Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
1.
Int Immunopharmacol ; 142(Pt A): 113103, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243554

RESUMEN

No approved effective therapy for non-alcoholic steatohepatitis (NASH) is currently available. Trichinella spiralis (T. spiralis) infection and their products have positive impact on several metabolic diseases. Considering, we firstly investigated the effects of the T. spiralis-derived Excretory-Secretory antigens (ESA) on high fat diet (HFD)-induced NASH mouse models. To further elucidate the mechanism of action, HepG2 cells were incubated with palmitic acid (PA) to construct NASH-like cell model, and then the culture medium supernatant collected from ESA-treated macrophages was applied to intervene the cell model in vitro. In NASH mouse models, ESA significantly alleviated hepatic steatosis and hepatic inflammation, as reflected by reducing pro-inflammatory cytokines and inactivating TLR4/MYD88/NF-κB pathway and NLRP3 inflammasome. Meanwhile, the HFD-induced oxidative stress was restored by ESA through lessening the level of MDA, increasing the activity of T-SOD and enhancing Nrf2 signaling-related proteins, including p-Nrf2, NQO1, HO-1, GPX4, and p-AMPK. Notably, ESA preferentially promoted macrophages polarization toward M2 anti-inflammatory phenotype in vivo and vitro. Moreover, in vitro, intervention of PA-treated HepG2 cells with medium supernatant of ESA-treated macrophages attenuated lipid accumulation, inflammation, as well as oxidative stress. In conclusion, T. spiralis-derived ESA may serve as a novel promising candidate for the treatment of NASH via its properties of driving macrophage anti-inflammatory activity.

2.
Int J Parasitol Drugs Drug Resist ; 26: 100560, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39146602

RESUMEN

Autophagy is a vital cellular process responsible for digesting various cytoplasmic organelles. This process plays a crucial role in maintaining cell survival and homeostasis, especially under conditions that cause nutrient deficiency, cellular damage, and oxidative stress. Neuroangiostrongyliasis is an infection caused by the parasitic nematode Angiostrongylus cantonensis and is considered as an emerging disease in many parts of the world. However, effective therapeutic strategies for neuroangiostrongyliasis still need to be further developed. In this study, we investigated the effects of benzaldehyde treatment on autophagy and sonic hedgehog (Shh) signaling in A. cantonensis-infected mice and its mechanisms. First, we found autophagosome generation in the central nervous system after A. cantonensis infection. Next, benzaldehyde combined with albendazole treatment reduced eosinophilic meningitis and upregulated the expression of Shh signaling- and autophagy-related molecules in A. cantonensis-infected mouse brains. In vitro experiments demonstrated that benzaldehyde could induce autophagy via the Shh signaling pathway in A. cantonensis excretory-secretory products (ESPs)-treated mouse astrocytes. Finally, benzaldehyde treatment also decreased lipid droplet accumulation and increased cholesterol production by activating the Shh pathway after ESPs treatment. In conclusion, these findings suggested that benzaldehyde treatment could alleviate brain damage by stimulating autophagy generation through the Shh signaling pathway.

3.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000473

RESUMEN

Nematodes of the genus Trichinella are important pathogens of humans and animals. This study aimed to enhance the genomic and transcriptomic resources for T. pseudospiralis (non-encapsulated phenotype) and T. spiralis (encapsulated phenotype) and to explore transcriptional profiles. First, we improved the assemblies of the genomes of T. pseudospiralis (code ISS13) and T. spiralis (code ISS534), achieving genome sizes of 56.6 Mb (320 scaffolds, and an N50 of 1.02 Mb) and 63.5 Mb (568 scaffolds, and an N50 value of 0.44 Mb), respectively. Then, for each species, we produced RNA sequence data for three key developmental stages (first-stage muscle larvae [L1s], adults, and newborn larvae [NBLs]; three replicates for each stage), analysed differential transcription between stages, and explored enriched pathways and processes between species. Stage-specific upregulation was linked to cellular processes, metabolism, and host-parasite interactions, and pathway enrichment analysis showed distinctive biological processes and cellular localisations between species. Indeed, the secreted molecules calmodulin, calreticulin, and calsyntenin-with possible roles in modulating host immune responses and facilitating parasite survival-were unique to T. pseudospiralis and not detected in T. spiralis. These insights into the molecular mechanisms of Trichinella-host interactions might offer possible avenues for developing new interventions against trichinellosis.


Asunto(s)
Transcriptoma , Trichinella spiralis , Trichinella , Animales , Trichinella spiralis/genética , Trichinella/genética , Genómica/métodos , Genoma de los Helmintos , Perfilación de la Expresión Génica/métodos , Larva/genética , Larva/metabolismo , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Especificidad de la Especie , Interacciones Huésped-Parásitos/genética , Triquinelosis/parasitología , Triquinelosis/genética
4.
J Helminthol ; 98: e41, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38785193

RESUMEN

Background: Inflammatory bowel disease is an autoimmune disease that affects the gut. T. spiralis larvae (E/S Ags) loaded on calcium-benzene-1,3,5-tricarboxylate metal-organic frameworks (Ca-BTC MOFs) were tested to determine whether they might prevent or cure acetic acid-induced murine colitis. Methods: T. spiralis larvae E/S Ags/Ca-BTC MOFs were used in prophylactic and therapeutic groups to either precede or follow the development of murine colitis. On the seventh day after colitis, mice were slaughtered. The effect of our target antigens on the progress of the colitis was evaluated using a variety of measures, including survival rate, disease activity index, colon weight/bodyweight, colon weight/length) ratios, and ratings for macroscopic and microscopic colon damage. The levels of inflammatory cytokines (interferon-γ and interleukin-4), oxidative stress marker malondialdehyde, and glutathione peroxidase in serum samples were evaluated. Foxp3 T-reg expression was carried out in colonic and splenic tissues. Results: T. spiralis larvae E/S Ags/Ca-BTC MOFs were the most effective in alleviating severe inflammation in murine colitis. The survival rate, disease activity index score, colon weight/length and colon weight/bodyweight ratios, and gross and microscopic colon damage scores have all considerably improved. A large decrease in proinflammatory cytokine (interferon-γ) and oxidative stress marker (malondialdehyde) expression and a significant increase in interleukin-4 and glutathione peroxidase expression were obtained. The expression of Foxp3+ Treg cells was elevated in colonic and splenic tissues. Conclusion: T. spiralis larvae E/S Ags/Ca-BTC MOFs had the highest anti-inflammatory, antioxidant, and cytoprotective capabilities against murine colitis and might be used to develop new preventative and treatment strategies.


Asunto(s)
Colitis , Citocinas , Larva , Estructuras Metalorgánicas , Trichinella spiralis , Animales , Ratones , Estructuras Metalorgánicas/química , Colitis/prevención & control , Colitis/inducido químicamente , Colitis/parasitología , Trichinella spiralis/inmunología , Antígenos Helmínticos/inmunología , Modelos Animales de Enfermedad , Colon/parasitología , Colon/patología , Ratones Endogámicos BALB C , Femenino , Masculino
5.
Front Immunol ; 15: 1332933, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576624

RESUMEN

Introduction: Worldwide, breast cancer is the most important cancer in incidence and prevalence in women. Different risk factors interact to increase the probability of developing it. Biological agents such as helminth parasites, particularly their excretory/secretory antigens, may play a significant role in tumor development. Helminths and their antigens have been recognized as inducers or promoters of cancer due to their ability to regulate the host's immune response. Previously in our laboratory, we demonstrated that chronic infection by Toxocara canis increases the size of mammary tumors, affecting the systemic response to the parasite. However, the parasite does not invade the tumor, and we decided to study if the excretion/secretion of antigens from Toxocara canis (EST) can affect the progression of mammary tumors or the pathophysiology of cancer which is metastasis. Thus, this study aimed to determine whether excretion/secretion T. canis antigens, injected directly into the tumor, affect tumor growth and metastasis. Methods: We evaluated these parameters through the monitoring of the intra-tumoral immune response. Results: Mice injected intratumorally with EST did not show changes in the size and weight of the tumors; although the tumors showed an increased microvasculature, they did develop increased micro and macro-metastasis in the lung. The analysis of the immune tumor microenvironment revealed that EST antigens did not modulate the proportion of immune cells in the tumor, spleen, or peripheral lymph nodes. Macroscopic and microscopic analyses of the lungs showed increased metastasis in the EST-treated animals compared to controls, accompanied by an increase in VEGF systemic levels. Discussion: Thus, these findings showed that intra-tumoral injection of T. canis EST antigens promote lung metastasis through modulation of the tumor immune microenvironment.


Asunto(s)
Neoplasias de la Mama , Parásitos , Toxocara canis , Toxocariasis , Humanos , Femenino , Animales , Ratones , Antígenos Helmínticos , Inyecciones Intralesiones , Pulmón , Microambiente Tumoral
6.
Exp Parasitol ; 261: 108765, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679126

RESUMEN

Toxocara is a genus of nematodes, which infects a variety of hosts, principally dogs and cats, with potential zoonotic risks to humans. Toxocara spp. larvae are capable of migrating throughout the host tissues, eliciting eosinophilic and granulomatous reactions, while surviving for extended periods of time, unchanged, in the host. It is postulated that larvae are capable of altering the host's immune response through the release of excretory-secretory products, containing both proteins and extracellular vesicles (EVs). The study of EVs has increased exponentially in recent years, largely due to their potential use as a diagnostic tool, and in molecular therapy. To this end, there have been multiple isolation methods described for the study of EVs. Here, we use nanoparticle tracking to compare the yield, size distribution, and % labelling of EV samples acquired through various reported methods, from larval cultures of Toxocara canis and T. cati containing Toxocara excretory-secretory products (TES). The methods tested include ultracentrifugation, polymer precipitation, magnetic immunoprecipitation, size exclusion chromatography, and ultrafiltration. Based on these findings, ultrafiltration produces the best results in terms of yield, expected particle size, and % labelling of sample. Transmission electron microscopy confirmed the presence of EVs with characteristic cup-shaped morphology. These findings can serve as a guide for those investigating EVs, particularly those released from multicellular organisms, such as helminths, for which few comparative analyses have been performed.


Asunto(s)
Cromatografía en Gel , Exosomas , Vesículas Extracelulares , Microscopía Electrónica de Transmisión , Toxocara canis , Toxocara , Ultracentrifugación , Animales , Toxocara/aislamiento & purificación , Toxocara/metabolismo , Toxocara/química , Toxocara canis/química , Exosomas/química , Exosomas/ultraestructura , Exosomas/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/ultraestructura , Vesículas Extracelulares/metabolismo , Perros , Larva , Inmunoprecipitación , Toxocariasis/parasitología , Gatos , Nanopartículas/química , Tamaño de la Partícula , Proteínas del Helminto/análisis , Proteínas del Helminto/metabolismo , Proteínas del Helminto/química , Proteínas del Helminto/aislamiento & purificación
7.
Parasit Vectors ; 17(1): 151, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519993

RESUMEN

ABSTRACT: BACKGROUND: Clonorchis sinensis infection is one of the risk factors that provokes chronic inflammation, epithelial hyperplasia, periductal fibrosis and even cholangiocarcinoma (CCA). Disrupted or aberrant intercellular communication among liver-constituting cells leads to pathological states that cause various hepatic diseases. This study was designed to investigate the pathological changes caused by C. sinensis excretory-secretory products (ESPs) in non-cancerous human cell lines (cholangiocytes [H69 cell line] and human hepatic stellate cells [LX2 cell line]) and their intercellular crosstalk, as well the pathological changes in infected mouse liver tissues. METHODS: The cells were treated with ESPs, following which transforming growth factor beta 1 (TGF-ß1) and interleukin-6 (IL-6) secretion levels and epithelial-mesenchymal transition (EMT)- and fibrosis-related protein expression were measured. The ESP-mediated cellular motility (migration/invasion) between two cells was assessed using the Transwell and three-dimensional microfluidic assay models. The livers of C. sinensis-infected mice were stained using EMT and fibrotic marker proteins. RESULTS: Treatment of cells with ESPs increased TGF-ß1 and IL-6 secretion and the expression of EMT- and fibrosis-related proteins. The ESP-mediated mutual cell interaction further affected the cytokine secretion and protein expression levels and promoted cellular motility. N-cadherin overexpression and collagen fiber deposition were observed in the livers of C. sinensis-infected mice. CONCLUSIONS: These findings suggest that EMT and biliary fibrosis occur through intercellular communication between cholangiocytes and hepatic stellate cells during C. sinensis infection, promoting malignant transformation and advanced hepatobiliary abnormalities.


Asunto(s)
Neoplasias de los Conductos Biliares , Clonorquiasis , Clonorchis sinensis , Humanos , Animales , Ratones , Clonorquiasis/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Clonorchis sinensis/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Células Estrelladas Hepáticas/metabolismo , Fibrosis , Conductos Biliares Intrahepáticos , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Transición Epitelial-Mesenquimal
8.
Parasite Immunol ; 46(1): e13019, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38275199

RESUMEN

The immunomodulatory potential of the excretory-secretory (E/S) proteins of the helminths has been shown in previous investigations. This study evaluated the effects of the recombinants and excretory-secretory proteins of the Fasciola hepatica on induced colitis in Balb/c mice. The F. hepatica Recombinant proteins, Cathepsin L1 and Peroxiredoxin, and E/S proteins were intraperitoneally injected into the three mice groups as the case groups, while the control groups received PBS. Colitis was induced in mice by intraluminal administration of the 2, 4, 6-Trinitrobenzenesulfonic acid solution (TNBS). After 8 h, the case groups received the second dosage of the treatments, and it was repeated 24 h later. The immunological, pathological, and macroscopic changes were evaluated 3 days after colitis induction. The macroscopic evaluation revealed significantly lower inflammatory scores in the mice treated with recombinant Peroxiredoxin (rPRX) and recombinant Cathepsin L1 (rCL1). Despite the macroscopic observation, the pathological finding was insignificant between the groups. IFN-γ secretion was significantly lower in splenocytes of the groups that received rPRX, rCL1, and E/S than the controls. IL-10 showed significantly higher levels in groups treated with rPRX and rCL1 than controls, whereas the level of IL-4 was not statistically significant. Excretory-secretory proteins of the F. hepatica showed immunomodulatory potency and the main effects observed in this study were through the reduction of inflammatory cytokine and inflammation manifestation as well as induction of anti-inflammatory cytokines.


Asunto(s)
Colitis , Enfermedad de Crohn , Fasciola hepatica , Fascioliasis , Animales , Ratones , Fasciola hepatica/genética , Fascioliasis/parasitología , Peroxirredoxinas/genética , Proteínas Recombinantes/genética
9.
Parasit Vectors ; 17(1): 17, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38217036

RESUMEN

BACKGROUND: Components of excretory/secretory products (ESPs) of helminths have been proposed as vaccine targets and shown to play a role in modulating host immune responses for decades. Such research interest is further increased by the discovery of extracellular vesicles (EVs) in the ESPs of parasitic worms. Although efforts have been made to reveal the cargos of EVs, little is known about the proteomic differences between EVs and canonical ESPs released by parasitic worms from animals. METHODS: The total ESPs of Haemonchus contortus (barber's pole worm) were obtained by short-term in vitro culturing of young adult worms, and small EVs were isolated from ESPs using an ultracentrifugation method. Data-dependent acquisition (DDA) label-free Nano-LC-MS/MS was used to quantify the proteomic difference between small EVs and EV-depleted ESPs of H. contortus. Functional annotation and enrichment of the differential proteins were performed regarding cellular components, molecular functions, pathways, and/or biological processes. RESULTS: A total of 1697 proteins were identified in small EVs and EV-depleted ESPs of H. contortus adult worms, with 706 unique proteins detected in the former and 597 unique proteins in the latter. It was revealed that proteins in small EVs are dominantly cytoplasmic, whereas proteins in EV-depleted ESPs are mainly extracellular; canonical ESPs such as proteases and small GTPases were abundantly detected in small EVs, and SCP/TAP-, DUF-, and GLOBIN domain-containing proteins were mainly found in EV-depleted ESPs. Compared with well-characterised proteins in small EVs, about 50% of the proteins detected in EV-depleted ESPs were poorly characterised. CONCLUSIONS: There are remarkable differences between small EVs and EV-depleted ESPs of H. contortus in terms of protein composition. Immune modulatory effects caused by nematode ESPs are possibly contributed mainly by the proteins in small EVs.


Asunto(s)
Vesículas Extracelulares , Haemonchus , Nematodos , Animales , Proteómica , Espectrometría de Masas en Tándem , Haemonchus/metabolismo
10.
Vet Res ; 55(1): 4, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172978

RESUMEN

Trichinella spiralis (T. spiralis) is a zoonotic parasitic nematode with a unique life cycle, as all developmental stages are contained within a single host. Excretory-secretory (ES) proteins are the main targets of the interactions between T. spiralis and the host at different stages of development and are essential for parasite survival. However, the ES protein profiles of T. spiralis at different developmental stages have not been characterized. The proteomes of ES proteins from different developmental stages, namely, muscle larvae (ML), intestinal infective larvae (IIL), preadult (PA) 6 h, PA 30 h, adult (Ad) 3 days post-infection (dpi) and Ad 6 dpi, were characterized via label-free mass spectrometry analysis in combination with bioinformatics. A total of 1217 proteins were identified from 9341 unique peptides in all developmental stages, 590 of which were quantified and differentially expressed. GO classification and KEGG pathway analysis revealed that these proteins were important for the growth of the larvae and involved in energy metabolism. Moreover, the heat shock cognate 71 kDa protein was the centre of protein interactions at different developmental stages. The results of this study provide comprehensive proteomic data on ES proteins and reveal that these ES proteins were differentially expressed at different developmental stages. Differential proteins are associated with parasite survival and the host immune response and may be potential early diagnostic antigen or antiparasitic vaccine candidates.


Asunto(s)
Trichinella spiralis , Trichinella , Triquinelosis , Animales , Triquinelosis/veterinaria , Proteínas del Helminto/metabolismo , Proteómica , Músculos , Larva/metabolismo , Antígenos Helmínticos , Trichinella/metabolismo
11.
BMC Genomics ; 25(1): 111, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38297211

RESUMEN

BACKGROUND: Wohlfahrtia magnifica is an obligatory parasite that causes myiasis in several warm-blooded vertebrates. Adult females deposit the first-stage larvae directly onto wounds or natural body orifices (e.g., genitalia) of the host, from where they quickly colonize the host tissue and feed on it for development. The infestation of W. magnifica can lead to health issues, welfare concerns, and substantial economic losses. To date, little is known about the molecular mechanisms of the W. magnifica-causing myiasis. RESULTS: In this study, we collected parasitic-stage larvae of W. magnifica from wounds of naturally infested Bactrian camels, as well as pupae and adult flies reared in vitro from the wound-collected larvae, for investigating the gene expression profiles of the different developmental stages of W. magnifica, with a particular focus on examining gene families closely related to the parasitism of the wound-collected larvae. As key proteins related to the parasite-host interaction, 2049 excretory/secretory (ES) proteins were identified in W. magnifica through the integration of multiple bioinformatics approaches. Functional analysis indicates that these ES proteins are primarily involved in cuticle development, peptidase activity, immune response, and metabolic processes. The global investigation of gene expression at different developmental stages using pairwise comparisons and weighted correlation network analysis (WGCNA) showed that the upregulated genes during second-stage larvae were related to cuticle development, peptidase activity, and RNA transcription and translation; during third-stage larvae to peptidase inhibitor activity and nutrient reservoir activity; during pupae to cell and tissue morphogenesis and cell and tissue development; and during adult flies to signal perception, many of them involved in light perception, and adult behavior, e.g., feeding, mating, and locomotion. Specifically, the expression level analysis of the likely parasitism-related genes in parasitic wound-collected larvae revealed a significant upregulation of 88 peptidase genes (including 47 serine peptidase genes), 110 cuticle protein genes, and 21 heat shock protein (hsp) genes. Interestingly, the expression of 2 antimicrobial peptide (AMP) genes, including 1 defensin and 1 diptericin, was also upregulated in the parasitic larvae. CONCLUSIONS: We identified ES proteins in W. magnifica and investigated their functional distribution. In addition, gene expression profiles at different developmental stages of W. magnifica were examined. Specifically, we focused on gene families closely related to parasitism of wound-collected larvae. These findings shed light on the molecular mechanisms underlying the life cycle of the myiasis-causing fly, especially during the parasitic larval stages, and provide guidance for the development of control measures against W. magnifica.


Asunto(s)
Dípteros , Miasis , Parásitos , Sarcofágidos , Animales , Femenino , Sarcofágidos/genética , Parásitos/genética , Miasis/genética , Miasis/parasitología , Dípteros/genética , Larva , Pupa , Perfilación de la Expresión Génica , Péptido Hidrolasas
12.
Acta Trop ; 249: 107066, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37944837

RESUMEN

Cystic echinococcosis (CE) is one of the most widespread and harmful zoonotic parasitic diseases, which most commonly affects the liver. In this study, we characterized multiple changes in mouse hepatocytes following treatment with excretory-secretory products (ESPs) of Echinococcus granulosus protoscoleces (Eg-PSCs) by a factorial experiment. The cell counting kit-8 assay (CCK-8), the 5-ethynyl-2'-deoxyuridine (EdU) assay, and flow cytometry were used to detect the growth of hepatocytes. Inverted microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to observe the morphology and ultrastructure of hepatocytes. An automatic biochemical analyzer and an ELISA detection kit were used to determine six conventional hepatocyte enzymatic indices, the levels of five hepatocyte-synthesized substances, and the contents of glucose and lactate. Western blot analysis was conducted to analyze the protein expression of three apoptosis-related proteins, Bax, Bcl-2, cleaved caspase-3, and six glucose metabolism pathways rate-limiting enzymes in hepatocytes. The results showed that ESPs inhibited hepatocyte proliferation and promoted hepatocyte apoptosis. The cell membrane and microvilli of hepatocytes changed, and the nucleus, mitochondria and rough endoplasmic reticulum were damaged to varying degrees. The contents of iron, albumin (ALB), uric acid (UA) and urea were increased, and the activities of six enzymes in hepatocytes were increased except for the decrease of transferrin (TRF). The expression levels of all six key enzymes in the glucose metabolism pathway in hepatocytes were reduced. Our characterization provides a basis for further research on the pathogenesis, prevention and treatment of CE.


Asunto(s)
Equinococosis , Echinococcus granulosus , Ratones , Animales , Equinococosis/parasitología , Hepatocitos , Hígado , Western Blotting
13.
Front Cell Infect Microbiol ; 13: 1306567, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38145042

RESUMEN

Human trichinellosis is a parasitic infection caused by roundworms belonging to the genus Trichinella, especially Trichinella spiralis. Early and accurate clinical diagnoses of trichinellosis are required for efficacious prognosis and treatment. Current drug therapies are limited by antiparasitic resistance, poor absorption, and an inability to kill the encapsulating muscle-stage larvae. Therefore, reliable biomarkers and drug targets for novel diagnostic approaches and anthelmintic drugs are required. In this study, metabolite profiles of T. spiralis adult worms and muscle larvae were obtained using mass spectrometry-based metabolomics. In addition, metabolite-based biomarkers of T. spiralis excretory-secretory products and their related metabolic pathways were characterized. The metabolic profiling identified major, related metabolic pathways involving adenosine monophosphate (AMP)-dependent synthetase/ligase and glycolysis/gluconeogenesis in T. spiralis adult worms and muscle larvae, respectively. These pathways are potential drug targets for the treatment of the intestinal and muscular phases of infection. The metabolome of larva excretory-secretory products was characterized, with amino acid permease and carbohydrate kinase being identified as key metabolic pathways. Among six metabolites, decanoyl-l-carnitine and 2,3-dinor-6-keto prostaglandin F1α-d9 were identified as potential metabolite-based biomarkers that might be related to the host inflammatory processes. In summary, this study compared the relationships between the metabolic profiles of two T. spiralis growth stages. Importantly, the main metabolites and metabolic pathways identified may aid the development of novel clinical diagnostics and therapeutics for human trichinellosis and other related helminthic infections.


Asunto(s)
Trichinella spiralis , Triquinelosis , Animales , Humanos , Triquinelosis/diagnóstico , Antígenos Helmínticos , Proteínas del Helminto/metabolismo , Larva/fisiología , Ensayo de Inmunoadsorción Enzimática , Anticuerpos Antihelmínticos , Músculos , Biomarcadores
14.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37834451

RESUMEN

Trichinella spiralis (T. spiralis) muscle larvae colonize in the host's skeletal muscle cells, which are surrounded by collagen capsules. The mechanism underlying muscle stage larva-induced collagen capsule formation remains unknown. To clarify the mechanism, a T. spiralis muscular-infected mouse model was established by a single lateral tail vein injection with 20,000 T. spiralis newborn larvae (NBL). The infected mice were treated with or without SB525334 (TGF-ß1 receptor type I inhibitor). Diaphragms were obtained post-infection, and the expression levels of the TGF-ß1/Smad3 pathway-related genes and collagen genes (type IV and VI) were observed during the process of collagen capsule formation. The changes in myoblasts under stimulation of the excretory-secretory (ES) products of NBL with or without SB525334 were further investigated. Results showed that the expression levels of type IV collagen gene, type VI collagen gene, Tgfb1, and Smad3 were significantly increased in infected mice muscle cells. The expression levels of all the above genes were enhanced by the products of NBL in myoblast cells. These changes were reversed by co-treatment with SB525334 in vivo and in vitro. In conclusion, the TGF-ß1/Smad3 pathway can be activated by T. spiralis infection in muscle cells. The activated TGF-ß1/Smad3 pathway can stimulate the secretion of collagens by myocytes and plays a promoting role in the process of collagen capsule formation. The research has the limitation that the protein identification of the products of NBL has yet to be performed. Therefore, the specific components in the T. spiralis ES products that induce collagen synthesis should be further investigated.


Asunto(s)
Trichinella spiralis , Ratones , Animales , Trichinella spiralis/genética , Trichinella spiralis/metabolismo , Proteínas del Helminto/genética , Antígenos Helmínticos/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Colágeno/metabolismo , Larva/metabolismo
15.
Parasit Vectors ; 16(1): 362, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845695

RESUMEN

BACKGROUND: Ischemia-induced inflammatory response is the main pathological mechanism of myocardial infarction (MI)-caused heart tissue injury. It has been known that helminths and worm-derived proteins are capable of modulating host immune response to suppress excessive inflammation as a survival strategy. Excretory/secretory products from Trichinella spiralis adult worms (Ts-AES) have been shown to ameliorate inflammation-related diseases. In this study, Ts-AES were used to treat mice with MI to determine its therapeutic effect on reducing MI-induced heart inflammation and the immunological mechanism involved in the treatment. METHODS: The MI model was established by the ligation of the left anterior descending coronary artery, followed by the treatment of Ts-AES by intraperitoneal injection. The therapeutic effect of Ts-AES on MI was evaluated by measuring the heart/body weight ratio, cardiac systolic and diastolic functions, histopathological change in affected heart tissue and observing the 28-day survival rate. The effect of Ts-AES on mouse macrophage polarization was determined by stimulating mouse bone marrow macrophages in vitro with Ts-AES, and the macrophage phenotype was determined by flow cytometry. The protective effect of Ts-AES-regulated macrophage polarization on hypoxic cardiomyocytes was determined by in vitro co-culturing Ts-AES-induced mouse bone marrow macrophages with hypoxic cardiomyocytes and cardiomyocyte apoptosis determined by flow cytometry. RESULTS: We observed that treatment with Ts-AES significantly improved cardiac function and ventricular remodeling, reduced pathological damage and mortality in mice with MI, associated with decreased pro-inflammatory cytokine levels, increased regulatory cytokine expression and promoted macrophage polarization from M1 to M2 type in MI mice. Ts-AES-induced M2 macrophage polarization also reduced apoptosis of hypoxic cardiomyocytes in vitro. CONCLUSIONS: Our results demonstrate that Ts-AES ameliorates MI in mice by promoting the polarization of macrophages toward the M2 type. Ts-AES is a potential pharmaceutical agent for the treatment of MI and other inflammation-related diseases.


Asunto(s)
Infarto del Miocardio , Trichinella spiralis , Ratones , Animales , Trichinella spiralis/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Modelos Animales de Enfermedad , Inflamación/metabolismo , Macrófagos , Citocinas/metabolismo , Proteínas del Helminto/metabolismo , Ratones Endogámicos C57BL
16.
Zoology (Jena) ; 160: 126119, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37683517

RESUMEN

The phenomenon of exocrine secretion via nervous cells into the host tissue has been discovered in cestodes. In five cestode species of different orders specialized "cup-shaped" free nerve endings located in the tegument have been found. Their ultrastructure is characterized by the presence of a septate junction, a thin support ring and neurosecretory vesicles 90-110 nm in diameter, which are secreted onto the surface of the tegument through a thin pore. The phenomenon is referred to in this article as the neuro-exocrine secretion. We observed a direct relationship between neurosecretory processes in the deep subtegument and free endings in a series of ultrathin sections in two species. The peripheral neurosecretory neurons of species studied are characterized by similar ultrastructural features: size and location; diameter of neurosecretory granules; absence of microtubules and mitochondria in the neurites. The size of neurosecretory granules has been found to decrease from perikaryon towards neurosecretory terminals that lead to the tegument. In two species, we examined the neurosecretion during incubation in the host's blood serum. Depending on the time of incubation we have shown the changes a) in the diameter of the cup-shaped endings, b) in the number of secretory vesicles in the endings; c) changes in number and diameter of neurosecretory vesicles in the processes of neurosecretory neurons in the subtegument. The detected changes differ in D.dendriticus and L.interrupta and, taken together, indirectly confirm the secretory specialization of the cup-shaped endings. Supposed targets for the neurosecretory neurons in the studied cestodes are the following: (a) eccrine frontal gland ducts, especially their terminal regions involved in the release of secretory products; (b) longitudinal and circular muscles in the subtegument region; (c) the basal membrane of the tegument. Besides the discovered secretion vesicles through the cup-shaped terminals, we observed vacuoles derived from the basal membrane of the tegument containing extracellular substances released into the host tissue. Their possible role in the release of neurosecretory substances is discussed. Considering the data acquired via immunocytochemical methods, an assumption about involvement of FMRFamide-like related peptides (FaRPs) in the neuro-exocrine secretion is proposed. Possible functions of the neuro-exocrine secretion are discussed in the context of host-parasite interactions.


Asunto(s)
Cestodos , Animales , Neuronas , Interacciones Huésped-Parásitos , Músculos
17.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37762428

RESUMEN

Parasitic nematodes and their products are promising candidates for therapeutics against inflammatory bowel diseases (IBD). Two species of nematodes, the hookworm Necator americanus and the whipworm Trichuis suis, are being used in clinical treatment trials of IBD referred to as "helminth therapy". Heligmosomoides polygyrus is a well-known model for human hookworm infections. Excretory-secretory (ES) products of H. polygyrus L4 stage that developed during colitis show a different immunomodulatory effect compared to the ES of H. polgyrus from healthy mice. The aim of the study was to evaluate excretory-secretory proteins produced by H. polygyrus L4 stage males and females that developed in the colitic milieu. Mass spectrometry was used to identify proteins. Blast2GO was used to investigate the functions of the discovered proteins. A total of 387 proteins were identified in the ES of H. polygyrus L4 males (HpC males), and 330 proteins were identified in the ES of L4 females that developed in the colitic milieu (HpC females). In contrast, only 200 proteins were identified in the ES of L4 males (Hp males) and 218 in the ES of L4 females (Hp females) that developed in control conditions. Most of the proteins (123) were detected in all groups. Unique proteins identified in the ES of HpC females included annexin, lysozyme-2, apyrase, and galectin. Venom allergen/Ancylostoma-secreted protein-like, transthyretin-like family proteins, and galectins were found in the secretome of HpC males but not in the secretome of control males. These molecules may be responsible for the therapeutic effects of nematodes in DSS-induced colitis.

18.
Int J Mol Med ; 52(4)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37594122

RESUMEN

Toxoplasma gondii excretory/secretory proteins (TgESPs) are a group of proteins secreted by the parasite and have an important role in the interaction between the host and Toxoplasma gondii (T. gondii). They can participate in various biological processes in different cells and regulate cellular energy metabolism. However, the effect of TgESPs on energy metabolism and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) has remained elusive. In the present study, TgESPs were extracted from the T. gondii RH strain and used to treat BMSCs to observe the effect of TgESPs on energy metabolism and osteogenic differentiation of BMSCs and to explore the molecular mechanisms involved. The osteogenic differentiation and energy metabolism of BMSCs were evaluated using Alizarin Red S staining, qRT-PCR, western blot, immunofluorescence and Seahorse extracellular flux assays. The results indicated that TgESPs activated the Wnt/ß­catenin signaling pathway to enhance glycolysis and lactate production in BMSCs, and promoted cell mineralization and expression of osteogenic markers. In conclusion, the present study uncovered the potential mechanism by which TgESPs regulate BMSCs, which will provide a theoretical reference for the study of the function of TgESPs in the future.


Asunto(s)
Células Madre Mesenquimatosas , Toxoplasma , Vía de Señalización Wnt , Osteogénesis/genética , Diferenciación Celular , Glucólisis
19.
Front Vet Sci ; 10: 1208538, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601754

RESUMEN

Trichinella spiralis (T. spiralis) muscle-larva excretory/secretory products (ML-ESPs) is a complex array of proteins with antitumor activity. We previously demonstrated that ML-ESPs inhibit the proliferation of A549 non-small cell lung cancer (NSCLC) cell line. However, the mechanism of ML-ESPs against A549 cells, especially on the transcriptional level, remains unknow. In this study, we systematically investigated a global profile bioinformatics analysis of transcriptional response of A549 cells treated with ML-ESPs. And then, we further explored the transcriptional regulation of genes related to glucose metabolism in A549 cells by ML-ESPs. The results showed that ML-ESPs altered the expression of 2,860 genes (1,634 upregulated and 1,226 downregulated). GO and KEGG analysis demonstrated that differentially expressed genes (DEGs) were mainly associated with pathway in cancer and metabolic process. The downregulated genes interaction network of metabolic process is mainly associated with glucose metabolism. Furthermore, the expression of phosphofructokinase muscle (PFKM), phosphofructokinase liver (PFKL), enolase 2 (ENO2), lactate dehydrogenase B (LDHB), 6-phosphogluconolactonase (6PGL), ribulose-phosphate-3-epimerase (PRE), transketolase (TKT), transaldolase 1 (TALDO1), which genes mainly regulate glycolysis and pentose phosphate pathway (PPP), were suppressed by ML-ESPs. Interestingly, tricarboxylic acid cycle (TCA)-related genes, such as pyruvate dehydrogenase phosphatase 1 (PDP1), PDP2, aconitate hydratase 1 (ACO1) and oxoglutarate dehydrogenase (OGDH) were upregulated by ML-ESPs. In summary, the transcriptome profiling of A549 cells were significantly altered by ML-ESPs. And we also provide new insight into how ML-ESPs induced a transcriptional reprogramming of glucose metabolism-related genes in A549 cells.

20.
Microorganisms ; 11(7)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37513018

RESUMEN

BACKGROUND: Helminth infections are widespread in tuberculosis-endemic areas and are associated with an increased risk of active tuberculosis. In contrast to the pro-inflammatory Th1 responses elicited by Mycobacterium tuberculosis (Mtb) infection, helminth infections induce anti-inflammatory Th2/Treg responses. A robust Th2 response has been linked to reduced tuberculosis protection. Several studies show the effect of helminth infection on BCG vaccination and TB, but the mechanisms remain unclear. AIM: To determine the cytokine response profiles during tuberculosis and intestinal helminth coinfection. METHODS: For the in vitro study, lymphocytic Jurkat and monocytic THP-1 cell lines were stimulated with Mtb H37Rv and Ascaris lumbricoides (A. lumbricoides) excretory-secretory protein extracts for 24 and 48 h. The pilot human ex vivo study consisted of participants infected with Mtb, helminths, or coinfected with both Mtb and helminths. Thereafter, the gene transcription levels of IFN-γ, TNF-α, granzyme B, perforin, IL-2, IL-17, NFATC2, Eomesodermin, IL-4, IL-5, IL-10, TGF-ß and FoxP3 in the unstimulated/uninfected controls, singly stimulated/infected and costimulated/coinfected groups were determined using RT-qPCR. RESULTS: TB-stimulated Jurkat cells had significantly higher levels of IFN-γ, TNF-α, granzyme B, and perforin compared to unstimulated controls, LPS- and A. lumbricoides-stimulated cells, and A. lumbricoides plus TB-costimulated cells (p < 0.0001). IL-2, IL-17, Eomes, and NFATC2 levels were also higher in TB-stimulated Jurkat cells (p < 0.0001). Jurkat and THP-1 cells singly stimulated with TB had lower IL-5 and IL-4 levels compared to those singly stimulated with A. lumbricoides and those costimulated with TB plus A. lumbricoides (p < 0.0001). A. lumbricoides-singly stimulated cells had higher IL-4 levels compared to TB plus A. lumbricoides-costimulated Jurkat and THP-1 cells (p < 0.0001). TGF-ß levels were also lower in TB-singly stimulated cells compared to TB plus A. lumbricoides-costimulated cells (p < 0.0001). IL-10 levels were lower in TB-stimulated Jurkat and THP-1 cells compared to TB plus A. lumbricoides-costimulated cells (p < 0.0001). Similar results were noted for the human ex vivo study, albeit with a smaller sample size. CONCLUSIONS: Data suggest that helminths induce a predominant Th2/Treg response which may downregulate critical Th1 responses that are crucial for tuberculosis protection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA