RESUMEN
We investigated whether gestational diabetes mellitus (GDM) associated with maternal obesity modifies the placental profile of F4-Neuroprostanes and F2-Isoprostanes, metabolites of non-enzymatic oxidation of docosahexaenoic acid (DHA) and arachidonic acid (AA), respectively. Twenty-five placental samples were divided into lean (n=11), obesity (n=7) and overweight/obesity+GDM (n=7) groups. F4-Neuroprostanes and F2-Isoprostanes were higher in obesity compared to lean controls, but reduced to levels similar to lean women when obesity is further complicated with GDM. Lower content of F2-Isoprostanes suggests adaptive placental responses in GDM attenuating oxidative stress. However, low levels of placental F4-Neuroprostanes may indicate impaired DHA metabolism in GDM, affecting fetal development and offspring health. These results were not related to differences in placental content of DHA, AA and polyunsaturated fatty acids status nor to maternal diet or gestational weight gain. Placental DHA and AA metabolism differs in obesity and GDM, highlighting the importance of investigating the signalling roles of F4-Neuroprostanes and F2-Isoprostanes in the human term placenta.
Asunto(s)
Diabetes Gestacional , Neuroprostanos , Obesidad Materna , Humanos , Femenino , Embarazo , Neuroprostanos/metabolismo , Isoprostanos , Diabetes Gestacional/metabolismo , Placenta/metabolismo , F2-Isoprostanos/metabolismo , Obesidad Materna/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Ácido Araquidónico/metabolismo , Obesidad/metabolismoRESUMEN
OBJECTIVE: To determine the effects of treating obstructive sleep apnea/nocturnal hypoxia on pediatric nonalcoholic fatty liver disease (NAFLD) severity and oxidative stress. STUDY DESIGN: Biopsy proven participants (n = 9) with NAFLD and obstructive sleep apnea/hypoxia were studied before and after treatment with continuous positive airway pressure (CPAP) for sleep disordered breathing, including laboratory testing and markers of oxidative stress, urine F(2)-isoprostanes. RESULTS: Adolescents (age 11.5 ± 1.2 years; body mass index, 29.5 ± 3.8 kg/m2) with significant NAFLD (mean histologic necroinflammation grade, 2.3 ± 0.9; fibrosis stage, 1.4 ± 1.3; NAFLD Activity Score summary, 4.8 ± 1.6) had obstructive sleep apnea/hypoxia by polysomnography. At baseline, they had severe obstructive sleep apnea/hypoxia, elevated aminotransferases, the metabolic syndrome, and significant oxidative stress (high F(2)-isoprostanes). Obstructive sleep apnea/hypoxia was treated with home CPAP for a mean 89 ± 62 days. Although body mass index increased, obstructive sleep apnea/hypoxia severity improved on CPAP and was accompanied by reduced alanine aminotransferase, metabolic syndrome markers, and F(2)-isoprostanes. CONCLUSIONS: This study provides strong evidence that treatment of obstructive sleep apnea/nocturnal hypoxia with CPAP in children with NAFLD may reverse parameters of liver injury and reduce oxidative stress. These data also suggest CPAP as a new therapy to prevent progression of NAFLD in those children with obesity found to have obstructive sleep apnea/nocturnal hypoxia.
Asunto(s)
Presión de las Vías Aéreas Positiva Contínua , Hipoxia/terapia , Enfermedad del Hígado Graso no Alcohólico/terapia , Apnea Obstructiva del Sueño/terapia , Adolescente , Biomarcadores/metabolismo , Índice de Masa Corporal , Niño , Enfermedad Crónica , Estudios de Cohortes , F2-Isoprostanos/orina , Femenino , Humanos , Hipoxia/complicaciones , Masculino , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Estrés Oxidativo , Proyectos Piloto , Índice de Severidad de la Enfermedad , Apnea Obstructiva del Sueño/complicacionesRESUMEN
Background: Ozone exposure could increase lung damage induced by airborne particulate matter. Particulate matter lung toxicity has been attributed to its metallic content. Aim: To evaluate the acute effect of intratracheal administration of copper sulfate (CuSO4) on rat lungs previously damaged by a chronic intermittent ozone exposure. Material and Methods: Two-months-old male Sprague-Dawley rats were exposed to 0.5 ppm ozone four h per day, five days a week, during two months. CuSO4 was intratracheally instilled 20 h after ozone exposure. Controls breathed filtered air or were instilled with 0.9% NaCl or with CuSO4 or were only exposed to ozone. We evaluated lung histopathology. F2 isoprostanes were determined in plasma. Cell count, total proteins, γ glutamyl-transpeptidase (GGT) and alkaline phosphatases (AP) were determined in bronchoalveolar lavage fluid (BALF). Results: Ozone increased total cell count, macrophages, proteins and AP in BALF (p < 0.05), and induced pulmonary neutrophil inflammation. CuSO4 plus air increased plasma F2 isoprostane levels and total cell count, neutrophils and proteins in BALF (p < 0.05). Histopathology showed foamy macrophages. Ozone plus CuSO4 exposed animals showed a neutrophil inflammatory lung response and an increase in total cell count, proteins, GGT and AP in BALF (p < 0.05). Foamy and pigmented alveolar macrophages were detected in all lungs of these animals (p < 0.001). Conclusions: Intratracheal instillation of a single dose of CuSO4 in rats previously subjected to a chronic and intermittent exposure to ozone induces a neutrophil pulmonary inflammatory response and cytoplasmic damage in macrophages.
Asunto(s)
Animales , Masculino , Ratas , Ozono/toxicidad , Neumonía/prevención & control , Sulfato de Cobre/administración & dosificación , Neumonía/inducido químicamente , Neumonía/patología , Factores de Tiempo , Ratas Sprague-Dawley , Modelos Animales , Modelos Animales de Enfermedad , Material Particulado/toxicidad , Pulmón/patologíaRESUMEN
Higher levels of oxidative stress, as measured by F2-isoprostanes, have been associated with chronic diseases such as CVD and some cancers. Improvements in diet and physical activity may help reduce oxidative stress; however, previous studies regarding associations between lifestyle factors and F2-isoprostane concentrations have been inconsistent. The aim of this cross-sectional study was to investigate whether physical activity and intakes of fruits/vegetables, antioxidant nutrients, dietary fat subgroups and alcohol are associated with concentrations of F2-isoprostane and the major F2-isoprostane metabolite. Urinary F2-isoprostane and its metabolite were measured in urine samples collected at enrolment from 912 premenopausal women (aged 35-54 years) participating in the Sister Study. Physical activity, alcohol consumption and dietary intakes were self-reported via questionnaires. With adjustment for potential confounders, the geometric means of F2-isoprostane and its metabolite were calculated according to quartiles of dietary intakes, alcohol consumption and physical activity, and linear regression models were used to evaluate trends. Significant inverse associations were found between F2-isoprostane and/or its metabolite and physical activity, vegetables, fruits, vitamin C, α-carotene, vitamin E, ß-carotene, vitamin A, Se, lutein+zeaxanthin and long-chain n-3 fatty acids. Although trans fats were positively associated with both F2-isoprostane and its metabolite, other dietary fat subgroups including SFA, n-6 fatty acids, n-3 fatty acids, MUFA, PUFA, short-chain n-3 fatty acids, long-chain n-3 fatty acids and total fat were not associated with either F2-isoprostane or its metabolite. Our findings suggest that lower intake of antioxidant nutrients and higher intake of trans fats may be associated with greater oxidative stress among premenopausal women.