Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(35): e2404286, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38924714

RESUMEN

The dynamics of strongly coupled polariton systems integrated with 2D transition metal dichalcogenides (TMDs) is key to enabling efficient coherent processes and achieving high-performance TMD-based polaritonic devices, such as ultralow-threshold polariton lasers and ultrafast optical switches. However, there has been a lack of a comprehensive understanding of the excited state dynamics in TMD-based polariton systems. In this work, ultrafast pump-probe optical spectroscopy is used to investigate the room temperature dynamics of the polariton systems consisting of TMD monolayer excitons strongly coupled with Bloch surface waves (BSWs) supported by all-dielectric photonic structures. The transient response is found for both above-exciton energy pumping and polariton-resonant pumping. The excited state population and ultrafast coherent coupling of the exciton reservoir and lower polariton (LP) branch are observed for resonant pumping. Moreover, it is found that the transient response of the LP first decays on a short-time scale of 0.15-0.25 ps compared to the calculated intrinsic lifetime of 0.11-0.20 ps, and is followed by a longer decay (>100 ps) due to the dynamical evolution of the exciton reservoir. The results provide a fundamental understanding of the dynamics of TMD-based polariton systems while showing the potential for achieving efficient coherent optical processes for device applications.

2.
Adv Mater ; 36(21): e2313746, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38332722

RESUMEN

In organic light-emitting diode (OLED), achieving high efficiency requires effective triplet exciton confinement by carrier-transporting materials, which typically have higher triplet energy (ET) than the emitter, leading to poor stability. Here, an electron-transporting material (ETM), whose ET is 0.32 eV lower than that of the emitter is reported. In devices, it surprisingly exhibits strong confinement effect and generates excellent efficiency. Additionally, the device operational lifetime is 4.9 times longer than the device with a standard ETM, 1,3,5-tri(1-phenyl-1H-benzo[d]imidazol-2-yl) phenyl (whose ET 0.36 eV is higher than the emitter). This anomalous finding is ascribed to the exceptionally long triplet state lifetime (≈0.2 s) of the ETM. It is named as long-lifetime triplet exciton reservoir effect. The systematic analysis reveals that the long triplet lifetime of ETM can compensate the requirement for high ET with the help of endothermic energy transfer. Such combination of low ET and long lifetime provides equivalent exciton confinement effect and high molecular stability simultaneously. It offers a novel molecular design paradigm for breaking the dilemma between high efficiency and prolonged operational lifetime in OLEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA