Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38998414

RESUMEN

This paper comprehensively summarizes moisture transport, ion transport, and mechanical damage models applied to concrete under sulfate attack and drying-wetting cycles. It highlights the essential aspects and principles of each model, emphasizing their significance in understanding the movement of moisture and ions, as well as the resulting mechanical damage within the concrete during these degradation processes. The paper critically analyzes the assumptions made in each model, shedding light on their limitations and implications for prediction accuracy. Two primary challenges faced by current models under sulfate attack and drying-wetting cycles are identified: the limited consideration of the coupled effects of chemical and physical attacks from sulfate, and the unclear mechanism of the sulfate attacks. Future research directions are proposed, focusing on exploring the transport mechanism of sulfate ions under various driving forces and further clarifying the crystallization process and expansion damage mechanism in concrete pores. Addressing these research directions will advance our understanding of sulfate attack under drying-wetting cycles, leading to improved models and mitigation strategies for enhancing the durability and performance of concrete structures.

2.
Materials (Basel) ; 17(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38998281

RESUMEN

This study aims to investigate the influence of exposure conditions on the behavior of mortar subjected to an external sulfate attack (ESA). Three different exposure conditions (full immersion, semi-immersion, and drying/wetting cycles) were tested on mortar prisms made with Portland cement and two w/c ratios (0.45 and 0.6). To monitor degradation, it was necessary to evaluate variations in length (expansion), mass changes, compressive and tensile strengths, changes in the total porosity measured using water accessible porosity tests, and changes in the macroscopic behavior of the samples. Mercury intrusion porosimetry (MIP) was used to determine the size distribution of the pores. It was demonstrated that mixing mortar with the lower w/c ratio of 0.45 results in improved performance against an ESA. This study also demonstrates that the type of exposure to an ESA has no significant effect on the kinetics of sulfate penetration during the exposure period. However, the sample's surface becomes more cracked when subjected to repeated drying and wetting cycles. For all the considered exposure conditions, expansion occurred in three stages. In stage 1, the reaction product (ettringite) precipitated in large voids, without causing significant expansion (the expansion remained low and stable). During the second stage, the reaction products generated growing internal stress. The final stage of expansion resulted in microcracks, strength losses, and the formation of macropores, which ultimately lead to material failure. The MIP results indicate that major changes in the porosity and pore volume distribution occur at the surface layer in regard to the gel and capillary pore ranges.

3.
Materials (Basel) ; 16(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37895665

RESUMEN

In France, the annual volume of dredged sediments is significantly increasing, which has become a real environmental problem. Nevertheless, these sediments can be used beneficially as supplementary cementing material. On the other hand, external sulfate attack is one of the most aggressive causes of deterioration that affects the durability of concrete structures. This study focused on the valorization of river-dredged sediments from Noyelles-Sous-Lens (Hauts-de-France) as a mineral addition in substitution of Portland cement, and it studied their impacts on the mechanical behavior and durability of reinforced mortars. X-ray diffraction (XRD) analysis indicated the presence of clay minerals in the raw sediment. In order to activate this clay fraction, flash calcination was applied at a temperature of 750 °C. In addition, four mixed mortars were formulated by mixing a Portland cement (CEM I 52.5 N) and the calcined sediments as a partial substitute for cement with proportions of 0%, 15%, 20%, and 30%, then stored in water tanks at room temperature (20 ± 2 °C) for 90 days in order to immerse them in a tank containing a 5% MgSO4 solution and to track the evolution of their corrosion potential as well as their mass variations every 20 days for a period of 360 days. The following additional tests were carried out on these mortars: tests of resistance to compression and flexion and to porosity by mercury intrusion. The results obtained from the majority of these tests showed that the mortar containing 15% calcined sediments is as effective and durable as the reference mortar itself. The main conclusion we can draw from these results is that the presence of these calcined sediments improves the overall behavior of the mortar.

4.
Materials (Basel) ; 16(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37687705

RESUMEN

Among the most significant causes of concrete degradation is ESA (external sulfate attack). The majority of studies are currently conducted on samples that have been saturated and matured. Concrete structures, however, are exposed to the environment once the formwork has been removed. The purpose of this study is to determine what effects early exposure to external sulfates may have on degradation mechanisms. Microstructure, physical, and chemical behavior are monitored using a variety of experimental techniques, including NMR (27Al and 29Si), ICP, XRD, MIP, and SEM. Based on expansion measurements, mature Portland cement paste, unlike the early-age case, degraded rapidly due to the presence of compressed ettringite and gypsum, highlighted by SEM analysis. During ESA, sulfate ions diffuse through the cement matrix and are bound by chemical agents. Chemical analyses indicate that the chemical mechanism varies with the duration of curing. At an early age, external sulfates and aluminates are the most important reagents. For matured cases, these reagents include external sulfates, calcium derived from CH dissolution, and aluminates derived from the total dissolution of AFm.

5.
Materials (Basel) ; 16(16)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37629833

RESUMEN

As one of the most harmful ions in the environment, sulfate could cause the deformation and material deterioration of concrete structures. Models that accurately describe the whole chemo-transport-mechanical process of an external sulfate attack (ESA) require substantial computational work and contain complex parameters. This paper proposes a semi-empirical model based on micromechanical theory for predicting the compressive strength degradation of concrete under an ESA with basic properties of the undamaged material and limited computational effort. A simplified exponential function is developed for the total amount of the invading sulfate, and a second-order equation governs the chemical reaction. A micromechanical model is implemented to solve the mechanical response caused by an ESA. The model is able to describe the compressive stress-strain behavior of concrete subject to uniaxial loading in good agreement with the experimental results. For the case of a sulfate-attacked material, the relationship between compressive strength and expansion is calculated and validated by the test results. Finally, the deterioration process of compressive strength is predicted with the test results of deformation.

6.
Materials (Basel) ; 15(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36363146

RESUMEN

External sulfate attack (ESA) of cementitious materials has been studied worldwide for a very long time. This physical/chemical interaction between sulfate ions and the cement hardened elements affects the long-term durability of concrete structures: cracking, spalling or strength loss of concrete structures. To study these damaging phenomena, some standardized and non-standardized accelerated aging tests are used to evaluate the performance of cements in sulfate-rich environments. However, these existing methods do not adequately predict field performance and some shortcomings or deficiencies still exist: change of degradation mechanisms when using high concentrations of sulfate, variable boundary conditions and small specimens compared to the real concrete structures. In this work, a critical review of some existing test methods and foreign national standard methods for ESA are presented, analyzed, and discussed. This results in some proposed recommendations for improving these methods to meet the needs of structure managers.

7.
Materials (Basel) ; 15(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36013888

RESUMEN

Early degradation of cast-in-situ concrete induced by multiple internal-external sulfate combined attacks significantly affects the development of concrete strength. An experimental study regarding the effects of Ca2+ on the early degradation of cast-in-situ mortars subjected to internal-external sulfate and magnesium combined attacks is investigated in this paper. In particular, a specific method for accurately simulating the degradation of cast-in-situ structures was proposed in this experiment. Physical properties (including weight, size changes, and porosity), mechanical properties (including flexural strength and compressive strength), sulfate concentration, and microstructural properties were monitored during 28 days of immersion. The results show that an internal sulfate and magnesium combined attack (ISA-IMA) obviously retards the development of early strength and accelerates the degradation induced by external sulfate attack (ESA). The diffusion path of sulfate ions from outside is blocked by flake-shaped magnesium hydrates, delaying the penetration of external sulfate attacks. However, it is far from neutralizing the strength loss induced by an internal magnesium attack (IMA) at an early age. Premixed excessive Ca2+ would improve the strength development and pore structure of concrete or mortar, enhancing durability against corrosive conditions.

8.
Materials (Basel) ; 14(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34947305

RESUMEN

Sulfate attack is one of the crucial causes for the structural performance degradation of reinforced concrete infrastructures. Herein, a comprehensive multiphase mesoscopic numerical model is proposed to systematically study the chemical reaction-diffusion-mechanical mechanism of concrete under sulfate attack. Unlike existing models, the leaching of solid-phase calcium and the dissolution of solid-phase aluminate are modeled simultaneously in the developed model by introducing dissolution equilibrium equations. Additionally, a calibrated time-dependent model of sulfate concentration is suggested as the boundary condition. The reliability of the proposed model is verified by the third-party experiments from multiple perspectives. Further investigations reveal that the sulfate attack ability is underestimated if the solid-phase calcium leaching is ignored, and the concrete expansion rate is overestimated if the dissolution of solid-phase aluminate is not modeled in the simulation. More importantly, the sulfate attack ability and the concrete expansion rate is overestimated if the time-dependent boundary of sulfate concentration is not taken into consideration. Besides, the sulfate ion diffusion trajectories validate the promoting effect of interface transition zone on the sulfate ion diffusion. The research of this paper provides a theoretical support for the durability design of concrete under sulfate attack.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA