Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Microbiol Biotechnol ; 34(9): 1-14, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39210613

RESUMEN

The gut microbiome is an important and the largest endocrine organ linked to the microbes of the GI tract. The bacterial, viral and fungal communities are key regulators of the health and disease status in a host at hormonal, neurological, immunological, and metabolic levels. The useful microbes can compete with microbes exhibiting pathogenic behavior by maintaining resistance against their colonization, thereby maintaining eubiosis. As diagnostic tools, metagenomic, proteomic and genomic approaches can determine various microbial markers in clinic for early diagnosis of colorectal cancer (CRC). Probiotics are live non-pathogenic microorganisms such as lactic acid bacteria, Bifidobacteria, Firmicutes and Saccharomyces that can help maintain eubiosis when administered in appropriate amounts. In addition, the type of dietary intake contributes substantially to the composition of gut microbiome. The use of probiotics has been found to exert antitumor effects at preclinical levels and promote the antitumor effects of immunotherapeutic drugs at clinical levels. Also, modifying the composition of gut microbiota by Fecal Microbiota Transplantation (FMT), and using live lactic acid producing bacteria such as Lactobacillus, Bifidobacteria and their metabolites (termed postbiotics) can contribute to immunomodulation of the tumor microenvironment. This can lead to tumor-preventive effects at early stages and antitumor effects after diagnosis of CRC. To conclude, probiotics are presumably found to be safe to use in humans and are to be studied further to promote their appliance at clinical levels for management of CRC.

2.
BMC Plant Biol ; 24(1): 692, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39030484

RESUMEN

The bacterial microbiome plays crucial role in plants' resistance to diseases, nutrient uptake and productivity. We examined the microbiome characteristics of healthy and unhealthy strawberry farms, focusing on soil (bulk soil, rhizosphere soil) and plant (roots and shoots). The relative abundance of most abundant taxa were correlated with the chemical soil properties and shoot niche revealed the least amount of significant correlations between the two. While alpha and beta diversities did not show differences between health groups, we identified a number of core taxa (16-59) and marker bacterial taxa for each healthy (Unclassified Tepidisphaerales, Ohtaekwangia, Hydrocarboniphaga) and dysbiotic (Udaeobacter, Solibacter, Unclassified Chitinophagales, Unclassified Nitrosomonadaceae, Nitrospira, Nocardioides, Tardiphaga, Skermanella, Pseudomonas, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Curtobacterium) niche. We also revealed selective pressure of strawberry rhizosphere soil and roots plants in unhealthy plantations increased stochastic ecological processes of bacterial microbiome assembly in shoots. Our findings contribute to understanding sustainable agriculture and plant-microbiome interactions.


Asunto(s)
Bacterias , Fragaria , Microbiota , Rizosfera , Microbiología del Suelo , Fragaria/microbiología , Bacterias/clasificación , Bacterias/genética , Raíces de Plantas/microbiología , Brotes de la Planta/microbiología , Granjas
3.
J Psychopharmacol ; 38(4): 353-361, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38532577

RESUMEN

BACKGROUND: The microbiota-gut-brain axis (MGBA) allows bidirectional crosstalk between the brain and gut microbiota (GM) and is believed to contribute to regulating mood/cognition/behaviour/metabolism/health and homeostasis. Manipulation of GM through faecal microbiota transplant (FMT) is a new, exciting and promising treatment for major depressive disorder (MDD). AIMS: This mini-review examines current research into GM and FMT as a therapy for depression. METHODS: Original research articles published in Medline/Cochrane Library/PubMed/EMBASE/PsycINFO databases/National Institute of Health website Clinicaltrials.gov/controlled-trials.com were searched. Full articles included in reference lists were evaluated. We summarise current data on GM and depression and discuss communication through the MGBA and the interaction of antidepressants and GM through this. We review compositions of dysbiosis in depressed cohorts, focusing on future directions in the treatment of MDD. RESULTS: Studies have demonstrated significant gut dysbiosis in depressed patients compared to healthy cohorts, with overgrowth of pro-inflammatory microbiota, reduction in anti-inflammatory species and reduced overall stability and taxonomic richness. FMT allows the introduction of healthy microbiota into the gastrointestinal tract, facilitating the restoration of eubiosis. CONCLUSION: The GM plays an integral role in human health and disease through its communication with the rest of the body via the MGBA. FMT may provide a means to transfer the healthy phenotype into the recipient and this concept in humans is attracting enormous attention as a prospective treatment for psychopathologies, such as MDD, in the future. It may be possible to manipulate the GM in a number of ways, but further research is needed to determine the exact likelihood and profiles involved in the development and amelioration of MDD in humans, as well as the long-term effects and potential risks of this procedure.


Asunto(s)
Eje Cerebro-Intestino , Trastorno Depresivo Mayor , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Humanos , Trasplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal/fisiología , Trastorno Depresivo Mayor/terapia , Trastorno Depresivo Mayor/microbiología , Eje Cerebro-Intestino/fisiología , Disbiosis/terapia , Animales , Antidepresivos/uso terapéutico
4.
AIMS Microbiol ; 10(1): 107-147, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525038

RESUMEN

The gut microbiota (GM), as a forgotten organ, refers to the microbial community that resides in the gastrointestinal tract and plays a critical role in a variety of physiological activities in different body organs. The GM affects its targets through neurological, metabolic, immune, and endocrine pathways. The GM is a dynamic system for which exogenous and endogenous factors have negative or positive effects on its density and composition. Since the mid-twentieth century, laboratory animals are known as the major tools for preclinical research; however, each model has its own limitations. So far, two main models have been used to explore the effects of the GM under normal and abnormal conditions: the isolated germ-free and antibiotic-treated models. Both methods have strengths and weaknesses. In many fields of host-microbe interactions, research on these animal models are known as appropriate experimental subjects that enable investigators to directly assess the role of the microbiota on all features of physiology. These animal models present biological model systems to either study outcomes of the absence of microbes, or to verify the effects of colonization with specific and known microbial species. This paper reviews these current approaches and gives advantages and disadvantages of both models.

5.
Nutrients ; 16(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38474745

RESUMEN

The desynchronization of physiological and behavioral mechanisms influences the gut microbiota and eating behavior in mammals, as shown in both rodents and humans, leading to the development of pathologies such as Type 2 diabetes (T2D), obesity, and metabolic syndrome. Recent studies propose resynchronization as a key input controlling metabolic cycles and contributing to reducing the risk of suffering some chronic diseases such as diabetes, obesity, or metabolic syndrome. In this analytical review, we present an overview of how desynchronization and its implications for the gut microbiome make people vulnerable to intestinal dysbiosis and consequent chronic diseases. In particular, we explore the eubiosis-dysbiosis phenomenon and, finally, propose some topics aimed at addressing chronotherapy as a key strategy in the prevention of chronic diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Síndrome Metabólico , Animales , Humanos , Microbioma Gastrointestinal/fisiología , Síndrome Metabólico/metabolismo , Disbiosis/prevención & control , Obesidad , Enfermedad Crónica , Mamíferos
6.
Microorganisms ; 11(8)2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37630678

RESUMEN

The gut microbiota has emerged as a key human health and disease determinant. However, there is a significant knowledge gap regarding the composition, diversity, and function of the gut microbiota, specifically in the African population. This scoping review aims to examine the existing literature on gut microbiota research conducted in Africa, providing an overview of the current knowledge and identifying research gaps. A comprehensive search strategy was employed to identify relevant studies. Databases including MEDLINE (PubMed), African Index Medicus (AIM), CINAHL (EBSCOhost), Science Citation index (Web of Science), Embase (Ovid), Scopus (Elsevier), WHO International Clinical Trials Registry Platform (ICTRP), and Google Scholar were searched for relevant articles. Studies investigating the gut microbiota in African populations of all age groups were included. The initial screening included a total of 2136 articles, of which 154 were included in this scoping review. The current scoping review revealed a limited number of studies investigating diseases of public health significance in relation to the gut microbiota. Among these studies, HIV (14.3%), colorectal cancer (5.2%), and diabetes mellitus (3.9%) received the most attention. The top five countries that contributed to gut microbiota research were South Africa (16.2%), Malawi (10.4%), Egypt (9.7%), Kenya (7.1%), and Nigeria (6.5%). The high number (n = 66) of studies that did not study any specific disease in relation to the gut microbiota remains a gap that needs to be filled. This scoping review brings attention to the prevalent utilization of observational study types (38.3%) in the studies analysed and emphasizes the importance of conducting more experimental studies. Furthermore, the findings reflect the need for more disease-focused, comprehensive, and population-specific gut microbiota studies across diverse African regions and ethnic groups to better understand the factors shaping gut microbiota composition and its implications for health and disease. Such knowledge has the potential to inform targeted interventions and personalized approaches for improving health outcomes in African populations.

7.
Nutrients ; 15(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37432248

RESUMEN

The human gastrointestinal (GI) tract hosts complex and dynamic populations of microorganisms (gut microbiota) in advantageous symbiosis with the host organism through sophisticated molecular cross-talk. The balance and diversification within microbial communities (eubiosis) are crucial for the immune and metabolic homeostasis of the host, as well as for inhibiting pathogen penetration. In contrast, compositional dysregulation of the microbiota (dysbiosis) is blamed for the determinism of numerous diseases. Although further advances in the so-called 'omics' disciplines are needed, dietary manipulation of the gut microbial ecosystem through biomodulators (prebiotics, probiotics, symbionts, and postbiotics) represents an intriguing target to stabilize and/or restore eubiosis. Recently, new approaches have been developed for the production of infant formulas supplemented with prebiotics (human milk oligosaccharides [HMOs], galacto-oligosaccharides [GOS], fructo-oligosaccharides [FOS]), probiotics, and postbiotics to obtain formulas that are nutritionally and biologically equivalent to human milk (closer to the reference).


Asunto(s)
Microbiota , Prebióticos , Lactante , Humanos , Factores Inmunológicos , Reacciones Cruzadas , Suplementos Dietéticos
8.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982303

RESUMEN

The human gut microbiome plays a crucial role in human health and has been a focus of increasing research in recent years. Omics-based methods, such as metagenomics, metatranscriptomics, and metabolomics, are commonly used to study the gut microbiome because they provide high-throughput and high-resolution data. The vast amount of data generated by these methods has led to the development of computational methods for data processing and analysis, with machine learning becoming a powerful and widely used tool in this field. Despite the promising results of machine learning-based approaches for analyzing the association between microbiota and disease, there are several unmet challenges. Small sample sizes, disproportionate label distribution, inconsistent experimental protocols, or a lack of access to relevant metadata can all contribute to a lack of reproducibility and translational application into everyday clinical practice. These pitfalls can lead to false models, resulting in misinterpretation biases for microbe-disease correlations. Recent efforts to address these challenges include the construction of human gut microbiota data repositories, improved data transparency guidelines, and more accessible machine learning frameworks; implementation of these efforts has facilitated a shift in the field from observational association studies to experimental causal inference and clinical intervention.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Reproducibilidad de los Resultados , Metagenómica/métodos , Aprendizaje Automático
9.
Pathogens ; 12(3)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36986329

RESUMEN

Gut alkaline phosphatases (AP) dephosphorylate the lipid moiety of endotoxin and other pathogen-associated-molecular patterns members, thus maintaining gut eubiosis and preventing metabolic endotoxemia. Early weaned pigs experience gut dysbiosis, enteric diseases and growth retardation in association with decreased intestinal AP functionality. However, the role of glycosylation in modulation of the weaned porcine gut AP functionality is unclear. Herein three different research approaches were taken to investigate how deglycosylation affected weaned porcine gut AP activity kinetics. In the first approach, weaned porcine jejunal AP isoform (IAP) was fractionated by the fast protein-liquid chromatography and purified IAP fractions were kinetically characterized to be the higher-affinity and lower-capacity glycosylated mature IAP (p < 0.05) in comparison with the lower-affinity and higher-capacity non-glycosylated pre-mature IAP. The second approach enzyme activity kinetic analyses showed that N-deglycosylation of AP by the peptide N-glycosidase-F enzyme reduced (p < 0.05) the IAP maximal activity in the jejunum and ileum and decreased AP affinity (p < 0.05) in the large intestine. In the third approach, the porcine IAP isoform-X1 (IAPX1) gene was overexpressed in the prokaryotic ClearColiBL21 (DE3) cell and the recombinant porcine IAPX1 was associated with reduced (p < 0.05) enzyme affinity and maximal enzyme activity. Therefore, levels of glycosylation can modulate plasticity of weaned porcine gut AP functionality towards maintaining gut microbiome and the whole-body physiological status.

10.
Phytopathology ; 113(8): 1369-1379, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36858028

RESUMEN

Despite the numerous benefits plants receive from probiotics, maintaining consistent results across applications is still a challenge. Cultivation-independent methods associated with reduced sequencing costs have considerably improved the overall understanding of microbial ecology in the plant environment. As a result, now, it is possible to engineer a consortium of microbes aiming for improved plant health. Such synthetic microbial communities (SynComs) contain carefully chosen microbial species to produce the desired microbiome function. Microbial biofilm formation, production of secondary metabolites, and ability to induce plant resistance are some of the microbial traits to consider when designing SynComs. Plant-associated microbial communities are not assembled randomly. Ecological theories suggest that these communities have a defined phylogenetic organization structured by general community assembly rules. Using machine learning, we can study these rules and target microbial functions that generate desired plant phenotypes. Well-structured assemblages are more likely to lead to a stable SynCom that thrives under environmental stressors as compared with the classical selection of single microbial activities or taxonomy. However, ensuring microbial colonization and long-term plant phenotype stability is still one of the challenges to overcome with SynComs, as the synthetic community may change over time with microbial horizontal gene transfer and retained mutations. Here, we explored the advances made in SynCom research regarding plant health, focusing on bacteria, as they are the most dominant microbial form compared with other members of the microbiome and the most commonly found in SynCom studies.

11.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36768570

RESUMEN

This in vivo study in mice addresses the relationship between the biodiversity of the microbiota and the levels of S100B, a protein present in enteroglial cells, but also in foods such as milk. A positive significant correlation was observed between S100B levels and Shannon values, which was reduced after treatment with Pentamidine, an inhibitor of S100B function, indicating that the correlation was influenced by the modulation of S100B activity. Using the bootstrap average method based on the distribution of the S100B concentration, three groups were identified, exhibiting a significant difference between the microbial profiles. Operational taxonomic units, when analyzed by SIMPER analysis, showed that genera regarded to be eubiotic were mainly concentrated in the intermediate group, while genera potentially harboring pathobionts often appeared to be more concentrated in groups where the S100B amounts were very low or high. Finally, in a pilot experiment, S100B was administered orally, and the microbial profiles appeared to be modified accordingly. These data may open novel perspectives involving the possibility of S100B-mediated regulation in the intestinal microbiota.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Ratones , Animales , Pentamidina/farmacología , Biodiversidad , ARN Ribosómico 16S/genética , Subunidad beta de la Proteína de Unión al Calcio S100
12.
Microorganisms ; 10(12)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36557677

RESUMEN

The gut microbiota is composed of bacteria, archaea, phages, and protozoa. It is now well known that their mutual interactions and metabolism influence host organism pathophysiology. Over the years, there has been growing interest in the composition of the gut microbiota and intervention strategies in order to modulate it. Characterizing the gut microbial populations represents the first step to clarifying the impact on the health/illness equilibrium, and then developing potential tools suited for each clinical disorder. In this review, we discuss the current gut microbiota manipulation strategies available and their clinical applications in personalized medicine. Among them, FMT represents the most widely explored therapeutic tools as recent guidelines and standardization protocols, not only for intestinal disorders. On the other hand, the use of prebiotics and probiotics has evidence of encouraging findings on their safety, patient compliance, and inter-individual effectiveness. In recent years, avant-garde approaches have emerged, including engineered bacterial strains, phage therapy, and genome editing (CRISPR-Cas9), which require further investigation through clinical trials.

13.
Front Microbiol ; 13: 1033824, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36519160

RESUMEN

The soil microbiome contributes to several ecosystem processes. It plays a key role in sustainable agriculture, horticulture and forestry. In contrast to the vast number of studies focusing on soil bacteria, the amount of research concerning soil fungal communities is limited. This is despite the fact that fungi play a crucial role in the cycling of matter and energy on Earth. Fungi constitute a significant part of the pathobiome of plants. Moreover, many of them are indispensable to plant health. This group includes mycorrhizal fungi, superparasites of pathogens, and generalists; they stabilize the soil mycobiome and play a key role in biogeochemical cycles. Several fungal species also contribute to soil bioremediation through their uptake of high amounts of contaminants from the environment. Moreover, fungal mycelia stretch below the ground like blood vessels in the human body, transferring water and nutrients to and from various plants. Recent advances in high-throughput sequencing combined with bioinformatic tools have facilitated detailed studies of the soil mycobiome. This review discusses the beneficial effects of soil mycobiomes and their interactions with other microbes and hosts in both healthy and unhealthy ecosystems. It may be argued that studying the soil mycobiome in such a fashion is an essential step in promoting sustainable and regenerative agriculture.

14.
Medicina (Kaunas) ; 58(11)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36363516

RESUMEN

Introduction: Gut microbiota is not only a taxonomic biologic ecosystem but is also involved in human intestinal and extra-intestinal functions such as immune system modulation, nutrient absorption and digestion, as well as metabolism regulation. The latter is strictly linked to non-alcoholic fatty liver disease (NAFLD) pathophysiology. Materials and methods: We reviewed the literature on the definition of gut microbiota, the concepts of "dysbiosis" and "eubiosis", their role in NAFLD pathogenesis, and the data on fecal microbiota transplantation (FMT) in these patients. We consulted the main medical databases using the following keywords, acronyms, and their associations: gut microbiota, eubiosis, dysbiosis, bile acids, NAFLD, and FMT. Results: Gut microbiota qualitative and quantitative composition is different in healthy subjects vs. NALFD patients. This dysbiosis is associated with and involved in NAFLD pathogenesis and evolution to non-acoholic steatohepatitis (NASH), liver cirrhosis, and hepatocellular carcinoma (HCC). In detail, microbial-driven metabolism of bile acids (BAs) and interaction with hepatic and intestinal farnesoid nuclear X receptor (FXR) have shown a determinant role in liver fat deposition and the development of fibrosis. Over the use of pre- or probiotics, FMT has shown preclinical and initial clinical promising results in NAFLD treatment through re-modulation of microbial dysbiosis. Conclusions: Promising clinical data support a larger investigation of gut microbiota dysbiosis reversion through FMT in NAFLD using randomized clinical trials to design precision-medicine treatments for these patients at different disease stages.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Trasplante de Microbiota Fecal , Ecosistema , Disbiosis/terapia , Disbiosis/complicaciones , Ácidos y Sales Biliares
15.
Front Microbiol ; 13: 999001, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225386

RESUMEN

The human gut possesses millions of microbes that define a complex microbial community. The gut microbiota has been characterized as a vital organ forming its multidirectional connecting axis with other organs. This gut microbiota axis is responsible for host-microbe interactions and works by communicating with the neural, endocrinal, humoral, immunological, and metabolic pathways. The human gut microorganisms (mostly non-pathogenic) have symbiotic host relationships and are usually associated with the host's immunity to defend against pathogenic invasion. The dysbiosis of the gut microbiota is therefore linked to various human diseases, such as anxiety, depression, hypertension, cardiovascular diseases, obesity, diabetes, inflammatory bowel disease, and cancer. The mechanism leading to the disease development has a crucial correlation with gut microbiota, metabolic products, and host immune response in humans. The understanding of mechanisms over gut microbiota exerts its positive or harmful impacts remains largely undefined. However, many recent clinical studies conducted worldwide are demonstrating the relation of specific microbial species and eubiosis in health and disease. A comprehensive understanding of gut microbiota interactions, its role in health and disease, and recent updates on the subject are the striking topics of the current review. We have also addressed the daunting challenges that must be brought under control to maintain health and treat diseases.

16.
Foods ; 11(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36230032

RESUMEN

Sirtfood is a new concept food that compounds diets that can target sirtuins (SIRTs). SIRTs are nicotinamide adenine dinucleotide (NAD+)-dependent deacylases and ADP-ribosyltransferases (enzymes). SIRTs are mediators of calorie restriction (CR) and their activation can achieve some effects similar to CR. SIRTs play essential roles in ameliorating obesity and age-related metabolic diseases. Food ingredients such as resveratrol, piceatannol, anthocyanidin, and quinine are potential modulators of SIRTs. SIRT modulators are involved in autophagy, apoptosis, aging, inflammation, and energy homeostasis. Sirtfood proponents believe that natural Sirtfood recipes exert significant health effects.

17.
Pharmaceutics ; 14(8)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36015331

RESUMEN

Induction chemotherapy is the first-line treatment for pediatric patients with hematologic malignancies. However, several complications may arise, mainly infections and febrile neutropenia, with a strong impact on patient morbidity and mortality. Such complications have been shown to be closely related to alterations of the gut microbiome (GM), making the design of strategies to foster its eubiosis of utmost clinical importance. Here, we evaluated the impact of oral supplementation of lactoferrin (LF), a glycoprotein endowed with anti-inflammatory, immunomodulatory and antimicrobial activities, on GM dynamics in pediatric oncohematologic patients during induction chemotherapy. Specifically, we conducted a double blind, placebo-controlled trial in which GM was profiled through 16S rRNA gene sequencing before and after two weeks of oral supplementation with LF or placebo. LF was safely administered with no adverse effects and promoted GM homeostasis by favoring the maintenance of diversity and preventing the bloom of pathobionts (e.g., Enterococcus). LF could, therefore, be a promising adjunct to current therapeutic strategies in these fragile individuals to reduce the risk of GM-related complications.

18.
Nutrients ; 14(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35889894

RESUMEN

Frailty during aging is an increasing problem associated with locomotor and cognitive decline, implicated in poor quality of life and adverse health consequences. Considering the microbiome-gut-brain axis, we investigated, in a longitudinal study, whether and how physiological aging affects gut microbiome composition in wild-type male mice, and if and how cognitive frailty is related to gut microbiome composition. To assess these points, we monitored mice during aging at five selected experimental time points, from adulthood to senescence. At all selected experimental times, we monitored cognitive performance using novel object recognition and emergence tests and measured the corresponding Cognitive Frailty Index. Parallelly, murine fecal samples were collected and analyzed to determine the respective alpha and beta diversities, as well as the relative abundance of different bacterial taxa. We demonstrated that physiological aging significantly affected the overall gut microbiome composition, as well as the relative abundance of specific bacterial taxa, including Deferribacterota, Akkermansia, Muribaculaceae, Alistipes, and Clostridia VadinBB60. We also revealed that 218 amplicon sequence variants were significantly associated to the Cognitive Frailty Index. We speculated that some of them may guide the microbiome toward maladaptive and dysbiotic conditions, while others may compensate with changes toward adaptive and eubiotic conditions.


Asunto(s)
Fragilidad , Microbiota , Animales , Bacterias/genética , Eje Cerebro-Intestino , Disbiosis/microbiología , Estudios Longitudinales , Masculino , Ratones , Calidad de Vida
19.
Microb Pathog ; 169: 105639, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35716924

RESUMEN

The gut microbiota consists a diverse and complex ecosystem that is involved in beneficial functions as well as potentially harmful conditions for human. Blastocystis sp. is a common parasite of the digestive tract of animals and humans; however, limited data is available concerning the association of asymptomatic Blastocystis infection and gut bacteria composition. Hence, in this cross-sectional study, the gut bacteria composition of twenty asymptomatic Blastocystis sp. positive and twenty Blastocystis sp. negative individuals was assessed with real time PCR. The case and control groups were matched for age and sex. Both groups were negative for other gastrointestinal infections and did not have any gastrointestinal symptoms. The subtype of ten Blastocystis sp. isolates was assessed based on sequencing. Sequencing of ten Blastocystis sp. isolates revealed the ST1, ST2, and ST3 subtypes in 40%, 30%, and 30% of the isolates. The relative expression of each bacteria in the case than control group revealed that the expression level of Bifidobacterium group (P < 0.033), Peptostreptococcus productus (P < 0.014), Lactobacillus/Enterococcus group (P < 0.001), and Escherichia coli (P < 0.001) were significantly upregulate in the Blastocystis sp. carriers than the control group, while the relative amounts of Bacteroides fragilis (P < 0.001) and Enterococcus sp. (P < 0.001) were significantly downregulated in the case than the control group. Taken together, the results of this study have shown that asymptomatic Blastocystis infection could alter the composition of gut bacteria in healthy individuals.


Asunto(s)
Infecciones por Blastocystis , Blastocystis , Enfermedades Gastrointestinales , Animales , Infecciones Asintomáticas , Blastocystis/genética , Infecciones por Blastocystis/parasitología , Estudios de Casos y Controles , Estudios Transversales , Ecosistema , Heces/parasitología , Humanos , Lactobacillus
20.
Biomed Pharmacother ; 152: 113148, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35665671

RESUMEN

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by hyperglycemia and insulin resistance. Gut microbiota (GM) are specific groups of microbes colonized in the gastrointestinal (GI) tract. They profoundly influence health, disease protection, and associated with metabolic activities, and play a vital role in the production of functional metabolites from dietary substances. Dysbiosis of GM has been linked to the onset of T2DM and can be altered to attain eubiosis by intervention with various nutritional bioactive compounds such as polyphenols, prebiotics, and probiotics. This review presents an overview of the evidence and underlying mechanisms by which bioactive compounds modulate the GM for the prevention and management of T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Probióticos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/prevención & control , Disbiosis , Humanos , Prebióticos , Probióticos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA