Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39300750

RESUMEN

There is a current lack of consensus on whether the ancestral parity mode was oviparity (egg-laying) or viviparity (live-birth) in amniotes and particularly in squamates (snakes, lizards, and amphisbaenids). How transitions between parity modes occur at the genomic level has primary importance for how science conceptualises the origin of amniotes, and highly variable parity modes in Squamata. Synthesising literature from medicine, poultry science, reproductive biology, and evolutionary biology, I review the genomics and physiology of five broad processes (here termed the 'Main Five') expected to change during transitions between parity modes: eggshell formation, embryonic retention, placentation, calcium transport, and maternal-fetal immune dynamics. Throughout, I offer alternative perspectives and testable hypotheses regarding proximate causes of parity mode evolution in amniotes and squamates. If viviparity did evolve early in the history of lepidosaurs, I offer the nucleation site hypothesis as a proximate explanation. The framework of this hypothesis can be extended to amniotes to infer their ancestral state. I also provide a mechanism and hypothesis on how squamates may transition from viviparity to oviparity and make predictions about the directionality of transitions in three species. After considering evidence for differing perspectives on amniote origins, I offer a framework that unifies (i) the extended embryonic retention model and (ii) the traditional model which describes the amniote egg as an adaptation to the terrestrial environment. Additionally, this review contextualises the origin of amniotes and parity mode evolution within Medawar's paradigm. Medawar posited that pregnancy could be supported by immunosuppression, inertness, evasion, or immunological barriers. I demonstrate that this does not support gestation or gravidity across most amniotes but may be an adequate paradigm to explain how the first amniote tolerated internal fertilization and delayed egg deposition. In this context, the eggshell can be thought of as an immunological barrier. If serving as a barrier underpins the origin of the amniote eggshell, there should be evidence that oviparous gravidity can be met with a lack of immunological responses in utero. Rare examples of two species that differentially express very few genes during gravidity, suggestive of an absent immunological reaction to oviparous gravidity, are two skinks Lampropholis guichenoti and Lerista bougainvillii. These species may serve as good models for the original amniote egg. Overall, this review grounds itself in the historical literature while offering a modern perspective on the origin of amniotes. I encourage the scientific community to utilise this review as a resource in evolutionary and comparative genomics studies, embrace the complexity of the system, and thoughtfully consider the frameworks proposed.

2.
J Therm Biol ; 123: 103913, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39002254

RESUMEN

Oxidative stress is thought to be one of the main causes of ageing as it progressively damages cell components throughout life, eventually causing cellular failure and apoptosis. In many organisms, telomeres shorten throughout life under the effect of, amongst other factors, oxidative stress, and are therefore commonly used as marker of biological ageing. However, hibernators, which are regularly exposed to acute oxidative stress when rewarming from torpor, are unexpectedly long-lived. In this review, we explore the causes of oxidative stress associated with hibernation and its impact on telomere dynamics in different taxa, focussing on hibernating rodents. We then speculate on the adaptive mechanisms of hibernators to compensate for the effects of oxidative stress, which may explain their increased longevity. Because winter hibernation appears to be associated with high oxidative stress, hibernators, particularly rodents, may periodically invest in repair mechanisms and antioxidant defences, resulting in seasonal variations in telomere lengths. This research shows how species with a slow life-history strategy deal with large changes in oxidative stress, unifying evolutionary and physiological theories of ageing. Because of the marked seasonal variation in telomere length, we also draw attention when using telomeres as markers for biological aging in seasonal heterotherms and possibly in other highly seasonal species.


Asunto(s)
Hibernación , Estrés Oxidativo , Estaciones del Año , Telómero , Animales , Telómero/genética , Homeostasis del Telómero , Acortamiento del Telómero , Envejecimiento/genética
3.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39063147

RESUMEN

Primary cell culture is a powerful model system to address fundamental questions about organismal physiology at the cellular level, especially for species that are difficult, or impossible, to study under natural or semi-natural conditions. Due to their ease of use, primary fibroblast cultures are the dominant model system, but studies using both somatic and germ cells are also common. Using these models, genome evolution and phylogenetic relationships, the molecular and biochemical basis of differential longevities among species, and the physiological consequences of life history evolution have been studied in depth. With the advent of new technologies such as gene editing and the generation of induced pluripotent stem cells (iPSC), the field of molecular evolutionary physiology will continue to expand using both descriptive and experimental approaches.


Asunto(s)
Evolución Molecular , Cultivo Primario de Células , Animales , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Biológicos , Filogenia , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/fisiología
4.
J Exp Biol ; 227(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39045710

RESUMEN

Aerobic metabolism underlies vital traits such as locomotion and thermogenesis, and aerobic capacity influences fitness in many animals. The heart is a key determinant of aerobic capacity, but the relative influence of cardiac output versus other steps in the O2 transport pathway remains contentious. In this Commentary, we consider this issue by examining the mechanistic basis for adaptive increases in aerobic capacity (thermogenic V̇O2,max; also called summit metabolism) in deer mice (Peromyscus maniculatus) native to high altitude. Thermogenic V̇O2,max is increased by acclimation to cold hypoxia (simulating high-altitude conditions), and high-altitude populations generally have greater V̇O2,max than their low-altitude counterparts. This plastic and evolved variation in V̇O2,max is associated with corresponding variation in maximal cardiac output, along with variation in other traits across the O2 pathway (e.g. arterial O2 saturation, blood haemoglobin content and O2 affinity, tissue O2 extraction, tissue oxidative capacity). By applying fundamental principles of gas exchange, we show that the relative influence of cardiac output on V̇O2,max depends on the O2 diffusing capacity of thermogenic tissues (skeletal muscles and brown adipose tissues). Functional interactions between cardiac output and blood haemoglobin content determine circulatory O2 delivery and thus affect V̇O2,max, particularly in high-altitude environments where erythropoiesis can increase haematocrit and blood viscosity. There may also be functional linkages between cardiac output and tissue O2 diffusion due to the role of blood flow in determining capillary haematocrit and red blood cell flux. Therefore, the functional interactions between cardiac output and other traits in the O2 pathway underlie the adaptive evolution of aerobic capacities.


Asunto(s)
Evolución Biológica , Gasto Cardíaco , Corazón , Peromyscus , Animales , Peromyscus/fisiología , Corazón/fisiología , Gasto Cardíaco/fisiología , Altitud , Aclimatación/fisiología , Consumo de Oxígeno/fisiología , Termogénesis/fisiología , Oxígeno/metabolismo , Aerobiosis
5.
Am J Physiol Regul Integr Comp Physiol ; 326(4): R297-R310, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38372126

RESUMEN

The cold and hypoxic conditions at high altitude necessitate high metabolic O2 demands to support thermogenesis while hypoxia reduces O2 availability. Skeletal muscles play key roles in thermogenesis, but our appreciation of muscle plasticity and adaptation at high altitude has been hindered by past emphasis on only a small number of muscles. We examined this issue in deer mice (Peromyscus maniculatus). Mice derived from both high-altitude and low-altitude populations were born and raised in captivity and then acclimated as adults to normoxia or hypobaric hypoxia (12 kPa O2 for 6-8 wk). Maximal activities of citrate synthase (CS), cytochrome c oxidase (COX), ß-hydroxyacyl-CoA dehydrogenase (HOAD), hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) were measured in 20 muscles involved in shivering, locomotion, body posture, ventilation, and mastication. Principal components analysis revealed an overall difference in muscle phenotype between populations but no effect of hypoxia acclimation. High-altitude mice had greater activities of mitochondrial enzymes and/or lower activities of PK or LDH across many (but not all) respiratory, limb, core and mastication muscles compared with low-altitude mice. In contrast, chronic hypoxia had very few effects across muscles. Further examination of CS in the gastrocnemius showed that population differences in enzyme activity stemmed from differences in protein abundance and mRNA expression but not from population differences in CS amino acid sequence. Overall, our results suggest that evolved increases in oxidative capacity across many skeletal muscles, at least partially driven by differences in transcriptional regulation, may contribute to high-altitude adaptation in deer mice.NEW & NOTEWORTHY Most previous studies of muscle plasticity and adaptation in high-altitude environments have focused on a very limited number of skeletal muscles. Comparing high-altitude versus low-altitude populations of deer mice, we show that a large number of muscles involved in shivering, locomotion, body posture, ventilation, and mastication exhibit greater mitochondrial enzyme activities in the high-altitude population. Therefore, evolved increases in mitochondrial oxidative capacity across skeletal muscles contribute to high-altitude adaptation.


Asunto(s)
Altitud , Peromyscus , Animales , Peromyscus/fisiología , Hipoxia/metabolismo , Músculo Esquelético/metabolismo , Aclimatación , Fenotipo
6.
Philos Trans R Soc Lond B Biol Sci ; 379(1896): 20220491, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38186283

RESUMEN

As physiologists seek to better understand how and why metabolism varies, they have focused on how metabolic rate covaries with fitness-that is, selection. Evolutionary biologists have developed a sophisticated framework for exploring selection, but there are particular challenges associated with estimating selection on metabolic rate owing to its allometric relationship with body mass. Most researchers estimate selection on mass and absolute metabolic rate; or selection on mass and mass-independent metabolic rate (MIMR)-the residuals generated from a nonlinear regression. These approaches are sometimes treated as synonymous: their coefficients are often interpreted in the same way. Here, we show that these approaches are not equivalent because absolute metabolic rate and MIMR are different traits. We also show that it is difficult to make sound biological inferences about selection on absolute metabolic rate because its causal relationship with mass is enigmatic. By contrast, MIMR requires less-desirable statistical practices (i.e. residuals as a predictor), but provides clearer causal pathways. Moreover, we argue that estimates of selection on MIMR have more meaningful interpretations for physiologists interested in the drivers of variation in metabolic allometry. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.


Asunto(s)
Evolución Biológica , Ejercicio Físico , Humanos , Personal de Salud , Fenotipo , Sonido
7.
J Physiol ; 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37635695

RESUMEN

Living organisms are multiscale complex systems that have evolved high degrees of multifunctionality and redundancy in the structure-function relationship. A number of factors, only in part determined genetically, affect the jobs of proteins. The overall structural organization confers unique molecular properties that provide the potential to perform a pattern of activities, some of which are co-opted by specific environments. The variety of multifunctional proteins is expanding, but most cases are handled individually and according to the still dominant 'one structure-one function' approach, which relies on the attribution of canonical names typically referring to the first task identified for a given protein. The present topical review focuses on the multifunctionality of ion channels as a paradigmatic example. Mounting evidence reports the ability of many ion channels (including members of voltage-dependent, ligand-gated and transient receptor potential families) to exert biological effects independently of their ion conductivity. 'Functionally based' nomenclature (the practice of naming a protein or family of proteins based on a single purpose) is a conceptual bias for three main reasons: (i) it increases the amount of ambiguity, deceiving our understanding of the multiple contributions of biomolecules that is the heart of the complexity; (ii) it is in stark contrast to protein evolution dynamics, largely based on multidomain arrangement; and (iii) it overlooks the crucial role played by the microenvironment in adjusting the actions of cell structures and in tuning protein isoform diversity to accomplish adaptational requirements. Biological information in protein physiology is distributed among different entwined layers working as the primary 'locus' of natural selection and of evolutionary constraints.

8.
J Exp Biol ; 226(11)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37249068

RESUMEN

Constraint-based explanations have dominated theories of size-related patterns in nature for centuries. Explanations for metabolic scaling - the way in which metabolism changes with body mass - have been based on the geometry of circulatory networks through which resources are distributed, the need to dissipate heat produced as a by-product of metabolic processes, and surface-area-to-volume constraints on the flux of nutrients or waste. As an alternative to these constraint-based approaches, we recently developed a new theory that predicts that metabolic allometry arises as a consequence of the optimisation of growth and reproduction to maximise fitness within a finite life. Our theory is free of physical geometric constraints that limit the possibilities available to evolution, and we therefore argue that metabolic allometry can be explained without the need to invoke any of the assumed constraints traditionally imposed by metabolic theories. Our findings also suggest that metabolism, growth and reproduction have co-evolved to maximise fitness (i.e. lifetime reproduction) and that the observed patterns in these fundamental characteristics of life can similarly be explained by optimisation rather than constraint. In this Centenary Commentary, we present an overview of our approach and a critique of its limitations. We propose a suite of empirical tests that we hope will move the field forward, discuss the dangers of model overparameterisation and highlight the need to remain open to non-adaptive hypotheses for the origin of biological patterns.


Asunto(s)
Metabolismo Energético , Reproducción , Modelos Biológicos , Biología
9.
J Exp Biol ; 226(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36789831

RESUMEN

Osmoregulatory findings on crabs from high Neotropical latitudes are entirely lacking. Seeking to identify the consequences of evolution at low temperature, we examined hyperosmotic/hypo-osmotic and ionic regulation and gill ion transporter gene expression in two sub-Antarctic Eubrachyura from the Beagle Channel, Tierra del Fuego. Despite sharing the same osmotic niche, Acanthocyclus albatrossis tolerates a wider salinity range (2-65‰ S) than Halicarcinus planatus (5-60‰ S); their respective lower and upper critical salinities are 4‰ and 12‰ S, and 63‰ and 50‰ S. Acanthocyclus albatrossis is a weak hyperosmotic regulator, while H. planatus hyperosmoconforms; isosmotic points are 1380 and ∼1340 mOsm kg-1 H2O, respectively. Both crabs hyper/hypo-regulate [Cl-] well with iso-chloride points at 452 and 316 mmol l-1 Cl-, respectively. [Na+] is hyper-regulated at all salinities. mRNA expression of gill Na+/K+-ATPase is salinity sensitive in A. albatrossis, increasing ∼1.9-fold at 5‰ compared with 30‰ S, decreasing at 40-60‰ S. Expression in H. planatus is very low salinity sensitive, increasing ∼4.7-fold over 30‰ S, but decreasing at 50‰ S. V-ATPase expression decreases in A. albatrossis at low and high salinities as in H. planatus. Na+/K+/2Cl- symporter expression in A. albatrossis increases 2.6-fold at 5‰ S, but decreases at 60‰ S versus 30‰ S. Chloride uptake may be mediated by increased Na+/K+/2Cl- expression but Cl- secretion is independent of symporter expression. These unrelated eubrachyurans exhibit similar systemic osmoregulatory characteristics and are better adapted to dilute media; however, the expression of genes underlying ion uptake and secretion shows marked interspecific divergence. Cold clime crabs may limit osmoregulatory energy expenditure by hyper/hypo-regulating hemolymph [Cl-] alone, apportioning resources for other energy-demanding processes.


Asunto(s)
Braquiuros , Simportadores , Perros , Animales , Braquiuros/metabolismo , Cloruros/metabolismo , Branquias/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Salinidad , Sodio/metabolismo , Simportadores/metabolismo
10.
J Evol Biol ; 36(4): 650-662, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36811205

RESUMEN

An organism's energy budget is strongly related to resource consumption, performance, and fitness. Hence, understanding the evolution of key energetic traits, such as basal metabolic rate (BMR), in natural populations is central for understanding life-history evolution and ecological processes. Here we used quantitative genetic analyses to study evolutionary potential of BMR in two insular populations of the house sparrow (Passer domesticus). We obtained measurements of BMR and body mass (Mb ) from 911 house sparrows on the islands of Leka and Vega along the coast of Norway. These two populations were the source populations for translocations to create an additional third, admixed 'common garden' population in 2012. With the use of a novel genetic group animal model concomitant with a genetically determined pedigree, we differentiate genetic and environmental sources of variation, thereby providing insight into the effects of spatial population structure on evolutionary potential. We found that the evolutionary potential of BMR was similar in the two source populations, whereas the Vega population had a somewhat higher evolutionary potential of Mb than the Leka population. BMR was genetically correlated with Mb in both populations, and the conditional evolutionary potential of BMR (independent of body mass) was 41% (Leka) and 53% (Vega) lower than unconditional estimates. Overall, our results show that there is potential for BMR to evolve independently of Mb , but that selection on BMR and/or Mb may have different evolutionary consequences in different populations of the same species.


Asunto(s)
Animales Salvajes , Metabolismo Basal , Animales , Aves , Fenotipo
11.
Proc Natl Acad Sci U S A ; 120(5): e2204427120, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36693105

RESUMEN

Physical inactivity is a scourge to human health, promoting metabolic disease and muscle wasting. Interestingly, multiple ecological niches have relaxed investment into physical activity, providing an evolutionary perspective into the effect of adaptive physical inactivity on tissue homeostasis. One such example, the Mexican cavefish Astyanax mexicanus, has lost moderate-to-vigorous activity following cave colonization, reaching basal swim speeds ~3.7-fold slower than their river-dwelling counterpart. This change in behavior is accompanied by a marked shift in body composition, decreasing total muscle mass and increasing fat mass. This shift persisted at the single muscle fiber level via increased lipid and sugar accumulation at the expense of myofibrillar volume. Transcriptomic analysis of laboratory-reared and wild-caught cavefish indicated that this shift is driven by increased expression of pparγ-the master regulator of adipogenesis-with a simultaneous decrease in fast myosin heavy chain expression. Ex vivo and in vivo analysis confirmed that these investment strategies come with a functional trade-off, decreasing cavefish muscle fiber shortening velocity, time to maximal force, and ultimately maximal swimming speed. Despite this, cavefish displayed a striking degree of muscular endurance, reaching maximal swim speeds ~3.5-fold faster than their basal swim speeds. Multi-omic analysis suggested metabolic reprogramming, specifically phosphorylation of Pgm1-Threonine 19, as a key component enhancing cavefish glycogen metabolism and sustained muscle contraction. Collectively, we reveal broad skeletal muscle changes following cave colonization, displaying an adaptive skeletal muscle phenotype reminiscent to mammalian disuse and high-fat models while simultaneously maintaining a unique capacity for sustained muscle contraction via enhanced glycogen metabolism.


Asunto(s)
Characidae , Animales , Humanos , Characidae/genética , Evolución Biológica , Glucógeno , Músculos , México , Cuevas , Mamíferos
12.
Artículo en Inglés | MEDLINE | ID: mdl-36379379

RESUMEN

Transbranchial transport processes are responsible for the homeostatic regulation of most essential physiological functions in aquatic crustaceans. Due to their widespread use as laboratory models, brachyuran crabs are commonly used to predict how other decapod crustaceans respond to environmental stressors including ocean acidification and warming waters. Non-brachyuran species such as the economically-valuable American lobster, Homarus americanus, possess trichobranchiate gills and epipodites that are known to be anatomically distinct from the phyllobranchiate gills of brachyurans; however, studies have yet to define their potential physiological differences. Our results indicate that the pleuro-, arthro-, and podobranch gills of the lobster are functionally homogenous and similar to the respiratory gills of brachyurans as indicated by equivalent rates of H+Eq., CO2, HCO3-, and ammonia transport and mRNA expression of related transporters and enzymes. The epipodites were found to be functionally distinct, being capable of greater individual rates of H+Eq., CO2, and ammonia transport despite mRNA transcript levels of related transporters and enzymes being only a fraction found in the gills. Collectively, mathematical estimates infer that the gills are responsible for 91% of the lobster's branchial HCO3- accumulation whereas the epipodites are responsible for 66% of branchial ammonia excretion suggesting different mechanisms exist in these tissues. Furthermore, the greater metabolic rate and amino acid catabolism in the epipodites suggest that the tissue much of the CO2 and ammonia excreted by this tissue originates intracellularly rather than systemically. These results provide evidence that non-brachyuran species must be carefully compared to brachyuran models.


Asunto(s)
Braquiuros , Nephropidae , Animales , Nephropidae/genética , Concentración de Iones de Hidrógeno , Branquias/metabolismo , Amoníaco/metabolismo , Dióxido de Carbono/metabolismo , Agua de Mar/química , Proteínas de Transporte de Membrana/metabolismo , Braquiuros/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
Evol Appl ; 15(9): 1469-1479, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36187188

RESUMEN

Human actions are altering ecosystems worldwide. Among human-released pollutants, ionizing radiation arises as a rare but potentially devastating threat to natural systems. The Chornobyl accident (1986) represents the largest release of radioactive material to the environment. Our aim was to examine how exposure to radiation from the Chornobyl accident influences dorsal skin coloration of Eastern tree frog (Hyla orientalis) males sampled across a wide gradient of radioactive contamination in northern Ukraine. We assessed the relationship between skin frog coloration (which can act as a protective mechanism against ionizing radiation), radiation conditions and oxidative stress levels. Skin coloration was darker in localities closest to areas with high radiation levels at the time of the accident, whereas current radiation levels seemed not to influence skin coloration in Chornobyl tree frogs. Tree frogs living within the Chornobyl Exclusion Zone had a remarkably darker dorsal skin coloration than frogs from outside the Zone. The maintenance of dark skin coloration was not linked to physiological costs in terms of frog body condition or oxidative status, and we did not detect short-term changes in frog coloration. Dark coloration is known to protect against different sources of radiation by neutralizing free radicals and reducing DNA damage, and, particularly melanin pigmentation has been proposed as a buffering mechanism against ionizing radiation. Our results suggest that exposure to high levels of ionizing radiation, likely at the time of the accident, may have been selected for darker coloration in Chornobyl tree frogs. Further studies are needed to determine the underlying mechanisms and evolutionary consequences of the patterns found here.

14.
Curr Biol ; 32(16): 3576-3583.e3, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35793681

RESUMEN

Shock waves are supersonic high-amplitude pressure waves that cause barotrauma when they transfer kinetic energy to the tissues of animals.1-4 Snapping shrimp (Alpheidae) produce shock waves and are exposed to them frequently, so we asked if these animals have evolved mechanisms of physical protection against them. Snapping shrimp generate shock waves by closing their snapping claws rapidly enough to form cavitation bubbles that release energy as an audible "snap" and a shock wave when they collapse.5-8 We tested if snapping shrimp are protected from shock waves by a helmet-like extension of their exoskeleton termed the orbital hood. Using behavioral trials, we found shock wave exposure slowed shelter-seeking and caused a loss of motor control in Alpheus heterochaelis from which we had removed orbital hoods but did not significantly affect behavior in shrimp with unaltered orbital hoods. Shock waves thus have the potential to harm snapping shrimp but may not do so under natural conditions because of protection provided to shrimp by their orbital hoods. Using pressure recordings, we discovered the orbital hoods of A. heterochaelis dampen shock waves. Sealing the anterior openings of orbital hoods diminished how much they altered the magnitudes of shock waves, which suggests these helmet-like structures dampen shock waves by trapping and expelling water so that kinetic energy is redirected and released away from the heads of shrimp. Our results indicate orbital hoods mitigate blast-induced neurotrauma in snapping shrimp by dampening shock waves, making them the first biological armor system known to have such a function. VIDEO ABSTRACT.


Asunto(s)
Decápodos , Dispositivos de Protección de la Cabeza , Animales , Encéfalo
15.
Front Physiol ; 13: 902937, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721559

RESUMEN

Brachyurans inhabit a variety of habitats and have evolved diverse osmoregulatory patterns. Gills, antennal glands and a lung-like structure are important organs of crabs that maintain their homeostasis in different habitats. Species use different processes to regulate ions in the antennal gland, especially those with high terrestriality such as Grapsoidea and Ocypodoidea. Our phylogenetic generalized least square (PGLS) result also suggested that there is a correlation between antennal gland NKA activity and urine-hemolymph ratio for Na+ concentration in hypo-osmotic environments among crabs. Species with higher antennal gland NKA activity showed a lower urine-hemolymph ratio for Na+ concentration under hypo-osmotic stress. These phenomenon may correlate to the structural and functional differences in gills and lung-like structure among crabs. However, a limited number of studies have focused on the structural and functional differences in the antennal gland among brachyurans. Integrative and systemic methods like next generation sequencing and proteomics method can be useful for investigating the differences in multi-gene expression and sequences among species. These perspectives can be combined to further elucidate the phylogenetic history of crab antennal glands.

16.
BMC Ecol Evol ; 22(1): 11, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-35123416

RESUMEN

BACKGROUND: Physiological processes, as immediate responses to the environment, are important mechanisms of phenotypic plasticity and can influence evolution at ecological time scales. In stressful environments, physiological stress responses of individuals are initiated and integrated via the release of hormones, such as corticosterone (CORT). In vertebrates, CORT influences energy metabolism and resource allocation to multiple fitness traits (e.g. growth and morphology) and can be an important mediator of rapid adaptation to environmental stress, such as acidification. The moor frog, Rana arvalis, shows adaptive divergence in larval life-histories and predator defense traits along an acidification gradient in Sweden. Here we take a first step to understanding the role of CORT in this adaptive divergence. We conducted a fully factorial laboratory experiment and reared tadpoles from three populations (one acidic, one neutral and one intermediate pH origin) in two pH treatments (Acid versus Neutral pH) from hatching to metamorphosis. We tested how the populations differ in tadpole CORT profiles and how CORT is associated with tadpole life-history and morphological traits. RESULTS: We found clear differences among the populations in CORT profiles across different developmental stages, but only weak effects of pH treatment on CORT. Tadpoles from the acid origin population had, on average, lower CORT levels than tadpoles from the neutral origin population, and the intermediate pH origin population had intermediate CORT levels. Overall, tadpoles with higher CORT levels developed faster and had shorter and shallower tails, as well as shallower tail muscles. CONCLUSIONS: Our common garden results indicate among population divergence in CORT levels, likely reflecting acidification mediated divergent selection on tadpole physiology, concomitant to selection on larval life-histories and morphology. However, CORT levels were highly environmental context dependent. Jointly these results indicate a potential role for CORT as a mediator of multi-trait divergence along environmental stress gradients in natural populations. At the same time, the population level differences and high context dependency in CORT levels suggest that snapshot assessment of CORT in nature may not be reliable bioindicators of stress.


Asunto(s)
Corticosterona , Ranidae , Ácidos/farmacología , Adaptación Fisiológica , Animales , Anuros/metabolismo , Corticosterona/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Larva/genética , Ranidae/genética
17.
J Exp Biol ; 225(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34913467

RESUMEN

Physiological systems often have emergent properties but the effects of genetic variation on physiology are often unknown, which presents a major challenge to understanding the mechanisms of phenotypic evolution. We investigated whether genetic variants in haemoglobin (Hb) that contribute to high-altitude adaptation in deer mice (Peromyscus maniculatus) are associated with evolved changes in the control of breathing. We created F2 inter-population hybrids of highland and lowland deer mice to test for phenotypic associations of α- and ß-globin variants on a mixed genetic background. Hb genotype had expected effects on Hb-O2 affinity that were associated with differences in arterial O2 saturation in hypoxia. However, high-altitude genotypes were also associated with breathing phenotypes that should contribute to enhancing O2 uptake in hypoxia. Mice with highland α-globin exhibited a more effective breathing pattern, with highland homozygotes breathing deeper but less frequently across a range of inspired O2, and this difference was comparable to the evolved changes in breathing pattern in deer mouse populations native to high altitude. The ventilatory response to hypoxia was augmented in mice that were homozygous for highland ß-globin. The association of globin variants with variation in breathing phenotypes could not be recapitulated by acute manipulation of Hb-O2 affinity, because treatment with efaproxiral (a synthetic drug that acutely reduces Hb-O2 affinity) had no effect on breathing in normoxia or hypoxia. Therefore, adaptive variation in Hb may have unexpected effects on physiology in addition to the canonical function of this protein in circulatory O2 transport.


Asunto(s)
Altitud , Peromyscus , Animales , Variación Genética , Hemoglobinas/genética , Hipoxia/genética , Ratones , Oxígeno/metabolismo , Peromyscus/genética , Respiración
18.
BMC Biol ; 19(1): 128, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158035

RESUMEN

BACKGROUND: Complex organismal traits are often the result of multiple interacting genes and sub-organismal phenotypes, but how these interactions shape the evolutionary trajectories of adaptive traits is poorly understood. We examined how functional interactions between cardiorespiratory traits contribute to adaptive increases in the capacity for aerobic thermogenesis (maximal O2 consumption, V̇O2max, during acute cold exposure) in high-altitude deer mice (Peromyscus maniculatus). We crossed highland and lowland deer mice to produce F2 inter-population hybrids, which expressed genetically based variation in hemoglobin (Hb) O2 affinity on a mixed genetic background. We then combined physiological experiments and mathematical modeling of the O2 transport pathway to examine the links between cardiorespiratory traits and V̇O2max. RESULTS: Physiological experiments revealed that increases in Hb-O2 affinity of red blood cells improved blood oxygenation in hypoxia but were not associated with an enhancement in V̇O2max. Sensitivity analyses performed using mathematical modeling showed that the influence of Hb-O2 affinity on V̇O2max in hypoxia was contingent on the capacity for O2 diffusion in active tissues. CONCLUSIONS: These results suggest that increases in Hb-O2 affinity would only have adaptive value in hypoxic conditions if concurrent with or preceded by increases in tissue O2 diffusing capacity. In high-altitude deer mice, the adaptive benefit of increasing Hb-O2 affinity is contingent on the capacity to extract O2 from the blood, which helps resolve controversies about the general role of hemoglobin function in hypoxia tolerance.


Asunto(s)
Altitud , Peromyscus , Animales , Hemoglobinas , Hipoxia/genética , Oxígeno , Termogénesis
19.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R800-R811, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33826424

RESUMEN

Hypoxia at high altitude can constrain metabolism and performance and can elicit physiological adjustments that are deleterious to health and fitness. Hypoxic pulmonary hypertension is a particularly serious and maladaptive response to chronic hypoxia, which results from vasoconstriction and pathological remodeling of pulmonary arteries, and can lead to pulmonary edema and right ventricle hypertrophy. We investigated whether deer mice (Peromyscus maniculatus) native to high altitude have attenuated this maladaptive response to chronic hypoxia and whether evolved changes or hypoxia-induced plasticity in pulmonary vasculature might impact ventilation-perfusion (V-Q) matching in chronic hypoxia. Deer mouse populations from both high and low altitudes were born and raised to adulthood in captivity at sea level, and various aspects of lung function were measured before and after exposure to chronic hypoxia (12 kPa O2, simulating the O2 pressure at 4,300 m) for 6-8 wk. In lowlanders, chronic hypoxia increased right ventricle systolic pressure (RVSP) from 14 to 19 mmHg (P = 0.001), in association with thickening of smooth muscle in pulmonary arteries and right ventricle hypertrophy. Chronic hypoxia also impaired V-Q matching in lowlanders (measured at rest using SPECT-CT imaging), as reflected by increased log SD of the perfusion distribution (log SDQ) from 0.55 to 0.86 (P = 0.031). In highlanders, chronic hypoxia had attenuated effects on RVSP and no effects on smooth muscle thickness, right ventricle mass, or V-Q matching. Therefore, evolved changes in lung function help attenuate maladaptive plasticity and contribute to hypoxia tolerance in high-altitude deer mice.


Asunto(s)
Hipertensión Pulmonar/fisiopatología , Hipoxia/fisiopatología , Consumo de Oxígeno/fisiología , Oxígeno/metabolismo , Peromyscus/metabolismo , Aclimatación/fisiología , Animales , Hipertensión Pulmonar/metabolismo , Pulmón/fisiopatología , Ratones , Perfusión , Peromyscus/fisiología
20.
J Comp Physiol B ; 191(6): 1097-1110, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33721034

RESUMEN

Explaining variation in the fitness of organisms is a fundamental goal in evolutionary ecology. Maintenance energy metabolism is the minimum energy required to sustain biological processes at rest (resting metabolic rate: RMR) and is proposed to drive or constrain fitness of animals; however, this remains debated. Hypotheses have been proposed as to why fitness might increase with RMR (the 'increased intake' or 'performance' hypothesis), decrease with RMR (the 'compensation' or 'allocation' hypothesis), or vary among species and environmental contexts (the 'context dependent' hypothesis). Here, we conduct a systematic review and meta-analysis of the literature, finding 114 studies with 355 relationships between RMR and traits that may be related to fitness. We show that individuals with relatively high RMR generally have high fitness overall, which might be supported by an increased energy intake. However, fitness proxies are not interchangeable: the nature of the RMR-fitness relationship varied substantially depending on the specific trait in question, and we found no consistent relationship between RMR and those traits most closely linked with actual fitness (i.e., lifetime reproductive success). We hypothesise that maintaining high RMR is not costly when resources are unlimited, and we propose ideas for future studies to identify mechanisms underlying RMR-fitness relationships.


Asunto(s)
Metabolismo Basal , Metabolismo Energético , Animales , Ingestión de Energía , Humanos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA