Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 26(5)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38785621

RESUMEN

The integration of graph embedding technology and collaborative filtering algorithms has shown promise in enhancing the performance of recommendation systems. However, existing integrated recommendation algorithms often suffer from feature bias and lack effectiveness in personalized user recommendation. For instance, users' historical interactions with a certain class of items may inaccurately lead to recommendations of all items within that class, resulting in feature bias. Moreover, accommodating changes in user interests over time poses a significant challenge. This study introduces a novel recommendation model, RCKFM, which addresses these shortcomings by leveraging the CoFM model, TransR graph embedding model, backdoor tuning of causal inference, KL divergence, and the factorization machine model. RCKFM focuses on improving graph embedding technology, adjusting feature bias in embedding models, and achieving personalized recommendations. Specifically, it employs the TransR graph embedding model to handle various relationship types effectively, mitigates feature bias using causal inference techniques, and predicts changes in user interests through KL divergence, thereby enhancing the accuracy of personalized recommendations. Experimental evaluations conducted on publicly available datasets, including "MovieLens-1M" and "Douban dataset" from Kaggle, demonstrate the superior performance of the RCKFM model. The results indicate a significant improvement of between 3.17% and 6.81% in key indicators such as precision, recall, normalized discount cumulative gain, and hit rate in the top-10 recommendation tasks. These findings underscore the efficacy and potential impact of the proposed RCKFM model in advancing recommendation systems.

2.
Radiother Oncol ; 196: 110261, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38548115

RESUMEN

OBJECTIVE: Radiation pneumonitis (RP) is the major dose-limiting toxicity of thoracic radiotherapy. This study aimed to developed a dual-omics (single nucleotide polymorphisms, SNP and dosiomics) prediction model for symptomatic RP. MATERIALS AND METHODS: The potential SNPs, which are of significant difference between the RP grade ≥ 3 group and the RP grade ≤ 1 group, were selected from the whole exome sequencing SNPs using the Fisher's exact test. Patients with lung cancer who received thoracic radiotherapy at our institution from 2009 to 2016 were enrolled for SNP selection and model construction. The factorization machine (FM) method was used to model the SNP epistasis effect, and to construct the RP prediction model (SNP-FM). The dosiomics features were extracted, and further selected using the minimum redundancy maximum relevance (mRMR) method. The selected dosiomics features were added to the SNP-FM model to construct the dual-omics model. RESULTS: For SNP screening, peripheral blood samples of 28 patients with RP grade ≥ 3 and the matched 28 patients with RP grade ≤ 1 were sequenced. 81 SNPs were of significant difference (P < 0.015) and considered as potential SNPs. In addition, 21 radiation toxicity related SNPs were also included. For model construction, 400 eligible patients (including 108 RP grade ≥ 2) were enrolled. Single SNP showed no strong correlation with RP. On the other hand, the SNP-SNP interaction (epistasis effect) of 19 SNPs were modeled by the FM method, and achieved an area under the curve (AUC) of 0.76 in the testing group. In addition, 4 dosiomics features were selected and added to the model, and increased the AUC to 0.81. CONCLUSIONS: A novel dual-omics model by synergizing the SNP epistasis effect with dosiomics features was developed. The enhanced the RP prediction suggested its promising clinical utility in identifying the patients with severe RP during thoracic radiotherapy.


Asunto(s)
Neoplasias Pulmonares , Polimorfismo de Nucleótido Simple , Neumonitis por Radiación , Humanos , Neumonitis por Radiación/genética , Neumonitis por Radiación/etiología , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/genética , Femenino , Masculino , Persona de Mediana Edad , Anciano
3.
Cluster Comput ; 26(2): 1231-1251, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36120180

RESUMEN

Due to its automatic feature learning ability and high performance, deep learning has gradually become the mainstream of artificial intelligence in recent years, playing a role in many fields. Especially in the medical field, the accuracy rate of deep learning even exceeds that of doctors. This paper introduces several deep learning algorithms: Artificial Neural Network (NN), FM-Deep Learning, Convolutional NN and Recurrent NN, and expounds their theory, development history and applications in disease prediction; we analyze the defects in the current disease prediction field and give some current solutions; our paper expounds the two major trends in the future disease prediction and medical field-integrating Digital Twins and promoting precision medicine. This study can better inspire relevant researchers, so that they can use this article to understand related disease prediction algorithms and then make better related research.

4.
Brief Bioinform ; 23(3)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35323901

RESUMEN

MOTIVATION: MicroRNAs (miRNAs), as critical regulators, are involved in various fundamental and vital biological processes, and their abnormalities are closely related to human diseases. Predicting disease-related miRNAs is beneficial to uncovering new biomarkers for the prevention, detection, prognosis, diagnosis and treatment of complex diseases. RESULTS: In this study, we propose a multi-view Laplacian regularized deep factorization machine (DeepFM) model, MLRDFM, to predict novel miRNA-disease associations while improving the standard DeepFM. Specifically, MLRDFM improves DeepFM from two aspects: first, MLRDFM takes the relationships among items into consideration by regularizing their embedding features via their similarity-based Laplacians. In this study, miRNA Laplacian regularization integrates four types of miRNA similarity, while disease Laplacian regularization integrates two types of disease similarity. Second, to judiciously train our model, Laplacian eigenmaps are utilized to initialize the weights in the dense embedding layer. The experimental results on the latest HMDD v3.2 dataset show that MLRDFM improves the performance and reduces the overfitting phenomenon of DeepFM. Besides, MLRDFM is greatly superior to the state-of-the-art models in miRNA-disease association prediction in terms of different evaluation metrics with the 5-fold cross-validation. Furthermore, case studies further demonstrate the effectiveness of MLRDFM.


Asunto(s)
MicroARNs , Algoritmos , Biología Computacional/métodos , Predisposición Genética a la Enfermedad , Humanos , MicroARNs/genética
5.
J Comput Biol ; 28(12): 1219-1227, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34847740

RESUMEN

Prediction of potential microRNA-disease associations is one of the important tasks in computational biology fields. Mining more sophisticated features can improve the performance of the prediction methods. This article proposes a novel algorithm (ISFMDA) that can effectively learn low- or high-order interactions of recursive feature elimination selected features by an extreme gradient boosting, a factorization machine, and a deep neural network. As a result, ISFMDA can obtain an area under receiver operating characteristic curve (AUROC) of 0.9342 ± 0.0007 in fivefold cross-validation tests with 51.25% of original features, which verifies the effectiveness of the methods.


Asunto(s)
Biología Computacional/métodos , Enfermedad/genética , MicroARNs/genética , Algoritmos , Área Bajo la Curva , Estudios de Asociación Genética , Humanos , Aprendizaje Automático , Redes Neurales de la Computación , Curva ROC
6.
Comput Struct Biotechnol J ; 19: 4003-4017, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34377366

RESUMEN

Resistance to therapy remains a major cause of cancer treatment failures, resulting in many cancer-related deaths. Resistance can occur at any time during the treatment, even at the beginning. The current treatment plan is dependent mainly on cancer subtypes and the presence of genetic mutations. Evidently, the presence of a genetic mutation does not always predict the therapeutic response and can vary for different cancer subtypes. Therefore, there is an unmet need for predictive models to match a cancer patient with a specific drug or drug combination. Recent advancements in predictive models using artificial intelligence have shown great promise in preclinical settings. However, despite massive improvements in computational power, building clinically useable models remains challenging due to a lack of clinically meaningful pharmacogenomic data. In this review, we provide an overview of recent advancements in therapeutic response prediction using machine learning, which is the most widely used branch of artificial intelligence. We describe the basics of machine learning algorithms, illustrate their use, and highlight the current challenges in therapy response prediction for clinical practice.

7.
PeerJ Comput Sci ; 7: e579, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34151000

RESUMEN

Credit scoring is a very critical task for banks and other financial institutions, and it has become an important evaluation metric to distinguish potential defaulting users. In this paper, we propose a credit score prediction method based on feature transformation and ensemble model, which is essentially a cascade approach. The feature transformation process consisting of boosting trees (BT) and auto-encoders (AE) is employed to replace manual feature engineering and to solve the data imbalance problem. For the classification process, this paper designs a heterogeneous ensemble model by weighting the factorization machine (FM) and deep neural networks (DNN), which can efficiently extract low-order intersections and high-order intersections. Comprehensive experiments were conducted on two standard datasets and the results demonstrate that the proposed approach outperforms existing credit scoring models in accuracy.

8.
Entropy (Basel) ; 21(2)2019 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33266859

RESUMEN

The Recommender System (RS) has obtained a pivotal role in e-commerce. To improve the performance of RS, review text information has been extensively utilized. However, it is still a challenge for RS to extract the most informative feature from a tremendous amount of reviews. Another significant issue is the modeling of user-item interaction, which is rarely considered to capture high- and low-order interactions simultaneously. In this paper, we design a multi-level attention mechanism to learn the usefulness of reviews and the significance of words by Deep Neural Networks (DNN). In addition, we develop a hybrid prediction structure that integrates Factorization Machine (FM) and DNN to model low-order user-item interactions as in FM and capture the high-order interactions as in DNN. Based on these two designs, we build a Multi-level Attentional and Hybrid-prediction-based Recommender (MAHR) model for recommendation. Extensive experiments on Amazon and Yelp datasets showed that our approach provides more accurate recommendations than the state-of-the-art recommendation approaches. Furthermore, the verification experiments and explainability study, including the visualization of attention modules and the review-usefulness prediction test, also validated the reasonability of our multi-level attention mechanism and hybrid prediction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA