Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
BMC Genomics ; 25(1): 758, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095734

RESUMEN

To reveal the molecular function of elongation family of very long chain fatty acids(ELO) protein in Cyrtotrachelus buqueti, we have identified 15 ELO proteins from C.buqueti genome. 15 CbuELO proteins were located on four chromosomes. Their isoelectric points ranged from 9.22 to 9.68, and they were alkaline. These CbuELO proteins were stable and hydrophobic. CbuELO proteins had transmembrane movement, and had multiple phosphorylation sites. The secondary structure of CbuELO proteins was mainly α-helix. A total of 10 conserved motifs were identified in CbuELO protein family. Phylogenetic analysis showed that molecular evolutionary relationships of ELO protein family between C. buqueti and Tribolium castaneum was the closest. Developmental transcriptome analysis indicated that CbuELO10, CbuELO13 and CbuELO02 genes were key enzyme genes that determine the synthesis of very long chain fatty acids in pupae and eggs, CbuELO6 and CbuELO7 were that in the male, and CbuELO8 and CbuELO11 were that in the larva. Transcriptome analysis under different temperature conditions indicated that CbuELO1, CbuELO5, CbuELO12 and CbuELO14 participated in regulating temperature stress responses. Transcriptome analysis at different feeding times showed CbuELO12 gene expression level in all feeding time periods was significant downregulation. The qRT-PCR experiment verified expression level changes of CbuELO gene family under different temperature and feeding time conditions. Protein-protein interaction analysis showed that 9 CbuELO proteins were related to each other, CbuELO1, CbuELO4 and CbuELO12 had more than one interaction relationship. These results lay a theoretical foundation for further studying its molecular function during growth and development of C. buqueti.


Asunto(s)
Evolución Molecular , Ácidos Grasos , Proteínas de Insectos , Filogenia , Animales , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Ácidos Grasos/metabolismo , Escarabajos/genética , Escarabajos/metabolismo , Perfilación de la Expresión Génica , Genoma de los Insectos , Familia de Multigenes
2.
PeerJ ; 12: e17808, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099650

RESUMEN

Stress-associated proteins (SAPs) are known to play an important role in plant responses to abiotic stresses. This study systematically identified members of the sunflower SAP gene family using sunflower genome data. The genes of the sunflower SAP gene family were analyzed using bioinformatic methods, and gene expression was assessed through fluorescence quantification (qRT-PCR) under salt and drought stress. A comprehensive analysis was also performed on the number, structure, collinearity, and phylogeny of seven Compositae species and eight other plant SAP gene families. The sunflower genome was found to have 27 SAP genes, distributed across 14 chromosomes. The evolutionary analysis revealed that the SAP family genes could be divided into three subgroups. Notably, the annuus variety exhibited amplification of the SAP gene for Group 3. Among the Compositae species, C. morifolium demonstrated the highest number of collinearity gene pairs and the closest distance on the phylogenetic tree, suggesting relative conservation in the evolutionary process. An analysis of gene structure revealed that Group 1 exhibited the most complex gene structure, while the majority of HaSAP genes in Group 2 and Group 3 lacked introns. The promoter analysis revealed the presence of cis-acting elements related to ABA, indicating their involvement in stress responses. The expression analysis indicated the potential involvement of 10 genes (HaSAP1, HaSAP3, HaSAP8, HaSAP10, HaSAP15, HaSAP16, HaSAP21, HaSAP22, HaSAP23, and HaSAP26) in sunflower salt tolerance. The expression of these 10 genes were then examined under salt and drought stress using qRT-PCR, and the tissue-specific expression patterns of these 10 genes were also analyzed. HaSAP1, HaSAP21, and HaSAP23 exhibited consistent expression patterns under both salt and drought stress, indicating these genes play a role in both salt tolerance and drought resistance in sunflower. The findings of this study highlight the significant contribution of the SAP gene family to salt tolerance and drought resistance in sunflower.


Asunto(s)
Sequías , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Helianthus , Familia de Multigenes , Filogenia , Proteínas de Plantas , Helianthus/genética , Helianthus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Genoma de Planta , Estrés Salino/genética
3.
Digit Health ; 10: 20552076241271722, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114112

RESUMEN

Objective: Current studies lack a comprehensive understanding of the environmental factors influencing type 2 diabetes, hindering an in-depth grasp of the overall etiology. To address this gap, we utilized network science tools to highlight research trends, knowledge structures, and intricate relationships among factors, offering a new perspective for a profound understanding of the etiology. Methods: The Web of Science database was employed to retrieve documents relevant to environmental risk factors in type 2 diabetes from 2012 to 2024. Bibliometric analysis using Microsoft Excel and OriginPro provided a detailed scientific production profile, including articles, journals, countries, and authors. Co-occurrence analysis was employed to determine the collaboration state and knowledge structures, utilizing social network tools such as Gephi, Tableau, and R Studio. Additionally, theme evolutionary analysis was conducted using SciMAT to offer insights into research trends. Results: The publications and themes related to environmental factors in type 2 diabetes have consistently risen, shaping a well-established research domain. Lifestyle environmental factors, particularly diet and nutrition, stand out as the most represented and rapidly growing topics. Key focal hotspots include sedentary and digital behavior, PM2.5, ethnicity and socioeconomic status, traffic and greenspace, and depression. The theme evolutionary analysis revealed three distinct paths: (1) oxidative stress-air pollutants-PM2.5-air pollutants; (2) calcium-metabolic syndrome-cardiovascular disease; and (3) polychlorinated biphenyls (PCBs)-persistent organic pollutants (POPs)-obesity. Conclusions: Digital behavior signifies a novel approach for preventing and managing type 2 diabetes. The influence of PM2.5 and calcium on oxidative stress and abnormal vascular contraction is intricately linked to microvascular diabetes complications. The transition from PCBs and POPs to obesity underscores the disruption of endocrine function by chemicals, elevating the risk of diabetes. Future studies should explore the connections between environmental factors, microvascular complications, and long-term outcomes in diabetes.

4.
Genes (Basel) ; 15(8)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39202396

RESUMEN

The mitochondrial cytochrome c oxidase subunit I (COI) genes of six endangered goose breeds (Xupu, Yangjiang, Yan, Wuzong, Baizi, and Lingxian) were sequenced and compared to assess the genetic diversity of endangered goose breeds. By constructing phylogenetic trees and evolutionary maps of genetic relationships, the affinities and degrees of genetic variations among the six different breeds were revealed. A total of 92 polymorphic sites were detected in the 741 bp sequence of the mtDNA COI gene after shear correction, and the GC content of the processed sequence (51.11%) was higher than that of the AT content (48.89%). The polymorphic loci within the populations of five of the six breeds (Xupu, Yangjiang, Yan, Baizi, and Lingxian) were more than 10, the haplotype diversity > 0.5, and the nucleotide diversity (Pi) > 0.005, with the Baizi geese being the exception. A total of 35 haplotypes were detected based on nucleotide variation among sequences, and the goose breed haplotypes showed a central star-shaped dispersion; the FST values were -0.03781 to 0.02645, The greatest genetic differentiation (FST = 0.02645) was observed in Yan and Wuzong breeds. The most frequent genetic exchange (Nm > 15.00) was between the Wuzong and Yangjiang geese. An analysis of molecular variance showed that the population genetic variation mainly came from within the population; the base mismatch differential distribution analysis of the goose breeds and the Tajima's D and Fu's Fs neutral detection of the historical occurrence dynamics of their populations were negative (p > 0.10). The distribution curve of the base mismatches showed a multimodal peak, which indicated that the population tended to be stabilised. These results provide important genetic information for the conservation and management of endangered goose breeds and a scientific basis for the development of effective conservation strategies.


Asunto(s)
Complejo IV de Transporte de Electrones , Especies en Peligro de Extinción , Gansos , Haplotipos , Filogenia , Animales , Gansos/genética , Complejo IV de Transporte de Electrones/genética , Variación Genética , ADN Mitocondrial/genética , Cruzamiento , China , Mitocondrias/genética
5.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39201588

RESUMEN

The R2R3-MYB gene family represents a widely distributed class of plant transcription factors. This gene family plays an important role in many aspects of plant growth and development. However, the characterization of R2R3-MYB genes present in the genome of Coptis teeta has not been reported. Here, we describe the bioinformatic identification and characterization of 88 R2R3-MYB genes in this species, and the identification of members of the R2R3-MYB gene family in species within the order Ranales most closely related to Coptis teeta. The CteR2R3-MYB genes were shown to exhibit a higher degree of conservation compared to those of A. thaliana, as evidenced by phylogeny, conserved motifs, gene structure, and replication event analyses. Cis-acting element analysis confirmed the involvement of CteR2R3-MYB genes in a variety of developmental processes, including growth, cell differentiation, and reproduction mediated by hormone synthesis. In addition, through homology comparisons with the equivalent gene family in A. thaliana, protein regulatory network prediction and transcriptome data analysis of floral organs across three time periods of flower development, 17 candidate genes were shown to exhibit biased expression in two floral phenotypes of C. teeta. This suggests their potential involvement in floral development (anther development) in this species.


Asunto(s)
Evolución Molecular , Flores , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Factores de Transcripción , Flores/genética , Flores/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Genoma de Planta , Perfilación de la Expresión Génica , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo
6.
Int J Biol Macromol ; 278(Pt 3): 134820, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39154695

RESUMEN

Docynia delavayi is an economically significant fruit species with a high market potential due to the special aroma of its fruit. Here, a 653.34 Mb high-quality genome of D. delavayi was first reported, of which 93.8 % of the sequences (612.98 Mb) could be anchored to 17 chromosomes, containing 48,325 protein-coding genes. Ks analysis proved that two whole genome duplication (WGD) events occurred in D. delavayi, resulting in the expansion of genes associated with terpene biosynthesis, which promoted its fruit-specific aroma production. Combined multi-omics analysis, α-farnesene was detected as the most abundant aroma substance emitted by D. delavayi fruit during storage, meanwhile one α-farnesene synthase gene (AFS) and 15 transcription factors (TFs) were identified as the candidate genes potentially involved in α-farnesene biosynthesis. Further studies for the regulation network of α-farnesene biosynthesis revealed that DdebHLH, DdeERF1 and DdeMYB could activate the transcription of DdeAFS. To our knowledge, it is the first report that MYB TF plays a regulatory role in α-farnesene biosynthesis, which will greatly facilitate future breeding programs for D. delavayi.


Asunto(s)
Genoma de Planta , Sesquiterpenos , Sesquiterpenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Cromosomas de las Plantas/genética , Calycanthaceae/genética , Calycanthaceae/metabolismo , Filogenia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vías Biosintéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/genética , Frutas/metabolismo
7.
Plants (Basel) ; 13(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39204679

RESUMEN

Whirly transcription factors are unique to plants, playing pivotal roles in managing leaf senescence and DNA repair. While present in various species, their identification in Brassica napus L. (B. napus) and their differences during hybridization and polyploidy has been elusive. Addressing this, our study delves into the functional and evolutionary aspects of the Whirly gene family during the emergence of B. napus, applying bioinformatics and comparative genomics. We identified six Whirly genes in B. napus. In Brassica rapa L. (B. rapa), three Whirly genes were identified, while four were found in Brassica oleracea L. (B. oleracea). The results show that the identified Whirly genes not only have homology but also share the same chromosomal positions. Phylogenetic analysis indicates that Whirly genes in monocots and dicots exhibit high conservation. In the evolutionary process, the Whirly gene family in B. napus experienced events of intron/exon loss. Collinearity insights point to intense purifying selection post-duplication. Promoter regions housed diverse cis-acting elements linked to photoresponse, anaerobic initiation, and methyl jasmonate responsiveness. Notably, elements tied to abscisic acid signaling and meristem expression were prominent in diploid ancestors but subdued in tetraploid B. napus. Tissue-specific expression unveiled analogous patterns within subfamily genes. Subsequent qRT-PCR analysis spotlighted BnAWHY1b's potential significance in abiotic stress response, particularly drought. These findings can be used as theoretical foundations to understand the functions and effects of the Whirly gene family in B. napus, providing references for the molecular mechanism of gene evolution between this species and its diploid ancestors.

8.
Life (Basel) ; 14(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39063563

RESUMEN

In August 2023, we identified a case of dengue fever in Yantai City, which was imported from Xishuangbanna, China. To investigate its evolutionary history and population dynamics, we utilized the metatranscriptomic method to obtain the virus' whole genome sequence. Together with 367 selected dengue virus whole genome sequences from the NCBI database, we constructed a time-scaled Maximum Clade Credibility (MCC) tree. We found that our sequence exhibited a high homology with a sequence of DENV1 (OR418422.1) uploaded by the Guangzhou Center for Disease Control and Prevention in 2023, with an estimated divergence time around 2019 (95% HPD: 2017-2023), coinciding with the emergence of SARS-CoV-2. The DENV strain obtained in this study belongs to genotype I of DENV1. Its ancestors experienced a global epidemic around 2005 (95% HPD: 2002-2010), and its progeny strains have spread extensively in Southeast Asia and China since around 2007 (95% HPD: 2006-2011). The Bayesian skyline plot indicates that the current population of DENV1 has not been affected by SARS-CoV-2 and is expected to maintain stable transmission. Hence, it is imperative to track and monitor its epidemiological trends and genomic variations to prevent potential large-scale outbreaks in the post-SARS-CoV-2 era.

9.
Mol Biotechnol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044065

RESUMEN

A comprehensive examination of Aedes aegypti's proteome to detect key proteins that can be targeted with small molecules can disrupt blood feeding and disease transmission. However, research currently only focuses on finding repellent-like compounds, limiting studies on identifying unexplored proteins in its proteome. High-throughput analysis generates vast amounts of data, raising concerns about accessibility and usability. Establishing a dedicated database is a solution, centralizing information on identified proteins, functions, and modeled structures for easy access and research. This study focuses on scrutinizing key proteins in A. aegypti, modeling their structures using RaptorX standalone tool, identification of druggable binding sites using BiteNet, validating the models via Ramachandran plot studies and refining them via 50-ns molecular dynamic simulations using Schrodinger Maestro. By analyzing ~ 18 k proteins in the proteome of A. aegypti in our previous studies, all proteins involved in the light and dark circadian rhythm of the mosquito, inclusive of proteins in blood feeding, metabolism, etc. were chosen for the current study. The outcome is UAAPRD, a unique repository housing information on hundreds of previously unmodeled and un-simulated mosquito proteins. This robust MYSQL database ( https://uaaprd.onrender.com/user ) houses data on 309 modeled & simulated proteins of A. aegypti. It allows users to obtain protein data, view evolutionary analysis data of the protein categories, visualize proteins of interest, and send request to screen against the pharmacophore models present in UAAPRD against ligand of interest. This study offers crucial insights for developing targeted studies, which will ultimately contribute to more effective vector control strategies.

11.
bioRxiv ; 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38903115

RESUMEN

Microproteins encoded by small open reading frames (smORFs) comprise the "dark matter" of proteomes. Although functional microproteins were identified in diverse organisms from all three domains of life, bacterial smORFs remain poorly characterized. In this comprehensive study of intergenic smORFs (ismORFs, 15-70 codons) in 5,668 bacterial genomes of the family Enterobacteriaceae, we identified 67,297 clusters of ismORFs subject to purifying selection. The ismORFs mainly code for hydrophobic, potentially transmembrane, unstructured, or minimally structured microproteins. Using AlphaFold Multimer, we predicted interactions of some of the predicted microproteins encoded by transcribed ismORFs with proteins encoded by neighboring genes, revealing the potential of microproteins to regulate the activity of various proteins, particularly, under stress. We compiled a catalog of predicted microprotein families with different levels of evidence from synteny analysis, structure prediction, and transcription and translation data. This study offers a resource for investigation of biological functions of microproteins.

12.
Front Vet Sci ; 11: 1337461, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38746930

RESUMEN

Porcine circovirus (PCV) typically causes severe immune suppression in pigs, leading to mixed clinical infections with various pathogens that can cause significant harm to the pig industry. PCV has four subgenotypes, with PCV4 being an emerging virus that requires investigation due to its potential for epidemic outbreaks. Therefore, there is a need to develop a method that can detect all four PCV strains simultaneously. In this study, four pairs of specific primers and TaqMan probes were designed based on the conserved sequence of the PCV1-4 ORF2 gene to establish a PCV1-4 TaqMan multiplex real-time quantitative PCR method. The novel method was compared to six commercial testing kits for its efficacy. Then, a total of 595 mixed samples of spleen and lymph node collected from 12 districts in Chengdu from July to December 2021 were tested using the novel method. The results showed that the novel PCV1-4 TaqMan multiplex real-time quantitative PCR detection method has satisfied specificity, sensitivity, and repeatability. The positive rates of PCV1, PCV2, and PCV3 in Chengdu were 2.18%, 31.60%, and 15.29%, respectively, while no positive PCV4 was detected. The mixed infection rate of PCV2 and PCV3 was 5.21%. Our novel method may be as a potential method for PCV1-4 detection. Currently, PCV2 is the main epidemic PCV subtype in Chengdu, while the potential threat of PCV4 should also be considered.

13.
Mol Biol Rep ; 51(1): 618, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38705956

RESUMEN

BACKGROUND: Astragalus membranaceus is a plant of the Astragalus genus, which is used as a traditional Chinese herbal medicine with extremely high medicinal and edible value. Astragalus mongholicus, as one of the representative medicinal materials with the same origin of medicine and food, has a rising market demand for its raw materials, but the quality is different in different production areas. Growth-regulating factors (GRF) are transcription factors unique to plants that play important roles in plant growth and development. Up to now, there is no report about GRF in A. mongholicus. METHODS AND RESULTS: This study conducted a genome-wide analysis of the AmGRF gene family, identifying a total of nine AmGRF genes that were classified into subfamily V based on phylogenetic relationships. In the promoter region of the AmGRF gene, we successfully predicted cis-elements that respond to abiotic stress, growth, development, and hormone production in plants. Based on transcriptomic data and real-time quantitative polymerase chain reaction (qPCR) validation, the results showed that AmGRFs were expressed in the roots, stems, and leaves, with overall higher expression in leaves, higher expression of AmGRF1 and AmGRF8 in roots, and high expression levels of AmGRF1 and AmGRF9 in stems. CONCLUSIONS: The results of this study provide a theoretical basis for the further exploration of the functions of AmGRFs in plant growth and development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Factores de Transcripción , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Astragalus propinquus/genética , Astragalus propinquus/metabolismo , Familia de Multigenes , Genoma de Planta , Perfilación de la Expresión Génica/métodos , Regiones Promotoras Genéticas/genética , Planta del Astrágalo/genética , Planta del Astrágalo/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Estrés Fisiológico/genética , Transcriptoma/genética , Reguladores del Crecimiento de las Plantas/metabolismo
14.
Heliyon ; 10(9): e30222, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38737246

RESUMEN

After the first outbreak, SARS-CoV-2 infection continues to occur due to the emergence of new variants. There is limited information available on the comparative evaluation of evolutionary characteristics of SARS-CoV-2 among different countries over time, and its relatedness to epidemiological and socio-environmental factors within those countries. We assessed comparative Bayesian evolutionary characteristics for SARS-CoV-2 in eight countries from 2020 to 2022 using BEAST version 2.6.7. Additionally, the relatedness between virus evolution factors and both epidemiological and socio-environmental factors was analyzed using Pearson's correlation coefficient. The estimated substitution rates in the gene encoding S protein of SARS-CoV-2 exhibited a continuous increase from 2020 to 2022 and were divided into two distinct groups in 2022 (p value < 0.05). Effective population size (Ne) generally showed decreased patterns by time. Notably, the change rates of the substitution rates were negatively correlated with the cumulative vaccination rates in 2021. A strict and rapid vaccination policy in the United Arab Emirates dramatically reduced the evolution of the virus, compared to other countries. Also, the average yearly temperature in countries were negatively correlated with the substitution rates. The changes of six epitopes in SARS-CoV-2 were related to various socio-environmental factors. We figured out comparative virus evolutionary traits and the association of epidemiological and socio-environmental factors especially cumulative vaccination rates and average temperature.

15.
BMC Genomics ; 25(1): 339, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575860

RESUMEN

BACKGROUND: Cetaceans, having experienced prolonged adaptation to aquatic environments, have undergone evolutionary changes in their respiratory systems. This process of evolution has resulted in the emergence of distinctive phenotypic traits, notably the abundance of elastic fibers and thickened alveolar walls in their lungs, which may facilitate alveolar collapse during diving. This structure helps selective exchange of oxygen and carbon dioxide, while minimizing nitrogen exchange, thereby reducing the risk of DCS. Nevertheless, the scientific inquiry into the mechanisms through which these unique phenotypic characteristics govern the diving behavior of marine mammals, including cetaceans, remains unresolved. RESULTS: This study entails an evolutionary analysis of 42 genes associated with pulmonary fibrosis across 45 mammalian species. Twenty-one genes in cetaceans exhibited accelerated evolution, featuring specific amino acid substitutions in 14 of them. Primarily linked to the development of the respiratory system and lung morphological construction, these genes play a crucial role. Moreover, among marine mammals, we identified eight genes undergoing positive selection, and the evolutionary rates of three genes significantly correlated with diving depth. Specifically, the SFTPC gene exhibited convergent amino acid substitutions. Through in vitro cellular experiments, we illustrated that convergent amino acid site mutations in SFTPC contribute positively to pulmonary fibrosis in marine mammals, and the presence of this phenotype can induce deep alveolar collapse during diving, thereby reducing the risk of DCS during diving. CONCLUSIONS: The study unveils pivotal genetic signals in cetaceans and other marine mammals, arising through evolution. These genetic signals may influence lung characteristics in marine mammals and have been linked to a reduced risk of developing DCS. Moreover, the research serves as a valuable reference for delving deeper into human diving physiology.


Asunto(s)
Fibrosis Pulmonar , Animales , Humanos , Cetáceos/genética , Cetáceos/metabolismo , Pulmón/metabolismo , Mamíferos/metabolismo , Oxígeno/metabolismo
16.
Sci Rep ; 14(1): 7610, 2024 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-38556556

RESUMEN

AP2 (APETALA2)/EREBP (ethylene-responsive element-binding protein), cytochrome c oxidase (COX) and nonspecific lipid transfer proteins (LTP) play important roles in the response to drought stress. This is the first study to identify the COX gene in Zea mays L. via genome-wide analysis. The qRT‒PCR results indicated that AP2/EREBP, COX and LTP were downregulated, with fold changes of 0.84, 0.53 and 0.31, respectively, after 12 h of drought stress. Genome-wide analysis identified 78 AP2/EREBP, 6 COX and 10 LTP genes in Z. mays L. Domain analysis confirmed the presence of the AP2 domain, Cyt_c_Oxidase_Vb domain and nsLTP1 in the AP2/EREBP, COX and LTP proteins, respectively. The AP2/EREBP protein family (AP2) includes five different domain types: the AP2/ERF domain, the EREBP-like factor (EREBP), the ethylene responsive factor (ERF), the dehydration responsive element binding protein (DREB) and the SHN SHINE. Synteny analysis of the AP2/EREBP, COX and LTP genes revealed collinearity orthologous relationships in O. sativa, H. vulgare and A. thaliana. AP2/EREBP genes were found on the 10 chromosomes of Z. mays L. COX genes were found on chromosomes 1, 3, 4, 5, 7 and 8. LTP genes were found on chromosomes 1, 3, 6, 8, 9 and 10. In the present study, the Ka/Ks ratios of the AP2/EREBP paralogous pairs indicated that the AP2/EREBP genes were influenced primarily by purifying selection, which indicated that the AP2/EREBP genes received strong environmental pressure during evolution. The Ka/Ks ratios of the COX-3/COX-4 paralogous pairs indicate that the COX-3/COX-4 genes were influenced primarily by Darwinian selection (driving change). For the LTP genes, the Ka/Ks ratios of the LTP-1/LTP-10, LTP-5/LTP-3 and LTP-4/LTP-8 paralogous pairs indicate that these genes were influenced primarily by purifying selection, while the Ka/Ks ratios of the LTP-2/LTP-6 paralogous pairs indicate that these genes were influenced primarily by Darwinian selection. The duplication time of the AP2/EREBP paralogous gene pairs in Z. mays L. ranged from approximately 9.364 to 100.935 Mya. The duplication time of the COX-3/COX-4 paralogous gene pair was approximately 5.217 Mya. The duplication time of the LTP paralogous gene pairs ranged from approximately 19.064 to 96.477 Mya. The major focus of research is to identify the genes that are responsible for drought stress tolerance to improve maize for drought stress tolerance. The results of the present study will improve the understanding of the functions of the AP2/EREBP, COX and LTP genes in response to drought stress.


Asunto(s)
Complejo IV de Transporte de Electrones , Zea mays , Zea mays/genética , Zea mays/metabolismo , Complejo IV de Transporte de Electrones/genética , Sequías , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Familia de Multigenes , Etilenos , Regulación de la Expresión Génica de las Plantas
17.
Gene ; 914: 148404, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38521113

RESUMEN

Protein domains with conserved amino acid sequences and uncharacterized functions are called domains of unknown function (DUF). The DUF640 gene family plays a crucial role in plant growth, particularly in light regulation, floral organ development, and fruit development. However, there exists a lack of systematic understanding of the evolutionary relationships and functional differentiation of DUF640 within the Oryza genus. In this study, 61 DUF640 genes were identified in the Oryza genus. The expression of DUF640s is induced by multiple hormonal stressors including abscisic acid (ABA), cytokinin (CK), ethylene (ETH), and indole-3-acetic acid (IAA). Specifically, OiDUF640-10 expression significantly increased after ETH treatment. Transgenic experiments showed that overexpressing OiDUF640-10 lines were sensitive to ETH, and seedling length was obstructed. Evolutionary analysis revealed differentiation of the OiDUF640-10 gene in O. sativa ssp. indica and japonica varieties, likely driven by natural selection during the domestication of cultivated rice. These results indicate that OiDUF640-10 plays a vital role in the regulation of rice seedling length.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Evolución Molecular , Ácidos Indolacéticos/metabolismo , Genes de Plantas , Plantones/genética , Plantones/crecimiento & desarrollo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Etilenos/metabolismo
18.
BMC Genomics ; 25(1): 285, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500026

RESUMEN

BACKGROUND: 'Taishuu' has a crisp texture, abundant juice, and sweet flavor with hints of cantaloupe. The availability of mitochondrial genome data of Diospyros species is far from the known number of species. RESULTS: The sequencing data were assembled into a closed circular mitochondrial chromosome with a 421,308 bp length and a 45.79% GC content. The mitochondrial genome comprised 40 protein-coding, 24 tRNA, and three rRNA genes. The most common codons for arginine (Arg), proline (Pro), glycine (Gly), tryptophan (Trp), valine (Val), alanine (Ala), and leucine (Leu) were AGA, CCA, GGA, UGG, GUA, GCA, and CUA, respectively. The start codon for cox1 and nad4L protein-coding genes was ACG (ATG), whereas the remaining protein-coding genes started with ATG. There are four types of stop codons: CGA, TAA, TAG, and TGA, with TAA being the most frequently used stop codon (45.24%). In the D. kaki Thunb. 'Taishuu' mitochondrial genome, a total of 645 repeat sequences were identified, including 125 SSRs, 7 tandem repeats, and 513 dispersed repeats. Collinearity analysis revealed a close relationship between D. kaki Thunb. 'Taishuu' and Diospyros oleifera, with conserved homologous gene fragments shared among these species in large regions of the mitochondrial genome. The protein-coding genes ccmB and nad4L were observed to undergo positive selection. Analysis of homologous sequences between chloroplasts and mitochondria identified 28 homologous segments, with a total length of 24,075 bp, accounting for 5.71% of the mitochondrial genome. These homologous segments contain 8 annotated genes, including 6 tRNA genes and 2 protein-coding genes (rrn18 and ccmC). There are 23 homologous genes between chloroplasts and nuclei. Mitochondria, chloroplasts, and nuclei share two homologous genes, which are trnV-GAC and trnW-CCA. CONCLUSION: In conclusion, a high-quality chromosome-level draft genome for D. kaki was generated in this study, which will contribute to further studies of major economic traits in the genus Diospyros.


Asunto(s)
Diospyros , Genoma Mitocondrial , Diospyros/genética , Secuencias Repetitivas de Ácidos Nucleicos , Codón de Terminación , ARN de Transferencia/genética , Filogenia
19.
3 Biotech ; 14(4): 113, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38515867

RESUMEN

The plant-specific transcription factor gene family, YABBY, plays an important role in plant development and stress response. Although YABBY genes have been identified in numerous species, a comprehensive characterization of YABBYs in tea tree and oil tea has been lacking. In this study, ten and three YABBY genes were identified in Camellia sinensis and C. oleifera, respectively. YABBY proteins could be divided into five subfamilies. Most YABBY genes in the same clade had similar structures and conserved motifs. Protein evolutionary analysis revealed that FIL/YAB3 displayed high conservation in all positions, followed by INO, YAB2, YAB5, and CRC. Specific site analysis suggested that the YABBY family was polyphyletic during the evolution. Compared to C. oleifera, two segmentally duplicated gene pairs were formed in C. sinensis during recent WGD events generated 30.69 and 45.08 Mya, respectively. Cis-acting element indicated that most YABBY genes contain box4, ARE, and MYB elements. A total of 120 SSR loci were found within CsYABBYs, consisting of six types, while 48 SSR loci were identified within CoYABBY, consisting of three types. Transcriptome results revealed that CRC and INO clades were specifically expressed in floral organs. The expression of CsYABBY10 and CsYABBY5 was significantly up-regulated under drought and salt treatments, respectively, as confirmed by qRT-PCR. CoYABBY genes were more susceptible to salt stress, as CoYABBY3 increased by about 15-fold. Furthermore, functional differentiation may have occurred in duplicated genes. These discoveries provide important information for further research on YABBYs in tea tree and oil tea. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03940-9.

20.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338732

RESUMEN

PIN-formed (PIN) proteins-specific transcription factors that are widely distributed in plants-play a pivotal role in regulating polar auxin transport, thus influencing plant growth, development, and abiotic stress responses. Although the identification and functional validation of PIN genes have been extensively explored in various plant species, their understanding in woody plants-particularly the endangered species Phoebe bournei (Hemsl.) Yang-remains limited. P. bournei is an economically significant tree species that is endemic to southern China. For this study, we employed bioinformatics approaches to screen and identify 13 members of the PIN gene family in P. bournei. Through a phylogenetic analysis, we classified these genes into five sub-families: A, B, C, D, and E. Furthermore, we conducted a comprehensive analysis of the physicochemical properties, three-dimensional structures, conserved motifs, and gene structures of the PbPIN proteins. Our results demonstrate that all PbPIN genes consist of exons and introns, albeit with variations in their number and length, highlighting the conservation and evolutionary changes in PbPIN genes. The results of our collinearity analysis indicate that the expansion of the PbPIN gene family primarily occurred through segmental duplication. Additionally, by predicting cis-acting elements in their promoters, we inferred the potential involvement of PbPIN genes in plant hormone and abiotic stress responses. To investigate their expression patterns, we conducted a comprehensive expression profiling of PbPIN genes in different tissues. Notably, we observed differential expression levels of PbPINs across the various tissues. Moreover, we examined the expression profiles of five representative PbPIN genes under abiotic stress conditions, including heat, cold, salt, and drought stress. These experiments preliminarily verified their responsiveness and functional roles in mediating responses to abiotic stress. In summary, this study systematically analyzes the expression patterns of PIN genes and their response to abiotic stresses in P. bournei using whole-genome data. Our findings provide novel insights and valuable information for stress tolerance regulation in P. bournei. Moreover, the study offers significant contributions towards unraveling the functional characteristics of the PIN gene family.


Asunto(s)
Proteínas de Plantas , Estrés Fisiológico , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Reguladores del Crecimiento de las Plantas , Intrones/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Perfilación de la Expresión Génica/métodos , Genoma de Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA