Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; : e17326, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515231

RESUMEN

Understanding the evolutionary processes that influence fitness is critical to predicting species' responses to selection. Interactions among evolutionary processes including gene flow, drift and the strength of selection can lead to either local adaptation or maladaptation, especially in heterogenous landscapes. Populations experiencing novel environments or resources are ideal for understanding the mechanisms underlying adaptation or maladaptation, specifically in locally co-evolved interactions. We used the interaction between a native herbivore that oviposits on a patchily distributed introduced plant that in turn causes significant mortality to the larvae to test for signatures of local adaptation in areas where the two co-occurred. We used whole-genome sequencing to explore population structure, patterns of gene flow and signatures of local adaptation. We found signatures of local adaptation in response to the introduced plant in the absence of strong population structure with no genetic differentiation and low genetic variation. Additionally, we found localized allele frequency differences within a single population between habitats with and without the lethal plant, highlighting the effects of strong selection. Finally, we identified that selection was acting on larval ability to feed on the plant rather than on females' ability to avoid oviposition, thus uncovering the specific ontogenetic target of selection. Our work highlights the potential for adaptation to occur in a fine-grained landscape in the presence of gene flow and low genetic variation.

2.
Trends Ecol Evol ; 37(3): 233-245, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34802715

RESUMEN

Following rapid environmental change, why do some animals thrive, while others struggle? We present an expanded, cue-response framework for predicting variation in behavioral responses to novel situations. We show how signal detection theory can be used when individuals have three behavioral options (approach, avoid, or ignore). Based on this theory, we outline predictions about which animals are more likely to make mistakes around novel conditions (i.e., fall for a trap or fail to use an undervalued resource) and the intensity of that mismatch (i.e., severe versus moderate). Explicitly considering three options provides a more holistic perspective and allows us to distinguish between severe and moderate traps, which could guide management strategies in a changing world.


Asunto(s)
Evolución Biológica , Animales
3.
Ecol Evol ; 10(6): 3138-3148, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32211183

RESUMEN

The Ganges-Brahmaputra-Meghna and Karnaphuli (GBMK) River Basin in Nepal, India, and Bangladesh is among the world's most biodiverse river basins. However, human-induced habitat modification processes threaten the ecological structure of this river basin. Among the GBMK's diverse flora and fauna of this freshwater ecosystem, the endemic Ganges River dolphin (Platanista gangetica gangetica; GRD) is one of the most charismatic species in this freshwater ecosystem. Though a >50% population size reduction has occurred since 1957, researchers and decision-makers often overlook the persistence (or evolutionary potential) of this species in the highly fragmented GBMK. We define the evolutionary potential as the ability of species/populations to adapt in a changing environment by maintaining their genetic diversity. Here, we review how evolutionary trap mechanisms affect the dynamics and viability of the GRD (hereafter Ganges dolphin) populations after rapid declines in their population size and distribution. We detected six potential trap mechanisms that might affect the Ganges dolphin populations discretely or in combination: (a) habitat modification; (b) occurrence of finite and geographically restricted local populations; (c) ratio of effective to estimate population size; (d) increasing risk of inbreeding depression in genetically isolated groups; (e) at-risk behavioral attributes; and (f) direct fisheries-dolphin interactions. Because evolutionary traps appear most significant during low water season, they adversely affect demographic parameters, which reduce evolutionary potential. These traps have already caused local extirpation events; therefore, we recommend translocation among populations, including restoring and preserving essential habitats as immediate conservation strategies. Integrative evolutionary potential information based on demographic, genetic, and environmental data is still lacking. Thus, we identify gaps in the knowledge and suggest integrative approaches to understand the future of Ganges dolphins in South Asian waterways.

4.
Environ Epigenet ; 2(1): dvv014, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29492283

RESUMEN

Rapid environmental change is predicted to compromise population survival, and the resulting strong selective pressure can erode genetic variation, making evolutionary rescue unlikely. Non-genetic inheritance may provide a solution to this problem and help explain the current lack of fit between purely genetic evolutionary models and empirical data. We hypothesize that epigenetic modifications can facilitate evolutionary rescue through 'epigenetic buffering'. By facilitating the inheritance of novel phenotypic variants that are generated by environmental change-a strategy we call 'heritable bet hedging'-epigenetic modifications could maintain and increase the evolutionary potential of a population. This process may facilitate genetic adaptation by preserving existing genetic variation, releasing cryptic genetic variation and/or facilitating mutations in functional loci. Although we show that examples of non-genetic inheritance are often maladaptive in the short term, accounting for phenotypic variance and non-adaptive plasticity may reveal important evolutionary implications over longer time scales. We also discuss the possibility that maladaptive epigenetic responses may be due to 'epigenetic traps', whereby evolutionarily novel factors (e.g. endocrine disruptors) hack into the existing epigenetic machinery. We stress that more ecologically relevant work on transgenerational epigenetic inheritance is required. Researchers conducting studies on transgenerational environmental effects should report measures of phenotypic variance, so that the possibility of both bet hedging and heritable bet hedging can be assessed. Future empirical and theoretical work is required to assess the relative importance of genetic and epigenetic variation, and their interaction, for evolutionary rescue.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA