Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Diabetol Metab Syndr ; 16(1): 216, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39227868

RESUMEN

BACKGROUND: Familial Partial Lipodystrophy (FPLD) is a disease with wide clinical and genetic variation, with seven different subtypes described. Until genetic testing becomes feasible in clinical practice, non-invasive tools are used to evaluate body composition in lipodystrophic patients. This study aimed to analyze the different anthropometric parameters used for screening and diagnosis of FPLD, such as thigh skinfold thickness (TS), Köb index (Köbi), leg fat percentage (LFP), fat mass ratio (FMR) and leg-to-total fat mass ratio in grams (LTR), by dual-energy X-ray absorptiometry, focusing on determining cutoff points for TS and LFP within a Brazilian population. METHODS: Thirty-seven patients with FPLD and seventy-four healthy controls matched for body mass index, sex and age were studied. Data were collected through medical record review after signing informed consent. All participants had body fat distribution evaluated by skinfolds and DXA measures. Fasting blood samples were collected to evaluate glycemic and lipid profiles. Genetic studies were carried out on all patients. Two groups were categorized based on genetic testing and/or anthropometric characteristics: FPLD+ (positive genetic test) and FPLD1 (negative genetic testing, but positive clinical/anthropometric criteria for FPLD). RESULTS: Eighteen (48.6%) patients were classified as FPLD+, and 19 (51.4%) as FPLD1. Unlike what is described in the literature, the LMNA variant in codon 582 was the most common. Among the main diagnostic parameters of FPLD, a statistical difference was observed between the groups for, Köbi, TS, LFP, FMR, and LTR. A cutoff point of 20 mm for TS in FPLD women was found, which is lower than the value classically described in the literature for the diagnosis of FPLD. Additionally, an LFP < 29.6% appears to be a useful tool to aid in the diagnosis of these women. CONCLUSION: Combining anthropometric measurements to assess body fat distribution can lead to a more accurate diagnosis of FPLD. This study suggests new cutoff points for thigh skinfold and leg fat percentage in women with suspected FPLD in Brazil. Further studies are needed to confirm these findings.

2.
Diabetes Obes Metab ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171574

RESUMEN

AIM: To assess the disease burden of familial partial lipodystrophy (FPLD) caused by LMNA (FPLD2) and PPARG (FPLD3) variants to augment the knowledge of these rare disorders characterized by selective fat loss and metabolic complications. MATERIALS AND METHODS: An observational longitudinal study, including 157 patients (FPLD2: 139 patients, mean age 46 ± 17 years, 70% women; FPLD3: 18 patients, mean age: 44 ± 17 years, 78% women) from 66 independent families in two countries (83 from Turkey and 74 from Spain), was conducted. RESULTS: Patients were diagnosed at a mean age of 39 ± 19 years, 20 ± 16 years after the first clinical signs appeared. Men reported symptoms later than women. Symptom onset was earlier in FPLD2. Fat loss was less prominent in FPLD3. In total, 92 subjects (59%) had diabetes (age at diagnosis: 34 ± 1 years). Retinopathy was more commonly detected in FPLD3 (P < .05). Severe hypertriglyceridaemia was more frequent among patients with FPLD3 (44% vs. 17%, P = .01). Hepatic steatosis was detected in 100 subjects (66%) (age at diagnosis: 36 ± 2 years). Coronary artery disease developed in 26 patients (17%) and 17 (11%) suffered from a myocardial infarction. Turkish patients had a lower body mass index, a higher prevalence of hepatic steatosis, greater triglyceride levels and a tendency towards a higher prevalence of coronary artery disease. A total of 17 patients died, with a mean time to death of 75 ± 3 years, which was shorter in the Turkish cohort (68 ± 2 vs. 83 ± 4 years, P = .01). Cardiovascular events were a major cause of death. CONCLUSIONS: Our analysis highlights severe organ complications in patients with FPLD, showing differences between genotypes and Mediterranean countries. FPLD3 presents a milder phenotype than FPLD2, but with comparable or even greater severity of metabolic disturbances.

3.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39125589

RESUMEN

Recent research into laminopathic lipodystrophies-rare genetic disorders caused by mutations in the LMNA gene-has greatly expanded our knowledge of their complex pathology and metabolic implications. These disorders, including Hutchinson-Gilford progeria syndrome (HGPS), Mandibuloacral Dysplasia (MAD), and Familial Partial Lipodystrophy (FPLD), serve as crucial models for studying accelerated aging and metabolic dysfunction, enhancing our understanding of the cellular and molecular mechanisms involved. Research on laminopathies has highlighted how LMNA mutations disrupt adipose tissue function and metabolic regulation, leading to altered fat distribution and metabolic pathway dysfunctions. Such insights improve our understanding of the pathophysiological interactions between genetic anomalies and metabolic processes. This review merges current knowledge on the phenotypic classifications of these diseases and their associated metabolic complications, such as insulin resistance, hypertriglyceridemia, hepatic steatosis, and metabolic syndrome, all of which elevate the risk of cardiovascular disease, stroke, and diabetes. Additionally, a range of published therapeutic strategies, including gene editing, antisense oligonucleotides, and novel pharmacological interventions aimed at addressing defective adipocyte differentiation and lipid metabolism, will be explored. These therapies target the core dysfunctional lamin A protein, aiming to mitigate symptoms and provide a foundation for addressing similar metabolic and genetic disorders.


Asunto(s)
Lamina Tipo A , Lipodistrofia , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lipodistrofia/genética , Lipodistrofia/metabolismo , Lipodistrofia/terapia , Animales , Laminopatías/genética , Laminopatías/metabolismo , Progeria/genética , Progeria/metabolismo , Progeria/patología , Mutación , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/terapia , Metabolismo de los Lípidos/genética , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Resistencia a la Insulina/genética , Edición Génica
4.
Diabetol Metab Syndr ; 16(1): 145, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951919

RESUMEN

INTRODUCTION AND AIM: Type 3 Familial Partial Lipodystrophy (FPLD3) is a rare metabolic disease related to pathogenic PPARG gene variants. FPLD3 is characterized by a loss of fatty tissue in the upper and lower limbs, hips, and face. FPLD3 pathophysiology is usually associated with metabolic comorbidities such as type 2 diabetes, insulin resistance, hypertriglyceridemia, and liver dysfunction. Here, we clinically and molecularly characterized FPLD3 patients harboring novel PPARG pathogenic variants. MATERIALS AND METHODS: Lipodystrophy-suspected patients were recruited by clinicians from an Endocrinology Reference Center. Clinical evaluation was performed, biological samples were collected for biochemical analysis, and DNA sequencing was performed to define the pathogenic variants associated with the lipodystrophic phenotype found in our clinically diagnosed FPLD subjects. Bioinformatics predictions were conducted to characterize the novel mutated PPARγ proteins. RESULTS: We clinically described FPLD patients harboring two novel heterozygous PPARG variants in Brazil. Case 1 had the c.533T > C variant, which promotes the substitution of leucine to proline in position 178 (p.Leu178Pro), and cases 2 and 3 had the c.641 C > T variant, which results in the substitution of proline to leucine in the position 214 (p.Pro214Leu) at the PPARγ2 protein. These variants result in substantial conformational changes in the PPARγ2 protein. CONCLUSION: Two novel PPARG pathogenic variants related to FPLD3 were identified in a Brazilian FPLD cohort. These data will provide new epidemiologic data concerning FPLD3 and help understand the genotype-phenotype relationships related to the PPARG gene.

5.
Am J Physiol Endocrinol Metab ; 327(3): E357-E370, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39017680

RESUMEN

Familial partial lipodystrophy 3 (FPLD3) is a rare genetic disorder caused by loss-of-function mutations in the PPARG gene, characterized by a selective absence of subcutaneous fat and associated metabolic complications. However, the molecular mechanisms of FPLD3 remain unclear. In this study, we recruited a 17-yr-old Chinese female with FPLD3 and her family, identifying a novel PPARG frameshift mutation (exon 4: c.418dup: p.R140Kfs*7) that truncates the PPARγ protein at the seventh amino acid, significantly expanding the genetic landscape of FPLD3. By performing next-generation sequencing of circular RNAs (circRNAs), microRNAs (miRNAs), and mRNAs in plasma exosomes, we discovered 59 circRNAs, 57 miRNAs, and 299 mRNAs were significantly altered in the mutation carriers compared with the healthy controls. Integration analysis highlighted that the circ_0001597-miR-671-5p pair and 18 mRNAs might be incorporated into the metabolic regulatory networks of the FPLD3 induced by the novel PPARG mutation. Functional annotation suggested that these genes were significantly enriched in glucose- and lipid metabolism-related pathways. Among the circRNA-miRNA-mRNA network, we identified two critical regulators, early growth response-1 (EGR1), a key transcription factor known for its role in insulin signaling pathways and lipid metabolism, and 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3), which gets involved in the biosynthesis of triglycerides and lipolysis. Circ_0001597 regulates the expression of these genes through miR-671-5p, potentially contributing to the pathophysiology of FPLD3. Overall, this study clarified a circulating exosomal circRNA-miRNA-mRNA network in a FPLD3 family with a novel PPARG mutation, providing evidence for exploring promising biomarkers and developing novel therapeutic strategies for this rare genetic disorder.NEW & NOTEWORTHY Through the establishment of a ceRNA regulatory networks in a novel PPARG frameshift mutation c.418dup-induced FPLD3 pedigree, this study reveals that circ_0001597 may contribute to the pathophysiology of FPLD3 by sequestering miR-671-5p to regulate the expression of EGR1 and AGPAT3, pivotal genes situated in the triglyceride (TG) synthesis and lipolysis pathways. Current findings expand our molecular understanding of adipose tissue dysfunction, providing potential blood biomarkers and therapeutic avenues for lipodystrophy and associated metabolic complications.


Asunto(s)
Exosomas , Mutación del Sistema de Lectura , Lipodistrofia Parcial Familiar , MicroARNs , PPAR gamma , ARN Circular , ARN Mensajero , Humanos , Femenino , MicroARNs/genética , MicroARNs/sangre , PPAR gamma/genética , ARN Circular/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Adolescente , Lipodistrofia Parcial Familiar/genética , Exosomas/genética , Exosomas/metabolismo , Linaje , Redes Reguladoras de Genes
6.
Front Endocrinol (Lausanne) ; 15: 1359211, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887266

RESUMEN

Background: There is a lack of information on the clinical and molecular presentation of familial partial lipodystrophy (FPLD), a rare genetic disorder characterized by partial subcutaneous fat loss. Objective: This study aimed to provide a comprehensive assessment of the clinical, metabolic, and genetic features of FPLD in the Brazilian population. Methods: In a multicenter cross-sectional investigation we evaluated patients with FPLD across five Brazilian reference centers for lipodystrophies. Diagnosis of FPLD was made by clinical evaluation and genetic confirmation. Data on genetic, clinical, and metabolic characteristics were captured. Statistical analysis involved the utilization of the Kruskal-Wallis test to identify differences. Results: The study included 106 patients with genetic confirmation of FPLD. The mean age was 44 ± 15 years, and they were predominantly female (78.3%). LMNA pathogenic variants were identified in 85.8% of patients, PPARG in 10.4%, PLIN1 in 2.8%, and MFN2 in 0.9%. Diabetes mellitus (DM) was highly prevalent (57.5%), affecting 54 females (50.9%). Median triglycerides levels were 199 mg/dL (54-2724 mg/dL), severe hypertriglyceridemia (≥ 500 mg/dL) was found in 34.9% and pancreatitis in 8.5%. Metabolic-associated fatty liver disease (MAFLD) was observed in 56.6%, and cardiovascular disease in 10.4%. The overall mortality rate was 3.8%, due to cardiovascular events. Conclusion: This study presents an extensive cohort of Brazilian patients with FPLD, predominantly DM with several multisystem complications. A comprehensive characterization of lipodystrophy syndromes is crucial for effective patient management and care.


Asunto(s)
Lipodistrofia Parcial Familiar , Humanos , Femenino , Masculino , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/epidemiología , Adulto , Estudios Transversales , Persona de Mediana Edad , Brasil/epidemiología , Morbilidad , Lamina Tipo A/genética
7.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38279282

RESUMEN

The accumulation of farnesylated prelamin A has been suggested as one of the mechanisms responsible for the loss of fat in type 2 familial partial lipodystrophy due to variants in the LMNA gene. In this rare disease, fat loss appears in women after puberty, affecting sex-hormone-dependent anatomical areas. This study investigated the impact of 17-ß-estradiol on adipogenesis in murine preadipocytes subjected to a pharmacologically induced accumulation of farnesylated and non-farnesylated prelamin A. To induce the accumulation of non-farnesylated or farnesylated prelamin A, 3T3-L1 cells were treated with the farnesyltransferase inhibitor 277 or the methyltransferase inhibitor N-acetyl-S-farnesyl-l-cysteine methylester. Subsequently, the cells were induced to undergo adipocyte differentiation in the presence or absence of 17-ß-estradiol. Prelamin A accumulation was assessed through immunofluorescence, while real-time PCR and Western blot techniques were used to quantify several adipogenic genes and evaluate protein levels, respectively. The results showed that 17-ß-estradiol increased adipogenesis, although the combination of this hormone plus farnesylated prelamin A led to a reduction in the number of mature adipocytes and the expression of the different genes involved in adipogenesis. In conclusion, the influence of farnesylated prelamin A accumulation on adipogenesis manifested only in the presence of estradiol. These in vitro findings suggest a potential mechanism that could explain the characteristic phenotype in women suffering type 2 familial partial lipodystrophy.


Asunto(s)
Lamina Tipo A , Lipodistrofia Parcial Familiar , Humanos , Femenino , Ratones , Animales , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Adipogénesis , Células 3T3-L1 , Proteínas Nucleares/genética , Estradiol/farmacología
8.
Cells ; 12(22)2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37998321

RESUMEN

Type-2 Familial Partial Lipodystrophy (FPLD2), a rare lipodystrophy caused by LMNA mutations, is characterized by a loss of subcutaneous fat from the trunk and limbs and excess accumulation of adipose tissue in the neck and face. Several studies have reported that the mineralocorticoid receptor (MR) plays an essential role in adipose tissue differentiation and functionality. We previously showed that brown preadipocytes isolated from a FPLD2 patient's neck aberrantly differentiate towards the white lineage. As this condition may be related to MR activation, we suspected altered MR dynamics in FPLD2. Despite cytoplasmic MR localization in control brown adipocytes, retention of MR was observed in FPLD2 brown adipocyte nuclei. Moreover, overexpression of wild-type or mutated prelamin A caused GFP-MR recruitment to the nuclear envelope in HEK293 cells, while drug-induced prelamin A co-localized with endogenous MR in human preadipocytes. Based on in silico analysis and in situ protein ligation assays, we could suggest an interaction between prelamin A and MR, which appears to be inhibited by mineralocorticoid receptor antagonism. Importantly, the MR antagonist spironolactone redirected FPLD2 preadipocyte differentiation towards the brown lineage, avoiding the formation of enlarged and dysmorphic lipid droplets. Finally, beneficial effects on brown adipose tissue activity were observed in an FPLD2 patient undergoing spironolactone treatment. These findings identify MR as a new lamin A interactor and a new player in lamin A-linked lipodystrophies.


Asunto(s)
Lipodistrofia Parcial Familiar , Humanos , Adipocitos Marrones/metabolismo , Lamina Tipo A/metabolismo , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Espironolactona/farmacología , Receptores de Mineralocorticoides/metabolismo , Células HEK293 , Tejido Adiposo Pardo/metabolismo
9.
Diabetol Metab Syndr ; 15(1): 182, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679847

RESUMEN

BACKGROUND: Lipodystrophies are a heterogeneous group of diseases characterized by the selective loss of subcutaneous adipose tissue and ectopic fat deposition in different organs, including the liver. This study aimed to determine the frequencies of liver steatosis (LS) and liver fibrosis (LF) in a sample of individuals with LMNA-related and unrelated Familial Partial Lipodystrophy. METHODS: This cross-sectional study included 17 women with LMNA-related FPLD and 15 women with unrelated FPLD. LS and LF were assessed using transient elastography (TE) with FibroScan®. Anthropometric and biochemical variables were included in a multiple linear regression analysis to identify the variables that were independently related to liver disease. RESULTS: Regarding the presence of LF, 22 (68.2%) women were classified as having non-significant fibrosis, and 10 (31.8%) were classified as having significant or severe fibrosis. Regarding LS, only six women (20.7%) were classified as having an absence of steatosis, and 23 (79.3%) had mild to severe steatosis. After multiple linear regression, waist circumference (but not age, body mass index, or waist-to-hip ratio) was found to be independently related to LS and LF. Among the biochemical variables, only triglyceride levels were independently related to LS but not LF. CONCLUSIONS: In women with FPLD, visceral fat accumulation appears to be the most important determinant of liver disease, including LF, rather than fat scarcity in the lower limbs.

10.
Cells ; 12(8)2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37190051

RESUMEN

Mutations in the LMNA gene cause a collection of diseases known as laminopathies, including muscular dystrophies, lipodystrophies, and early-onset aging syndromes. The LMNA gene encodes A-type lamins, lamins A/C, intermediate filaments that form a meshwork underlying the inner nuclear membrane. Lamins have a conserved domain structure consisting of a head, coiled-coil rod, and C-terminal tail domain possessing an Ig-like fold. This study identified differences between two mutant lamins that cause distinct clinical diseases. One of the LMNA mutations encodes lamin A/C p.R527P and the other codes lamin A/C p.R482W, which are typically associated with muscular dystrophy and lipodystrophy, respectively. To determine how these mutations differentially affect muscle, we generated the equivalent mutations in the Drosophila Lamin C (LamC) gene, an orthologue of human LMNA. The muscle-specific expression of the R527P equivalent showed cytoplasmic aggregation of LamC, a reduced larval muscle size, decreased larval motility, and cardiac defects resulting in a reduced adult lifespan. By contrast, the muscle-specific expression of the R482W equivalent caused an abnormal nuclear shape without a change in larval muscle size, larval motility, and adult lifespan compared to controls. Collectively, these studies identified fundamental differences in the properties of mutant lamins that cause clinically distinct phenotypes, providing insights into disease mechanisms.


Asunto(s)
Lamina Tipo A , Distrofias Musculares , Animales , Adulto , Humanos , Lamina Tipo A/metabolismo , Drosophila/genética , Drosophila/metabolismo , Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , Mutación/genética , Distrofias Musculares/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-37231758

RESUMEN

BACKGROUND: Whole exome sequencing (WES) provides support for clinical diagnosis and treatment of genetically related diseases based on specific probe capture and high-throughput second-generation sequencing technology. Familial partial lipodystrophy 2 (FPLD2; OMIM # 151660) or type 2 Köbberling-Dunnigan syndrome with insulin resistance syndrome is uncommon in mainland China and elsewhere. AIMS: We report the case in order to have a further understanding of FPLD2 or type 2 KobberlingDunnigan syndrome) with the assistance of WES and improve the clinical and genetic understanding and diagnosis of this disease. CASE: A 30-year-old woman was admitted to the cadre department of our hospital at 14:00 on July 11, 2021, because of hyperglycemia, a rapid heart rate, and excessive sweating during pregnancy. An oral glucose tolerance test (OGTT) showed that insulin and C-peptide increased slowly after glucose stimulation, and the peak value was extended backward (Table 1). It was suggested that the patient had developed insulin antibodies, resulting in insulin resistance. Her clinical features and familial inheritance were consistent with FPLD2 (type 2 Kobberling-Dunnigan syndrome). The results of WES indicated that a heterozygous mutation occurred in exon 8 of the LMNA gene, because the base C at position 1444 was mutated into T during transcription. This mutation changed the amino acid position 482 of the encoded protein from Arg to Trp. Type 2 KobberlingDunnigan syndrome is associated with an LMNA gene mutation. According to the patient's clinical manifestations, hypoglycemic and lipid-lowering therapy is recommended. CONCLUSION: WES can assist in the simultaneous clinical investigation or confirmation of FPLD2 and help identify diseases with similar clinical phenotypes. This case demonstrates that familial partial lipodystrophy is associated with an LMNA gene mutation on chromosome 1q21-22. This is one of the few cases of familial partial lipodystrophy diagnosed by WES.

12.
Cells ; 12(5)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36899861

RESUMEN

Type 2 familial partial lipodystrophy (FPLD2) is a laminopathic lipodystrophy due to pathogenic variants in the LMNA gene. Its rarity implies that it is not well-known. The aim of this review was to explore the published data regarding the clinical characterisation of this syndrome in order to better describe FPLD2. For this purpose, a systematic review through a search on PubMed until December 2022 was conducted and the references of the retrieved articles were also screened. A total of 113 articles were included. FPLD2 is characterised by the loss of fat starting around puberty in women, affecting limbs and trunk, and its accumulation in the face, neck and abdominal viscera. This adipose tissue dysfunction conditions the development of metabolic complications associated with insulin resistance, such as diabetes, dyslipidaemia, fatty liver disease, cardiovascular disease, and reproductive disorders. However, a great degree of phenotypical variability has been described. Therapeutic approaches are directed towards the associated comorbidities, and recent treatment modalities have been explored. A comprehensive comparison between FPLD2 and other FPLD subtypes can also be found in the present review. This review aimed to contribute towards augmenting knowledge of the natural history of FPLD2 by bringing together the main clinical research in this field.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Lipodistrofia Parcial Familiar , Humanos , Femenino , Tejido Adiposo/metabolismo , Resistencia a la Insulina/genética , Extremidades/patología , Diabetes Mellitus Tipo 2/patología , Lamina Tipo A
13.
J Clin Endocrinol Metab ; 108(8): e512-e520, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-36808247

RESUMEN

CONTEXT: The diagnosis of familial partial lipodystrophy (FPLD) is currently made based on clinical judgment. OBJECTIVE: There is a need for objective diagnostic tools that can diagnose FPLD accurately. METHODS: We have developed a new method that uses measurements from pelvic magnetic resonance imaging (MRI) at the pubis level. We evaluated measurements from a lipodystrophy cohort (n = 59; median age [25th-75th percentiles]: 32 [24-44]; 48 females and 11 males) and age- and sex-matched controls (n = 29). Another dataset included MRIs from 289 consecutive patients. RESULTS: Receiver operating characteristic curve analysis revealed a potential cut-point of ≤13 mm gluteal fat thickness for the diagnosis of FPLD. A combination of gluteal fat thickness ≤13 mm and pubic/gluteal fat ratio ≥2.5 (based on a receiver operating characteristic curve) provided 96.67% (95% CI, 82.78-99.92) sensitivity and 91.38% (95% CI, 81.02-97.14) specificity in the overall cohort and 100.00% (95% CI, 87.23-100.00) sensitivity and 90.00% (95% CI, 76.34-97.21) specificity in females for the diagnosis of FPLD. When this approach was tested in a larger dataset of random patients, FPLD was differentiated from subjects without lipodystrophy with 96.67% (95% CI, 82.78-99.92) sensitivity and 100.00% (95% CI, 98.73-100.00) specificity. When only women were analyzed, the sensitivity and the specificity was 100.00% (95% CI, 87.23-100.00 and 97.95-100.00, respectively). The performance of gluteal fat thickness and pubic/gluteal fat thickness ratio was comparable to readouts performed by radiologists with expertise in lipodystrophy. CONCLUSION: The combined use of gluteal fat thickness and pubic/gluteal fat ratio from pelvic MRI is a promising method to diagnose FPLD that can reliably identify FPLD in women. Our findings need to be tested in larger populations and prospectively.


Asunto(s)
Lipodistrofia Parcial Familiar , Lipodistrofia , Masculino , Humanos , Femenino , Lipodistrofia Parcial Familiar/diagnóstico por imagen , Lipodistrofia Parcial Familiar/patología , Lipodistrofia/patología , Imagen por Resonancia Magnética , Hueso Púbico , Curva ROC , Pelvis/diagnóstico por imagen , Pelvis/patología
14.
Endocr J ; 70(1): 69-76, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36171144

RESUMEN

Familial partial lipodystrophy (FPLD) 3 is a rare genetic disorder caused by peroxisome proliferator-activated receptor γ gene (PPARG) mutations. Most cases have been reported in Western patients. Here, we describe a first pedigree of FPLD 3 in Japanese. The proband was a 51-year-old woman. She was diagnosed with fatty liver at age 32 years, dyslipidemia at age 37 years, and diabetes mellitus at age 41 years. Her body mass index was 18.5 kg/m2, and body fat percentage was 19.2%. On physical examination, she had less subcutaneous fat in the upper limbs than in other sites. On magnetic resonance imaging, atrophy of subcutaneous adipose tissue was seen in the upper limbs and lower legs. Fasting serum C-peptide immunoreactivity was high (3.4 ng/mL), and the plasma glucose disappearance rate was low (2.07%/min) on an insulin tolerance test, both suggesting apparent insulin resistance. The serum total adiponectin level was low (2.3 µg/mL). Mild fatty liver was seen on abdominal computed tomography. On genetic analysis, a P495L mutation in PPARG was identified. The same mutation was also seen in her father, who had non-obese diabetes mellitus, and FPLD 3 was diagnosed. Modest increases in body fat and serum total adiponectin were seen with pioglitazone treatment. Attention should be paid to avoid overlooking lipodystrophy syndromes even in non-obese diabetic patients if they show features of insulin resistance.


Asunto(s)
Diabetes Mellitus , Resistencia a la Insulina , Lipodistrofia Parcial Familiar , Humanos , Femenino , Adulto , Persona de Mediana Edad , Lipodistrofia Parcial Familiar/tratamiento farmacológico , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/diagnóstico , PPAR gamma/genética , Pioglitazona/uso terapéutico , Resistencia a la Insulina/genética , Adiponectina , Pueblos del Este de Asia , Mutación
15.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1020008

RESUMEN

To analyze the clinical features and genetic variants of a child with type 4 familial partial lipodystrophy (FPLD4) and the initial manifestation of diabetes.The male patient with the age of 13 years and 5 months, and the diabetes course was about 3 years, the patient was admitted to Children′s Hospital of Soochow University on November 10, 2021(4 th hospitalization at the hospital), in the course of diabetes, the children repeatedly suffered from diabetes ketoacidosis, and lipid metabolism complications gradually emerged.The gene sequencing showed that the proband and his mother carried dual gene mutations of PLIN1 c. 1325delG(p.G442Afs*99) and SPINK1 c. 194+ 2T>C(p.? ). The PLIN1 gene was the causal gene of FPLD4.The mutations of c. 1325delG in the PLIN1 gene had not been previously reported.Based on the clinical phenotype, family history and genetic testing findings, the patient was diagnosed as FPLD4.In addition, the mutation of SPINK1 c. 194+ 2T>C(p.? ) might increase the risk of chronic pancreatitis.This case report enriched the clinical characteristics and genotype data of FPLD4.Gene sequencing assisted the accurate diagnosis of the type of diabetes.The effects of dual gene mutations on disease progression should be concerned, which were of great significance to develop treatment regimen and disease management.

16.
J Clin Lipidol ; 16(6): 833-849, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36402670

RESUMEN

BACKGROUND: Volanesorsen, an antisense oligonucleotide, is designed to inhibit hepatic apolipoprotein C-III synthesis and reduce plasma apolipoprotein C-III and triglyceride concentrations. OBJECTIVE: The present study assessed efficacy and safety of volanesorsen in patients with familial partial lipodystrophy (FPLD) and concomitant hypertriglyceridemia and diabetes. METHODS: BROADEN was a randomized, placebo-controlled, phase 2/3, 52-week study with open-label extension and post-treatment follow-up periods. Patients received weekly subcutaneous volanesorsen 300 mg or placebo. The primary endpoint was percent change from baseline in fasting triglycerides at 3 months. Secondary endpoints included relative percent change in hepatic fat fraction (HFF), visceral adiposity, and glycated hemoglobin levels. RESULTS: Forty patients (11 men, 29 women) were enrolled, majority of whom were aged <65 years (mean, 47 years) and White. Least squares mean (LSM) percent change in triglycerides from baseline to 3 months was -88% (95% CI, -134 to -43) in the volanesorsen group versus -22% (95% CI, -61 to 18) in the placebo group, with a difference in LSM of -67% (95% CI, -104 to -30; P=0.0009). Volanesorsen induced a significant LSM relative reduction in HFF of 53% at month 12 versus placebo (observed mean [SD]: 9.7 [7.65] vs. 18.0 [8.89]; P=0.0039). No statistically significant changes were noted in body volume measurements (fat, liver, spleen, visceral/subcutaneous adipose tissue) or glycated hemoglobin. Serious adverse events in patients assigned to volanesorsen included 1 case each of sarcoidosis, anaphylactic reaction, and systemic inflammatory response syndrome. CONCLUSION: In BROADEN, volanesorsen significantly reduced serum triglyceride levels and hepatic steatosis in patients with FPLD.


Asunto(s)
Lipodistrofia Parcial Familiar , Femenino , Humanos , Masculino , Apolipoproteína C-III , Hemoglobina Glucada , Triglicéridos
17.
J Endocr Soc ; 6(12): bvac155, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36397776

RESUMEN

Context: Despite several reports of familial partial lipodystrophy (FPLD) type 2 (FPLD2) due to heterozygous LMNA variants and FPLD3 due to PPARG variants, the phenotypic differences among them remain unclear. Objective: To compare the body fat distribution, metabolic parameters, and prevalence of metabolic complications between FPLD3 and FPLD2. Methods: A retrospective, cross-sectional comparison of patients from 2 tertiary referral centers-UT Southwestern Medical Center and the National Institute of Diabetes and Digestive and Kidney Diseases. A total of 196 females and 59 males with FPLD2 (age 2-86 years) and 28 females and 4 males with FPLD3 (age 9-72 years) were included. The main outcome measures were skinfold thickness, regional body fat by dual-energy X-ray absorptiometry (DXA), metabolic variables, and prevalence of diabetes mellitus and hypertriglyceridemia. Results: Compared with subjects with FPLD2, subjects with FPLD3 had significantly increased prevalence of hypertriglyceridemia (66% vs 84%) and diabetes (44% vs 72%); and had higher median fasting serum triglycerides (208 vs 255 mg/dL), and mean hemoglobin A1c (6.4% vs 7.5%). Compared with subjects with FPLD2, subjects with FPLD3 also had significantly higher mean upper limb fat (21% vs 27%) and lower limb fat (16% vs 21%) on DXA and increased median skinfold thickness at the anterior thigh (5.8 vs 11.3 mm), calf (4 vs 6 mm), triceps (5.5 vs 7.5 mm), and biceps (4.3 vs 6.8 mm). Conclusion: Compared with subjects with FPLD2, subjects with FPLD3 have milder lipodystrophy but develop more severe metabolic complications, suggesting that the remaining adipose tissue in subjects with FPLD3 may be dysfunctional or those with mild metabolic disease are underrecognized.

18.
Clin Endocrinol (Oxf) ; 97(6): 755-762, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35920656

RESUMEN

CONTEXT: Familial partial lipodystrophy type 2 (FPLD2) results from autosomal dominant mutations in the LMNA gene, causing lack of subcutaneous fat deposition and excess ectopic fat accumulation, leading to metabolic complications and reduced life expectancy. The rarity of the condition means that the natural history of FPLD2 throughout childhood is not well understood. We report outcomes in a cohort of 12 (5M) children with a genetic diagnosis of FPLD2, under the care of the UK National Severe Insulin Resistance Service (NSIRS) which offers multidisciplinary input including dietetic, in addition to screening for comorbidities. OBJECTIVE: To describe the natural history of clinical, biochemical and radiological outcomes of children with FPLD2. DESIGN: A retrospective case note review of children with a genetic diagnosis of FPLD2 who had been seen in the paediatric NSIRS was performed. PATIENTS: Twelve (5M) individuals diagnosed with FPLD2 via genetic testing before age 18 and who attended the NSIRS clinic were included. MEASUREMENTS: Relationships between metabolic variables (HbA1c, triglycerides, fasting insulin, fasting glucose and alanine transaminase [ALT]) across time, from first visit to most recent, were explored using a multivariate model, adjusted for age and gender. The age of development of comorbidities was recorded. RESULTS: Three patients (all female) developed diabetes between 12 and 19 years and were treated with Metformin. One female has hypertrophic cardiomyopathy and four (1M) patients developed mild hepatic steatosis at a median [range] age of 14(12-15) years. Three (1M) patients reported mental health problems related to lipodystrophy. There was no relationship between biochemical results and age. Patients with diabetes had higher concentrations of ALT than patients who did not have diabetes, adjusted for age, gender and body mass index standard deviation scores. CONCLUSIONS: Despite dietetic input, some patients, more commonly females, developed comorbidities after the age of 10. The absence of relationships between biochemical results and age likely reflects a small cohort size. We propose that, while clinical review and dietetic support are beneficial for children with FPLD2, formal screening for comorbidities before age 10 may not be of benefit. Clinical input from an multidisciplinary team including dietician, psychologist and clinician should be offered after diagnosis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Lipodistrofia Parcial Familiar , Niño , Humanos , Femenino , Adolescente , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Estudios Retrospectivos , Lamina Tipo A/genética , Grasa Subcutánea/metabolismo
19.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35955791

RESUMEN

LMNA mutation is associated with type-2 familial partial lipodystrophy (FPLD2). The disease causes a disorder characterized by anomalous accumulation of body fat in humans. The dysfunction at the molecular level is triggered by a lamin A/C mutation, impairing the cell metabolism. In human fibroblasts and preadipocytes, a trend for ATP production, mainly supported by mitochondrial oxidative metabolism, is detected. Moreover, primary cell lines with FPLD2 mutation decrease the mitochondrial ATP production if compared with the control, even if no differences are observed in the oxygen consumption rate of bioenergetic parameters (i.e., basal and maximal respiration, spare respiratory capacity, and ATP turnover). Conversely, glycolysis is only inhibited in FPLD2 fibroblast cell lines. We notice that the amount of ATP produced in the fibroblasts is higher than in the preadipocytes, and likewise in the control, with respect to FPLD2, due to a more active oxidative phosphorylation (OXPHOS) and glycolysis. Moreover, the proton leak parameter, which characterizes the transformation of white adipose tissue to brown/beige adipose tissue, is unaffected by FPLD2 mutation. The metabolic profile of fibroblasts and preadipocytes is confirmed by the ability of these cell lines to increase the metabolic potential of both OXPHOS and glycolysis under energy required independently by the FPLD2 mutation.


Asunto(s)
Lipodistrofia Parcial Familiar , Adenosina Trifosfato/metabolismo , Tejido Adiposo Pardo/metabolismo , Metabolismo Energético , Fibroblastos/metabolismo , Humanos , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo
20.
Curr Diab Rep ; 22(9): 461-470, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35821558

RESUMEN

PURPOSE OF REVIEW: Genetic or acquired lipodystrophies are characterized by selective loss of body fat along with predisposition towards metabolic complications of insulin resistance, such as diabetes mellitus, hypertriglyceridemia, hepatic steatosis, polycystic ovarian syndrome, and acanthosis nigricans. In this review, we discuss the various subtypes and when to suspect and how to diagnose lipodystrophy. RECENT FINDINGS: The four major subtypes are autosomal recessive, congenital generalized lipodystrophy (CGL); acquired generalized lipodystrophy (AGL), mostly an autoimmune disorder; autosomal dominant or recessive familial partial lipodystrophy (FPLD); and acquired partial lipodystrophy (APL), an autoimmune disorder. Diagnosis of lipodystrophy is mainly based upon physical examination findings of loss of body fat and can be supported by body composition analysis by skinfold measurements, dual-energy x-ray absorptiometry, and whole-body magnetic resonance imaging. Confirmatory genetic testing is helpful in the proband and at-risk family members with suspected genetic lipodystrophies. The treatment is directed towards the specific comorbidities and metabolic complications, and there is no treatment to reverse body fat loss. Metreleptin should be considered as the first-line therapy for metabolic complications in patients with generalized lipodystrophy and for prevention of comorbidities in children. Metformin and insulin therapy are the best options for treating hyperglycemia and fibrates and/or fish oil for hypertriglyceridemia. Lipodystrophy should be suspected in lean and muscular subjects presenting with diabetes mellitus, hypertriglyceridemia, non-alcoholic fatty liver disease, polycystic ovarian syndrome, or amenorrhea. Diabetologists should be aware of lipodystrophies and consider genetic varieties as an important subtype of monogenic diabetes.


Asunto(s)
Diabetes Mellitus , Hipertrigliceridemia , Lipodistrofia Generalizada Congénita , Lipodistrofia , Síndrome del Ovario Poliquístico , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/genética , Femenino , Humanos , Lipodistrofia/diagnóstico , Lipodistrofia/genética , Lipodistrofia Generalizada Congénita/complicaciones , Imagen por Resonancia Magnética/efectos adversos , Síndrome del Ovario Poliquístico/complicaciones , Síndrome del Ovario Poliquístico/diagnóstico , Síndrome del Ovario Poliquístico/genética , Imagen de Cuerpo Entero/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA