryotic common ancestor, LECA, was a complex cell that united all traits characterising eukaryotic biology including a mitochondrion. The role of the endosymbiotic organelle in this radical transition towards complex life forms is, however, sometimes questioned. In particular the discovery of the asgard archaea has stimulated discussions regarding the pre-endosymbiotic complexity of FECA. Here we review differences and similarities among models that view eukaryotic traits as isolated coincidental events in asgard archaeal evolution or, on the contrary, as a result of and in response to endosymbiosis. Inspecting eukaryotic traits from the perspective of the endosymbiont uncovers that eukaryotic cell biology can be explained as having evolved as a solution to housing a semi-autonomous organelle and why the addition of another endosymbiont, the plastid, added no extra compartments. Mitochondria provided the selective pressures for the origin (and continued maintenance) of eukaryotic cell complexity. Moreover, they also provided the energetic benefit throughout eukaryogenesis for evolving thousands of gene families unique to eukaryotes. Hence, a synthesis of the current data lets us conclude that traits such as the Golgi apparatus, the nucleus, autophagosomes, and meiosis and sex evolved as a response to the selective pressures an endosymbiont imposes.


Asunto(s)
Células Eucariotas , Simbiosis , Células Eucariotas/fisiología , Simbiosis/genética , Evolución Biológica , Eucariontes/genética , Archaea/genética , Núcleo Celular , Meiosis , Biología , Filogenia
5.
J Clin Med ; 10(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34768698

RESUMEN

Primary hyperparathyroidism (pHPT) has been reported to have a higher prevalence in sickle cell disease (SCD) patients, including a high rate of recurrence following surgery. However, most patients are asymptomatic at the time of diagnosis, with surprisingly infrequent hypercalciuria, raising the issue of renal calcium handling in SCD patients. We conducted a retrospective study including (1) 64 hypercalcemic pHPT non-SCD patients; (2) 177 SCD patients, divided into two groups of 12 hypercalcemic pHPT and 165 non-pHPT; (3) eight patients with a diagnosis of familial hypocalciuric hypercalcemia (FHH). Demographic and biological parameters at the time of diagnosis were collected and compared between the different groups. Determinants of fasting fractional excretion of calcium (FeCa2+) were also analyzed in non-pHPT SCD patients. Compared to non-SCD pHPT patients, our data show a similar ionized calcium and PTH concentration, with a lower plasmatic calcitriol concentration and a lower daily urinary calcium excretion in pHPT SCD patients (p < 0.0001 in both cases). Fasting FeCa2+ is also surprisingly low in pHPT SCD patients, and thus inadequate to be considered hypercalcemia, recalling the FHH phenotype. FeCa2+ is also low in the non-pHPT SCD control group, and negatively associated with PTH and hemolytic biomarkers such as LDH and low hemoglobin. Our data suggest that the pHPT biochemical phenotype in SCD patients resembles the FHH phenotype, and the fasting FeCa2+ association with chronic hemolysis biomarkers strengthens the view of a potential pharmacological link between hemolytic by-products and calcium reabsorption, potentially through a decreased calcium-sensing receptor (CaSR) activity.

6.
Huan Jing Ke Xue ; 42(7): 3535-3548, 2021 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-34212680

RESUMEN

Two iron-based materials, Fe-Ca composite (FeCa) and Fe-Mn binary oxide (FMBO), were applied to immobilize As, Pb, and Cd in heavy metal contaminated paddy soils. Seven kinds of paddy soil (tidal soil) contaminated by arsenic, lead and cadmium were collected from Shangyu, Shaoxing (SY), Foshan, Guangdong (FS), Shaoguan, Guangdong (SG), LiuYang, Hunan (LY), Ganzhou, Jiangxi (GZ), Dushan, Guizhou (DS), and Ma'anshan, Anhui (MAS). The effects of iron-based materials on the dynamic changes of As, Pb, and Cd concentration in soil solution, the stabilization efficacy of available As, Pb, and Cd in soil, and the effects of soil types and properties on stabilization efficacy were studied through soil incubation experiment. The results showed that the content of soil dissolved As, Pb, and Cd were lower in iron-based material treatments than in control throughout the incubation. The addition of two iron-based materials significantly reduced the availability of Cd, Pb, and As. Moreover, the stabilization efficiency of FeCa for As was higher than FMBO, but no significant difference was found in the stabilization efficiency of Pb and Cd between two materials. The stabilization efficiency of As, Pb, and Cd in FeCa treatments could be ordered as GZ > SG > DS and MAS; FS>SY, LY, and SG>MAS; SY, GZ, and DS>MAS, respectively. While the stabilization efficiency for As, Pb, and Cd in FMBO could be ordered as SY, LY, and GZ > DS > FS; FS > GZ > SY; DS > LY > MAS, respectively. In addition, the statistical results showed that the stabilization efficiencies of various soils under the treatment of iron-based materials were significantly correlated with sand content (negatively correlated for As), soil pH (positively correlated for Pb), and clay content (negatively correlated for Cd). In conclusion, the two iron-based materials evaluated in this study may be effective stabilization agents for remediating different types of arsenic-, lead-, and cadmium-contaminated soils.


Asunto(s)
Arsénico , Oryza , Contaminantes del Suelo , Cadmio/análisis , Hierro , Plomo , Suelo , Contaminantes del Suelo/análisis
7.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540627

RESUMEN

In this study, we found that the loss of OmpR, the response regulator of the two-component EnvZ/OmpR system, increases the cellular level of Fur, the master regulator of iron homeostasis in Y. enterocolitica. Furthermore, we demonstrated that transcription of the fur gene from the YePfur promoter is subject to negative OmpR-dependent regulation. Four putative OmpR-binding sites (OBSs) were indicated by in silico analysis of the fur promoter region, and their removal affected OmpR-dependent fur expression. Moreover, OmpR binds specifically to the predicted OBSs which exhibit a distinct hierarchy of binding affinity. Finally, the data demonstrate that OmpR, by direct binding to the promoters of the fecA, fepA and feoA genes, involved in the iron transport and being under Fur repressor activity, modulates their expression. It seems that the negative effect of OmpR on fecA and fepA transcription is sufficient to counteract the indirect, positive effect of OmpR resulting from decreasing the Fur repressor level. The expression of feoA was positively regulated by OmpR and this mode of action seems to be direct and indirect. Together, the expression of fecA, fepA and feoA in Y. enterocolitica has been proposed to be under a complex mode of regulation involving OmpR and Fur regulators.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Hierro/metabolismo , Proteínas Represoras/genética , Transactivadores/metabolismo , Yersinia enterocolitica/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Portadoras/genética , Simulación por Computador , Homeostasis , Proteínas de Unión a Hierro/genética , Regiones Promotoras Genéticas , Receptores de Superficie Celular/genética , Yersinia enterocolitica/genética
8.
BMC Microbiol ; 18(1): 36, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29669516

RESUMEN

BACKGROUND: An issue associated with efficient bioethanol production is the fact that the desired product is toxic to the biocatalyst. Among other effects, ethanol has previously been found to influence the membrane of E. coli in a dose-dependent manner and induce changes in the lipid composition of the plasma membrane. We describe here the characterization of a collection of ethanol-tolerant strains derived from the ethanologenic Escherichia coli strain FBR5. RESULTS: Membrane permeability assays indicate that many of the strains in the collection have alterations in membrane permeability and/or responsiveness of the membrane to environmental changes such as temperature shifts or ethanol exposure. However, analysis of the strains by gas chromatography and mass spectrometry revealed no qualitative changes in the acyl chain composition of membrane lipids in response to ethanol or temperature. To determine whether these strains contain any mutations that might contribute to ethanol tolerance or changes in membrane permeability, we sequenced the entire genome of each strain. Unexpectedly, none of the strains displayed mutations in genes known to control membrane lipid synthesis, and a few strains carried no mutations at all. Interestingly, we found that four independently-isolated strains acquired an identical C → A (V244 V) silent mutation in the ferric citrate transporter gene fecA. Further, we demonstrated that either a deletion of fecA or over-expression of fecA can confer increased ethanol survival, suggesting that any misregulation of fecA expression affects the cellular response to ethanol. CONCLUSIONS: The fact that no mutations were observed in several ethanol-tolerant strains suggested that epigenetic mechanisms play a role in E. coli ethanol tolerance and membrane permeability. Our data also represent the first direct phenotypic evidence that the fecA gene plays a role in ethanol tolerance. We propose that the recurring silent mutation may exert an effect on phenotype by altering RNA-mediated regulation of fecA expression.


Asunto(s)
Tolerancia a Medicamentos/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Etanol/toxicidad , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular , Permeabilidad de la Membrana Celular/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Sitios Genéticos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Mutación Silenciosa , Temperatura , Secuenciación Completa del Genoma
9.
Appl Environ Microbiol ; 84(2)2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29101196

RESUMEN

Virulence factors of mammary pathogenic Escherichia coli (MPEC) have not been identified, and it is not known how bacterial gene content influences the severity of mastitis. Here, we report a genome-wide identification of genes that contribute to fitness of MPEC under conditions relevant to the natural history of the disease. A highly virulent clinical isolate (M12) was identified that killed Galleria mellonella at low infectious doses and that replicated to high numbers in mouse mammary glands and spread to spleens. Genome sequencing was combined with transposon insertion site sequencing to identify MPEC genes that contribute to growth in unpasteurized whole milk, as well as during G. mellonella and mouse mastitis infections. These analyses show that strain M12 possesses a unique genomic island encoding a group III polysaccharide capsule that greatly enhances virulence in G. mellonella Several genes appear critical for MPEC survival in both G. mellonella and in mice, including those for nutrient-scavenging systems and resistance to cellular stress. Insertions in the ferric dicitrate receptor gene fecA caused significant fitness defects under all conditions (in milk, G. mellonella, and mice). This gene was highly expressed during growth in milk. Targeted deletion of fecA from strain M12 caused attenuation in G. mellonella larvae and reduced growth in unpasteurized cow's milk and lactating mouse mammary glands. Our results confirm that iron scavenging by the ferric dicitrate receptor, which is strongly associated with MPEC strains, is required for MPEC growth and may influence disease severity in mastitis infections.IMPORTANCE Mastitis caused by E. coli inflicts substantial burdens on the health and productivity of dairy animals. Strains causing mastitis may express genes that distinguish them from other E. coli strains and promote infection of mammary glands, but these have not been identified. Using a highly virulent strain, we employed genome-wide mutagenesis and sequencing to discover genes that contribute to mastitis. This extensive data set represents a screen for mastitis-associated E. coli fitness factors and provides the following contributions to the field: (i) global comparison of genes required for different aspects of mastitis infection, (ii) discovery of a unique capsule that contributes to virulence, and (iii) conclusive evidence for the crucial role of iron-scavenging systems in mastitis, particularly the ferric dicitrate transport system. Similar approaches applied to other mastitis-associated strains will uncover conserved targets for prevention or treatment and provide a better understanding of their relationship to other E. coli pathogens.


Asunto(s)
Escherichia coli/genética , Aptitud Genética , Genoma Bacteriano , Mastitis Bovina/microbiología , Animales , Bovinos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Femenino , Islas Genómicas , Hierro/metabolismo , Lactancia , Larva/microbiología , Glándulas Mamarias Animales/microbiología , Ratones , Leche/microbiología , Mariposas Nocturnas/microbiología , Mutagénesis , Polisacáridos Bacterianos/genética , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/genética , Secuenciación Completa del Genoma
10.
Mol Biol Evol ; 32(3): 726-39, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25525215

RESUMEN

The origin of the eukaryotic cell is one of the most important transitions in the history of life. However, the emergence and early evolution of eukaryotes remains poorly understood. Recent data have shown that the last eukaryotic common ancestor (LECA) was much more complex than previously thought. The LECA already had the genetic machinery encoding the endomembrane apparatus, spliceosome, nuclear pore, and myosin and kinesin cytoskeletal motors. It is unclear, however, when the functional regulation of these cellular components evolved. Here, we address this question by analyzing the origin and evolution of the ubiquitin (Ub) signaling system, one of the most important regulatory layers in eukaryotes. We delineated the evolution of the whole Ub, Small-Ub-related MOdifier (SUMO), and Ub-fold modifier 1 (Ufm1) signaling networks by analyzing representatives from all major eukaryotic, bacterial, and archaeal lineages. We found that the Ub toolkit had a pre-eukaryotic origin and is present in three extant archaeal groups. The pre-eukaryotic Ub toolkit greatly expanded during eukaryogenesis, through massive gene innovation and diversification of protein domain architectures. This resulted in a LECA with essentially all of the Ub-related genes, including the SUMO and Ufm1 Ub-like systems. Ub and SUMO signaling further expanded during eukaryotic evolution, especially labeling and delabeling enzymes responsible for substrate selection. Additionally, we analyzed protein domain architecture evolution and found that multicellular lineages have the most complex Ub systems in terms of domain architectures. Together, we demonstrate that the Ub system predates the origin of eukaryotes and that a burst of innovation during eukaryogenesis led to a LECA with complex posttranslational regulation.


Asunto(s)
Eucariontes/genética , Evolución Molecular , Genes Arqueales/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Ubiquitina/genética , Análisis por Conglomerados , Genes/genética , Filogenia
11.
J Environ Manage ; 146: 444-450, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25199600

RESUMEN

This work investigated the production of Ca and Fe modified biochars in order to use them for the removal of arsenic As(V) and chromium Cr(VI) from aqueous solutions. Rice husk was impregnated with CaO at an impregnation ratio 0.114, while both rice husk and the organic fraction of municipal solid wastes were impregnated with Fe(0) and Fe(3+) at impregnation ratios 0.114 and 0.23. The modified biochars exhibited high As(V) removal capacity (>95%), except for the case of rice husk impregnated with Fe(0), whose removal capacity reached only 58%. All modified biochars exhibited much better As(V) removal capacity compared to the non-impregnated biochars. However, the Cr(VI) removal rates were not as high as the As(V) ones. The maximum Cr(VI) removal was observed in the case of rice husk biochar impregnated with 2.3% w/w Fe(3+), whereas the majority of impregnation agents examined did not manage to enhance the biochars' Cr(VI) removal ability. The equilibrium study showed that the Freundlich model can adequately describe the sorption process for the majority of samples examined. Analysis of the amount of Fe present in the equilibrium solutions suggested that the main mechanisms of As(V) and Cr(VI) removal were possibly metal precipitation and electrostatic interactions between the modified biochars and the adsorbate.


Asunto(s)
Arsénico/química , Carbón Orgánico/química , Cromo/química , Contaminantes Químicos del Agua/química , Adsorción , Calcio/química , Resinas de Intercambio de Catión , Humanos , Hierro/química , Purificación del Agua/métodos
12.
Gene ; 535(2): 345-52, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24200960

RESUMEN

Vascular endothelial growth factor (VEGF), known to play an important role in vascular homeostasis, vascular integrity and angiogenesis, is little known about the evolutionary relationship of its five members especially the role of gene duplication and natural selection in the evolution of the VEGF family. In this study, seventy-five full-length cDNA sequences from 33 vertebrate species were extracted from the NCBI's GenBank, UniProt protein database and the Ensembl database. By phylogenetic analyses, we investigated the origin, conservation, and evolution of the VEGFs. Five VEGF family members in vertebrates might be formed by gene duplication. The inferred evolutionary transitions that separate members which belong to different gene clusters correlated with changes in functional properties. Selection analysis and protein structure analysis were combined to explain the relationship of the site-specific evolution in the vertebrate VEGF family. Eleven positive selection sites, one transmembrane region and the active sites were detected in this process.


Asunto(s)
Evolución Molecular , Familia de Multigenes , Filogenia , Selección Genética , Factor A de Crecimiento Endotelial Vascular/genética , Vertebrados/genética , Secuencia de Aminoácidos , Animales , Bases de Datos Genéticas , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Alineación de Secuencia , Factor A de Crecimiento Endotelial Vascular/química , Vertebrados/clasificación
13.
Gastroenterology ; 145(3): 613-24, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23747339

RESUMEN

BACKGROUND & AIMS: Dysregulated Ca(2+) homeostasis likely contributes to the etiology of inflammatory bowel disease-associated loss of bone mineral density. Experimental colitis leads to decreased expression of Klotho, a protein that supports renal Ca(2+) reabsorption by stabilizing the transient receptor potential vanilloid 5 (TRPV5) channel on the apical membrane of distal tubule epithelial cells. METHODS: Colitis was induced in mice via administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS) or transfer of CD4(+)interleukin-10(-/-) and CD4(+), CD45RB(hi) T cells. We investigated changes in bone metabolism, renal processing of Ca(2+), and expression of TRPV5. RESULTS: Mice with colitis had normal serum levels of Ca(2+) and parathormone. Computed tomography analysis showed a decreased density of cortical and trabecular bone, and there was biochemical evidence for reduced bone formation and increased bone resorption. Increased fractional urinary excretion of Ca(2+) was accompanied by reduced levels of TRPV5 protein in distal convoluted tubules, with a concomitant increase in TRPV5 sialylation. In mouse renal intermedullary collecting duct epithelial (mIMCD3) cells transduced with TRPV5 adenovirus, the inflammatory cytokines tumor necrosis factor, interferon-γ, and interleukin-1ß reduced levels of TRPV5 on the cell surface, leading to its degradation. Cytomix induced interaction between TRPV5 and UBR4 (Ubiquitin recoginition 4), an E3 ubiquitin ligase; knockdown of UBR4 with small interfering RNAs prevented cytomix-induced degradation of TRPV5. The effects of cytokines on TRPV5 were not observed in cells stably transfected with membrane-bound Klotho; TRPV5 expression was preserved when colitis was induced with TNBS in transgenic mice that overexpressed Klotho or in mice with T-cell transfer colitis injected with soluble recombinant Klotho. CONCLUSIONS: After induction of colitis in mice via TNBS administration or T-cell transfer, tumor necrosis factor and interferon-γ reduced the expression and activity of Klotho, which otherwise would protect TRPV5 from hypersialylation and cytokine-induced TRPV5 endocytosis, UBR4-dependent ubiquitination, degradation, and urinary wasting of Ca(2+).


Asunto(s)
Densidad Ósea , Canales de Calcio/metabolismo , Calcio/metabolismo , Colitis/metabolismo , Riñón/metabolismo , Procesamiento Proteico-Postraduccional , Canales Catiónicos TRPV/metabolismo , Animales , Biomarcadores/metabolismo , Linfocitos T CD4-Positivos/trasplante , Colitis/inducido químicamente , Colitis/inmunología , Glucuronidasa/metabolismo , Interferón gamma/metabolismo , Proteínas Klotho , Ratones , Ratones Transgénicos , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tomografía Computarizada por Rayos X , Ácido Trinitrobencenosulfónico , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA