Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Med Image Anal ; 87: 102806, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37030056

RESUMEN

Diffusion MRI (dMRI) is a non-invasive tool for assessing the white matter region of the brain by approximating the fiber streamlines, structural connectivity, and estimation of microstructure. This modality can yield useful information for diagnosing several mental diseases as well as for surgical planning. The higher angular resolution diffusion imaging (HARDI) technique is helpful in obtaining more robust fiber tracts by getting a good approximation of regions where fibers cross. Moreover, HARDI is more sensitive to tissue changes and can accurately represent anatomical details in the human brain at higher magnetic strengths. In other words, magnetic strengths affect the quality of the image, and hence high magnetic strength has good tissue contrast with better spatial resolution. However, a higher magnetic strength scanner (like 7T) is costly and unaffordable to most hospitals. Hence, in this work, we have proposed a novel CNN architecture for the transformation of 3T to 7T dMRI. Additionally, we have also reconstructed the multi-shell multi-tissue fiber orientation distribution function (MSMT fODF) at 7T from single-shell 3T. The proposed architecture consists of a CNN-based ODE solver utilizing the Trapezoidal rule and graph-based attention layer alongwith L1 and total variation loss. Finally, the model has been validated on the HCP data set quantitatively and qualitatively.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Sustancia Blanca , Humanos , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Difusión , Procesamiento de Imagen Asistido por Computador/métodos
2.
Comput Methods Programs Biomed ; 230: 107339, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36682110

RESUMEN

BACKGROUND AND OBJECTIVE: Diffusion MRI (dMRI) has been considered one of the most popular non-invasive techniques for studying the human brain's white matter (WM). dMRI is used to delineate the brain's microstructure by approximating the WM region's fiber tracts. The achieved fiber tracts can be utilized to assess mental diseases like Multiple sclerosis, ADHD, Seizures, Intellectual disability, and others. New techniques such as high angular resolution diffusion-weighted imaging (HARDI) have been developed, providing precise fiber directions, and overcoming the limitation of traditional DTI. Unlike Single-shell, Multi-shell HARDI provides tissue fractions for white matter, gray matter, and cerebrospinal fluid, resulting in a Multi-shell Multi-tissue fiber orientation distribution function (MSMT fODF). This MSMT fODF comes up with more precise fiber directions than a Single-shell, which helps to get correct fiber tracts. In addition, various multi-compartment diffusion models, including as CHARMED and NODDI, have been developed to describe the brain tissue microstructural information. This type of model requires multi-shell data to obtain more specific tissue microstructural information. However, a major concern with multi-shell is that it takes a longer scanning time restricting its use in clinical applications. In addition, most of the existing dMRI scanners with low gradient strengths commonly acquire a single b-value (shell) upto b=1000s/mm2 due to SNR (Signal-to-noise ratio) reasons and severe imaging artifacts. METHODS: To address this issue, we propose a CNN-based ordinary differential equations solver for the reconstruction of MSMT fODF from under-sampled and fully sampled Single-shell (b=1000s/mm2) dMRI. The proposed architecture consists of CNN-based Adams-Bash-forth and Runge-Kutta modules along with two loss functions, including L1 and total variation. RESULTS: We have shown quantitative results and visualization of fODF, fiber tracts, and structural connectivity for several brain regions on the publicly available HCP dataset. In addition, the obtained angular correlation coefficients for white matter and full brain are high, showing the proposed network's utility.Finally, we have also demonstrated the effect of noise by adjusting SNR from 5 to 50 and observed the network robustness. CONCLUSION: We can conclude that our model can accurately predict MSMT fODF from under-sampled or fully sampled Single-shell dMRI volumes.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Sustancia Blanca , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen
3.
Magn Reson Imaging ; 90: 1-16, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35341904

RESUMEN

Diffusion MRI (dMRI) is one of the most popular techniques for studying the brain structure, mainly the white matter region. Among several sampling methods in dMRI, the high angular resolution diffusion imaging (HARDI) technique has attracted researchers due to its more accurate fiber orientation estimation. However, the current single-shell HARDI makes the intravoxel structure challenging to estimate accurately. While multi-shell acquisition can address this problem, it takes a longer scanning time, restricting its use in clinical applications. In addition, most existing dMRI scanners with low gradient-strengths often acquire single-shell up to b=1000s/mm2 because of signal-to-noise ratio issues and severe image artefacts. Hence, we propose a novel generative adversarial network, VRfRNet, for the reconstruction of multi-shell multi-tissue fiber orientation distribution function from single-shell HARDI volumes. Such a transformation learning is performed in the spherical harmonics (SH) space, as raw input HARDI volume is transformed to SH coefficients to soften gradient directions. The proposed VRfRNet consists of several modules, such as multi-context feature enrichment module, feature level attention, and softmax level attention. In addition, three loss functions have been used to optimize network learning, including L1, adversarial, and total variation. The network is trained and tested using standard qualitative and quantitative performance metrics on the publicly available HCP data-set.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Sustancia Blanca , Algoritmos , Encéfalo/diagnóstico por imagen , Difusión , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Sustancia Blanca/diagnóstico por imagen
4.
Magn Reson Imaging ; 87: 133-156, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35017034

RESUMEN

Single or Multi-shell high angular resolution diffusion imaging (HARDI) has become an important dMRI acquisition technique for studying brain white matter fibers. Existing single-shell HARDI makes it challenging to estimate the intravoxel structure up to the desired resolution. However, multi-shell acquisition (with multiple b-values) can provide higher resolution for the intravoxel structure, which further helps in getting accurate fiber tracts; But, this comes at the cost of larger acquisition time and larger setup. Hence, we propose a novel deep learning architecture for the reconstruction of diffusion MRI volumes for different b-values (degree of diffusion weighting) using acquisitions at a fixed b-value (termed as single-shell) acquisition. This reconstruction has been performed in the spherical harmonics space to better manage varying gradient directions. In this work, we have demonstrated such a reconstruction for b = 3000 s/mm2 and b = 2000 s/mm2 from b = 1000 s/mm2. The proposed Multilevel Hierarchical Spherical Harmonics Coefficients Reconstruction (MHSH) framework takes advantage of contextual information within each slice as well as across the slices by involving Slice Level ReconNet (SLRNet) network and a Volumetric ROI Level ReconNet (VPLRNet) network, respectively. Three-loss functions have been used to optimize network learning, i.e., L1, Adversarial, and Total Variation Loss. Finally, the network is trained and validated on the publicly available HCP data-set with standard qualitative and quantitative performance measures and achieves promising results.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Sustancia Blanca , Algoritmos , Encéfalo/diagnóstico por imagen , Difusión , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Sustancia Blanca/diagnóstico por imagen
5.
ISA Trans ; 112: 74-88, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33303226

RESUMEN

Atangana-Baleanu-Caputo (ABC) fractional differential operator based upon Mittag-Leffler kernel exhibits all the advantages of conventional Riemann-Liouville and Caputo fractional differential operators; in addition, the kernel associated is non-singular. Therefore, this paper puts forward a closed-form analytical formulation for the design of an ABC-based fractional-order FIR filter for various signal processing and filtering applications. The closed-form expression is derived by utilizing backward finite difference method and fractional sample delay interpolation techniques. Furthermore, several design examples are considered to illustrate the effectiveness of the proposed method. From the analytical and simulation studies done, it is observed that the proposed design efficiently approximates the ideal frequency response of ABC-fractional differential operator. Finally, one-dimensional and two-dimensional applications of the proposed method are validated and compared against state-of-the-art methods for electrocardiogram (ECG) R-peak detection as well as for digital image sharpening.

6.
MAGMA ; 31(6): 701-713, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30225801

RESUMEN

OBJECTIVES: We assessed the use of high-resolution ultra-high-field diffusion magnetic resonance imaging (dMRI) to determine neuronal fiber orientation density functions (fODFs) throughout the human brain, including gray matter (GM), white matter (WM), and small intertwined structures in the cerebellopontine region. MATERIALS AND METHODS: We acquired 7-T whole-brain dMRI data of 23 volunteers with 1.4-mm isotropic resolution; fODFs were estimated using constrained spherical deconvolution. RESULTS: High-resolution fODFs enabled a detailed view of the intravoxel distributions of fiber populations in the whole brain. In the brainstem region, the fODF of the extra- and intrapontine parts of the trigeminus could be resolved. Intrapontine trigeminal fiber populations were crossed in a network-like fashion by fiber populations of the surrounding cerebellopontine tracts. In cortical GM, additional evidence was found that in parts of primary somatosensory cortex, fODFs seem to be oriented less perpendicular to the cortical surface than in GM of motor, premotor, and secondary somatosensory cortices. CONCLUSION: With 7-T MRI being introduced into clinical routine, high-resolution dMRI and derived measures such as fODFs can serve to characterize fine-scale anatomic structures as a prerequisite to detecting pathologies in GM and small or intertwined WM tracts.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Sustancia Gris/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Sustancia Blanca/diagnóstico por imagen , Adulto , Mapeo Encefálico/métodos , Tronco Encefálico/diagnóstico por imagen , Ángulo Pontocerebeloso/diagnóstico por imagen , Femenino , Humanos , Inflamación , Masculino , Programas Informáticos , Nervio Trigémino/diagnóstico por imagen , Adulto Joven
7.
Neuroimage Clin ; 17: 518-529, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29201640

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects extensive regions of the central nervous system. In this work, we evaluated the structural connectome of patients with PD, as mapped by diffusion-weighted MRI tractography and a multi-shell, multi-tissue (MSMT) constrained spherical deconvolution (CSD) method to increase the precision of tractography at tissue interfaces. The connectome was mapped with probabilistic MSMT-CSD in 21 patients with PD and in 21 age- and gender-matched controls. Mapping was also performed by deterministic single-shell, single tissue (SSST)-CSD tracking and probabilistic SSST-CSD tracking for comparison. A support vector machine was trained to predict diagnosis based on a linear combination of graph metrics. We showed that probabilistic MSMT-CSD could detect significantly reduced global strength, efficiency, clustering, and small-worldness, and increased global path length in patients with PD relative to healthy controls; by contrast, probabilistic SSST-CSD only detected the difference in global strength and small-worldness. In patients with PD, probabilistic MSMT-CSD also detected a significant reduction in local efficiency and detected clustering in the motor, frontal temporoparietal associative, limbic, basal ganglia, and thalamic areas. The network-based statistic identified a subnetwork of reduced connectivity by MSMT-CSD and probabilistic SSST-CSD in patients with PD, involving key components of the cortico-basal ganglia-thalamocortical network. Finally, probabilistic MSMT-CSD had superior diagnostic accuracy compared with conventional probabilistic SSST-CSD and deterministic SSST-CSD tracking. In conclusion, probabilistic MSMT-CSD detected a greater extent of connectome pathology in patients with PD, including those with cortico-basal ganglia-thalamocortical network disruptions. Connectome analysis based on probabilistic MSMT-CSD may be useful when evaluating the extent of white matter connectivity disruptions in PD.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/patología , Conectoma/métodos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Anciano , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Persona de Mediana Edad , Máquina de Vectores de Soporte
8.
Med Image Anal ; 17(7): 844-57, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23706753

RESUMEN

We have developed the Tractometer: an online evaluation and validation system for tractography processing pipelines. One can now evaluate the results of more than 57,000 fiber tracking outputs using different acquisition settings (b-value, averaging), different local estimation techniques (tensor, q-ball, spherical deconvolution) and different tracking parameters (masking, seeding, maximum curvature, step size). At this stage, the system is solely based on a revised FiberCup analysis, but we hope that the community will get involved and provide us with new phantoms, new algorithms, third party libraries and new geometrical metrics, to name a few. We believe that the new connectivity analysis and tractography characteristics proposed can highlight limits of the algorithms and contribute in solving open questions in fiber tracking: from raw data to connectivity analysis. Overall, we show that (i) averaging improves quality of tractography, (ii) sharp angular ODF profiles helps tractography, (iii) seeding and multi-seeding has a large impact on tractography outputs and must be used with care, and (iv) deterministic tractography produces less invalid tracts which leads to better connectivity results than probabilistic tractography.


Asunto(s)
Encéfalo/citología , Imagen de Difusión Tensora/métodos , Interpretación de Imagen Asistida por Computador/métodos , Internet , Fibras Nerviosas Mielínicas/ultraestructura , Reconocimiento de Normas Patrones Automatizadas/métodos , Programas Informáticos , Algoritmos , Inteligencia Artificial , Humanos , Aumento de la Imagen/métodos , Imagenología Tridimensional/métodos , Sistemas en Línea , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA