Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 25(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39273198

RESUMEN

Drought stress (DS) is one of the abiotic stresses that plants encounter commonly in nature, which affects their life, reduces agricultural output, and prevents crops from growing in certain areas. To enhance plant tolerance against DS, abundant exogenous substances (ESs) have been attempted and proven to be effective in helping plants relieve DS. Understanding the effect of each ES on alleviation of plant DS and mechanisms involved in the DS relieving process has become a research focus and hotspot that has drawn much attention in the field of botany, agronomy, and ecology. With an extensive and comprehensive review and summary of hundred publications, this paper groups various ESs based on their individual effects on alleviating plant/crop DS with details of the underlying mechanisms involved in the DS-relieving process of: (1) synthesizing more osmotic adjustment substances; (2) improving antioxidant pathways; (3) promoting photosynthesis; (4) improving plant nutritional status; and (5) regulating phytohormones. Moreover, a detailed discussion and perspective are given in terms of how to meet the challenges imposed by erratic and severe droughts in the agrosystem through using promising and effective ESs in the right way and at the right time.


Asunto(s)
Sequías , Fotosíntesis , Estrés Fisiológico , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Antioxidantes/metabolismo , Productos Agrícolas , Fenómenos Fisiológicos de las Plantas
2.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38999986

RESUMEN

Higher-fungi xylotrophic basidiomycetes are known to be the reservoirs of bioactive metabolites. Currently, a great deal of attention has been paid to the exploitation of mycelial fungi products as an innovative alternative in crop protection. No data exist on the mechanisms behind the interaction between xylotrophic mushrooms' glycopolymeric substances and plants. In this study, the effects of basidiomycete metabolites on the morphophysiological and biochemical variables of wheat plants have been explored. Wheat (Triticum aestivum L. cv. Saratovskaya 29) seedlings were treated with extracellular polysaccharides (EPSs) isolated from the submerged cultures of twenty basidiomycete strains assigned to 13 species and 8 genera. The EPS solutions at final concentrations of 15, 40, and 80 mg/L were applied to wheat seedlings followed by their growth for 10 days. In the plant samples, the biomass, length of coleoptile, shoot and root, root number, rate of lipid peroxidation by malondialdehyde concentration, content of hydrogen peroxide, and total phenols were measured. The peroxidase and superoxide dismutase activity were defined. Most of the EPS preparations improved biomass yields, as well as the morphological parameters examined. EPS application enhanced the activities of antioxidant enzymes and decreased oxidative damage to lipids. Judging by its overall effect on the growth indices and redox system of wheat plants, an EPS concentration of 40 mg/L has been shown to be the most beneficial compared to other concentrations. This study proves that novel bioformulations based on mushroom EPSs can be developed and are effective for wheat growth and antioxidative response. Phytostimulating properties found for EPSs give grounds to consider extracellular metabolites produced in the xylotrophic basidiomycete cultures as an active component capable of inducing plant responses to stress.


Asunto(s)
Antioxidantes , Basidiomycota , Polisacáridos Fúngicos , Triticum , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Triticum/microbiología , Basidiomycota/metabolismo , Antioxidantes/metabolismo , Polisacáridos Fúngicos/metabolismo , Polisacáridos/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Superóxido Dismutasa/metabolismo , Peroxidación de Lípido , Biomasa , Malondialdehído/metabolismo , Estrés Oxidativo
3.
Plants (Basel) ; 13(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39065517

RESUMEN

In China, saline-alkali lands constitute 5.01% of the total land area, having a significant impact on both domestic and international food production. Rapeseed (Brassica napus L.), as one of the most important oilseed crops in China, has garnered considerable attention due to its potential adaptability to saline conditions. Breeding and improving salt-tolerant varieties is a key strategy for the effective utilization of saline lands. Hence, it is important to conduct comprehensive research into the adaptability and salt tolerance mechanisms of Brassica napus in saline environments as well as to breed novel salt-tolerant varieties. This review summarizes the molecular mechanism of salt tolerance, physiological and phenotypic indexes, research strategies for the screening of salt-tolerant germplasm resources, and genetic engineering tools for salt stress in Brassica napus. It also introduces various agronomic strategies for applying exogenous substances to alleviate salt stress and provide technological tools and research directions for future research on salt tolerance in Brassica napus.

4.
Chemosphere ; 344: 140307, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37769918

RESUMEN

As chromium (Cr) in ecosystems affects human health through food chain exposure, phytoremediation is an environmentally friendly and efficient way to reduce chromium pollution in the environment. Here, we review the mechanism of absorption, translocation, storage, detoxification, and regulation of Cr in plants. The Cr(VI) form is more soluble, mobile, and toxic than Cr(III), reflecting how various valence states of Cr affect environmental risk characteristics, physicochemical properties, toxicity, and plant uptake. Plant root's response to Cr exposure leads to reactive oxygen species (ROS) generation and apoptosis. Cell wall immobilization, vacuole compartmentation, interaction of defense proteins and organic ligand with Cr, and removal of reactive oxygen species by antioxidants continue plant life. In addition, the combined application of microorganisms, genetic engineering, and the addition of organic acids, nanoparticles, fertilization, soil amendments, and other metals could accelerate the phytoremediation process. This review provides efficient methods to investigate and understand the complex changes of Cr metabolism in plants. Preferably, fast-growing, abundantly available biomass species should be modified to mitigate Cr pollution in the environment as these green and efficient remediation technologies are necessary for the protection of soil and water ecology.


Asunto(s)
Cromo , Contaminantes del Suelo , Humanos , Cromo/química , Biodegradación Ambiental , Especies Reactivas de Oxígeno/metabolismo , Ecosistema , Contaminantes del Suelo/química , Suelo/química , Plantas/metabolismo
5.
Plants (Basel) ; 12(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37570938

RESUMEN

The use of pesticides for pest control during the storage period of legume seeds is a common practice. This study evaluated the disruptive effects on pea seed germination and the repair effects of selenium nanoparticles (SeNPs) and lentinans (LNTs) This study examined the biomass, nutrient content, antioxidant indicators, plant hormones, phenolic compounds, and metabolites associated with the lignin biosynthesis pathway in pea sprouts. The application of acetamiprid resulted in a significant decrease in yield, amino-acid content, and phenolic compound content of pea sprouts, along with observed lignin deposition. Moreover, acetamiprid residue exerted a notable level of stress on pea sprouts, as evidenced by changes in antioxidant indicators and plant hormones. During pea seed germination, separate applications of 5 mg/L SeNPs or 20 mg/L LNTs partially alleviated the negative effects induced by acetamiprid. When used in combination, these treatments restored most of the aforementioned indicators to levels comparable to the control group. Correlation analysis suggested that the regulation of lignin content in pea sprouts may involve lignin monomer levels, reactive oxygen species (ROS) metabolism, and plant hormone signaling mediation. This study provides insight into the adverse impact of acetamiprid residues on pea sprout quality and highlights the reparative mechanism of SeNPs and LNTs, offering a quality assurance method for microgreens, particularly pea sprouts. Future studies can validate the findings of this study from the perspective of gene expression.

6.
Sci Total Environ ; 897: 165397, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37429478

RESUMEN

Accumulation and enrichment of excessive heavy metals due to industrialization and modernization not only devastate our ecosystem, but also pose a threat to the global vegetation, especially crops. To improve plant resilience against heavy metal stress (HMS), numerous exogenous substances (ESs) have been tried as the alleviating agents. After a careful and thorough review of over 150 recently published literature, 93 reported ESs and their corresponding effects on alleviating HMS, we propose that 7 underlying mechanisms of ESs be categorized in plants for: 1) improving the capacity of the antioxidant system, 2) inducing the synthesis of osmoregulatory substances, 3) enhancing the photochemical system, 4) detouring the accumulation and migration of heavy metals, 5) regulating the secretion of endogenous hormones, 6) modulating gene expressions, and 7) participating in microbe-involved regulations. Recent research advances strongly indicate that ESs have proven to be effective in mitigating a potential negative impact of HMS on crops and other plants, but not enough to ultimately solve the devastating problem associated with excessive heavy metals. Therefore, much more research should be focused and carried out to eliminate HMS for the sustainable agriculture and clean environmental through minimizing towards prohibiting heavy metals from entering our ecosystem, phytodetoxicating polluted landscapes, retrieving heavy metals from detoxicating plants or crop, breeding for more tolerant cultivars for both high yield and tolerance against HMS, and seeking synergetic effect of multiply ESs on HMS alleviation in our feature researches.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Ecosistema , Contaminantes del Suelo/análisis , Fitomejoramiento , Metales Pesados/análisis , Productos Agrícolas/metabolismo , Suelo/química
7.
Reprod Sci ; 30(2): 350-360, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35384637

RESUMEN

New insights have been thrown for understanding the significant role of estrogen on various systems of humans. Increasing evidences have determined the significant roles of estrogen in female reproductive system. So, the normal synthesis and secretion of estrogen play important roles in maintaining the function of tissues and organs. The ovaries are the main synthetic organs of estrogen. In this review, we summarized the current knowledge of the estrogen synthesis in the ovaries. A series of factors and signaling pathways that regulate the synthesis of estrogen are expounded in detail. Understanding the regulating factors and potential mechanism related to estrogen synthesis will be beneficial for understanding estrogen disorder related diseases and may provide novel therapeutic targets.


Asunto(s)
Estrógenos , Ovario , Femenino , Humanos , Ovario/metabolismo , Estrógenos/metabolismo , Transducción de Señal , Aromatasa/metabolismo
8.
Antioxidants (Basel) ; 11(11)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36358478

RESUMEN

Reactive oxygen species (ROS) are signaling molecules that regulate many biological processes in plants. However, excess ROS induced by biotic and abiotic stresses can destroy biological macromolecules and cause oxidative damage to plants. As the global environment continues to deteriorate, plants inevitably experience abiotic stress. Therefore, in-depth exploration of ROS metabolism and an improved understanding of its regulatory mechanisms are of great importance for regulating cultivated plant growth and developing cultivars that are resilient to abiotic stresses. This review presents current research on the generation and scavenging of ROS in plants and summarizes recent progress in elucidating transcription factor-mediated regulation of ROS metabolism. Most importantly, the effects of applying exogenous substances on ROS metabolism and the potential regulatory mechanisms at play under abiotic stress are summarized. Given the important role of ROS in plants and other organisms, our findings provide insights for optimizing cultivation patterns and for improving plant stress tolerance and growth regulation.

9.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-906340

RESUMEN

Objective:To explore the effects of diverse exogenous substances at different concentrations on the growth of<italic> Polyporus umbellatus</italic> mycelium and polysaccharide content and screen out the optimal growth condition for <italic>P. umbellatus</italic> mycelium, so as to provide a reference for its large-scale artificial cultivation. Method:<italic>P. umbellatus</italic> mycelium was cultured in media containing different exogenous substances using the method for fungal culturing in plate. The growth rate of the mycelium was judged by the colony diameter and the polysaccharide content was determined by the phenol-sulfuric acid method. Result:The high-dose cyclic adenosine monophosphate, 6-benzyl aminopurine (6-BA), gibberellic acid (GA), 2,4-dichlorophenoxyacetic acid (2,4-D), vitamin (V) B<sub>1</sub>, VB<sub>3</sub>, VB<sub>6</sub>, VB<sub>9</sub>, and VB<sub>12</sub> all promoted the growth of <italic>P. umbellatus</italic> mycelium and elevated polysaccharides content. By contrast, indole acetic acid (IAA), VC, and VB<sub>2</sub> inhibited its growth, with the most obvious inhibition detected in the high-dose VC group. IAA and VB<sub>2</sub> both reduced the polysaccharide content, whereas the high-dose VC significantly increased the polysaccharide content. Cyclic adenosine monophosphate, 6-BA, GA, 2,4-D, VB<sub>1</sub>, VB<sub>3</sub>, VB<sub>6</sub>, VB<sub>9</sub>, and VB<sub>12</sub> at the concentrations of 2 mmol·L<sup>-1</sup>, 6 mg·L<sup>-1</sup>, 15 mg·L<sup>-1</sup>, 2 mg·L<sup>-1</sup>, 4 mg·L<sup>-1</sup>, 2 mg·L<sup>-1</sup>, 4 mg·L<sup>-1</sup>, 6 mg·L<sup>-1</sup>, and 10 mg·L<sup>-1</sup>, respectively, contributed to the growth of <italic>P. umbellatus</italic> mycelium<italic> </italic>and polysaccharide accumulation. Conclusion:The growth of <italic>P. umbellatus </italic>mycelium and polysaccharide accumulation can be regulated by adding exogenous substances to the culture medium.

10.
Bioresour Technol ; 318: 124075, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32920337

RESUMEN

The aim of thisstudy was to explore the effects of malonic acid (MA), manganese dioxide (MnO2), malonic acid combined with manganese dioxide (MA + MnO2) additionon reducing CO2 emission and promoting humic substance (HS) formation during composting. The result showed that the addition of MA and MnO2 were an efficient way to reduce CO2 emission. Meanwhile, the CO2 emissions in the MA + MnO2 treatment was 36.8% less than that of the CK, and the amount of humic acid (HA) produced in the MnO2 treatment was 38.7% higher than that of the CK. Structural equation models demonstrated that the addition of exogenoussubstance promoted the conversion of amino acids and reducing sugars to HA. The addition of exogenous substances was the main reason for influencing the concentration of HA. In general, this research provided theoretical supports for the addition of exogenous substances to promote HA formation during composting.


Asunto(s)
Compostaje , Dióxido de Carbono , Sustancias Húmicas , Malonatos , Compuestos de Manganeso , Óxidos , Suelo
11.
Linacre Q ; 87(3): 254-258, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32699434

RESUMEN

The increasingly widespread legalization of recreational marijuana should raise concerns regarding the societal and medical impact of its use. The relative cultural acceptance for its use should be counterbalanced with an honest and scientific review of the adverse impacts. This article provides a synopsis of recent studies that point to significant concerns from medical and psychiatric viewpoints. SUMMARY: With the increasing number of states that have legalized the use of recreational marijuana, concerns regarding its negative effects are necessary. There is growing scientific evidence that the use of marijuana for recreational purposes has a wide variety of negative health effects, both physical and psychiatric.

12.
Bioprocess Biosyst Eng ; 42(7): 1081-1098, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30887101

RESUMEN

Tacrolimus has been widely used as a powerful novel immunosuppressant. The objective of this study was to improve the production of tacrolimus by engineering the target genes of important primary and secondary metabolic pathways and feeding exogenous precursors. Based on the metabonomics analysis, the shikimic acid pathway is an important primary metabolic pathway for the producing tacrolimus. Combined overexpression of shikimate kinase and dehydroquinic acid synthetase genes led to a 33.1% enhancement of tacrolimus production compared to parent strain. To predict the most efficient targets in secondary metabolic pathways for improving the production of tacrolimus, a genome-scale dynamic metabolic network model was used. A knockout of the D-lactate dehydrogenase gene, combined with the overexpression of tryptophane synthase and aspartate 1-decarboxylase genes, led to a 29.8% enhancement of tacrolimus production compared to the parent strain. Finally, we investigated the impact of the genetic manipulations on transcription levels, cell growth, cell morphology and production of tacrolimus by qRT-PCR and scanning electron microscopy to reveal the relationship between the growth of strains, the effects of engineering and fermentation. As the efficient synthesis of tacrolimus requires a rich supply of external substrates, the efficiency of the metabolic pathways that convert these substances is extremely important. The combined addition of three external substrates such as shikimic acid, alanine and the n-dodecane increased tacrolimus production by 49.5%. The insights obtained in this study will help further elucidate the mechanisms by which the identified target genes promote the activity of important primary and secondary metabolic pathways for tacrolimus biosynthesis and provide a new feeding strategy to improve tacrolimus production.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Ingeniería Metabólica , Streptomyces , Tacrolimus/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA