Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 515
Filtrar
1.
Food Chem ; 463(Pt 2): 141248, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39278084

RESUMEN

To explore the volatile markers of typical sweet berry flavors in dry red wine, Marselan, Cabernet Sauvignon, Merlot, and Cabernet Franc wines were pretreated using solid-phase microextraction (SPME) and liquid-liquid extraction-solvent-assisted flavor evaporation (LLE-SAFE), and key odorants were analyzed using sensomics approach. Results indicated that Marselan wines exhibited intense sweet berry aromas compared to other varieties wines. Omission tests on one- and four-year-aged wines identified ß-damascenone, isoamyl acetate, 2,3-butanediol, phenylethanol as sweet aroma markers, while geranyl acetone, ethyl isobutyrate, ethyl 2-methylbutyrate as berry aroma markers, which were verified by partial least squares regression. Meanwhile, optimal flavor intensity prediction models between sweet/berry aroma and volatile markers natural logarithms concentration were created with all wines. Moreover, consistent with aroma intensity, most berry markers content increased during aging while sweet markers decreased. This study completes the analytical methodology for volatile markers of wine typical aroma and provides theoretical support for wine flavor prediction.

2.
Acta Parasitol ; 69(3): 1471-1479, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39153012

RESUMEN

PURPOSE: The formalin-ethyl acetate (FEA) concentration method is commonly used in routine clinical practice to detect parasite eggs in feces. This procedure involves extraction of oil with the organic solvent ethyl acetate (EA), which reduces fecal sediment and provides a cleaner background for microscopic analysis. However, clinically, some sediment failed to float after EA treatment. METHODS: Hexane, commonly used in the food oil extraction from oilseeds did not float the feces. Gas chromatography-mass spectrometry (GC-MS) analysis showed that neither the amount of the oil nor the classes of the oil determined was differed whether hexane or EA was used to float the feces. Oil red, Bodipy and Calcofluor staining showed that the unabsorbed oil droplets in the fecal sediment were trapped within the leaf structure. HCl or acetic acid was added to see if the acid residue could dissolve the cellulose of the leaf to promote the bulk float. RESULTS: Our result showed that the fecal bulk contained the loosened mesophyll cell wall. The addition of acid residues improved fecal bulk float. The proximity of cellulose fiber to EA, but not hexane, may enhance the efficacy of oil extraction from cellulose. CONCLUSION: This is the first report that the interaction of cellulose with ethyl acetate in fecal solution has an effect on bulk float. This study improves the understanding of fecal bulk flotation and may assist in the visualization of parasite eggs in clinical practice with non-floating fecal samples in the FEA concentration method.


Asunto(s)
Acetatos , Heces , Formaldehído , Cromatografía de Gases y Espectrometría de Masas , Animales , Heces/parasitología , Cromatografía de Gases y Espectrometría de Masas/métodos , Recuento de Huevos de Parásitos/métodos , Humanos
3.
J Ethnopharmacol ; 335: 118688, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39142622

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sea buckthorn (Hippophae rhamnoides L.) has been designated a "medicine food homology" fruit by the National Health Commission of China due to its nutritional value. In traditional Chinese ethnomedicine, Hippophae rhamnoides L. is commonly used to treat nonhealing wounds such as burns, sores, and gastric ulcers. The aim of this study was to explore the healing effects of the ethyl acetate extract of sea buckthorn seeds (SBS-EF) on burn wounds. AIM OF THE STUDY: The primary objectives of this research were to determine the most effective medicinal site of action for treating burns with sea buckthorn seeds (SBS) and to investigate the underlying material basis and mechanisms of their therapeutic effects. MATERIALS AND METHODS: The effects of different components of SBS-EF on the proliferation and migration of human skin fibroblasts (HSFs) were evaluated via MTT assays, scratch assays, transwell assays, and hydroxyproline secretion analysis. SBS-EF displayed the greatest activity amongst the extracts. Subsequent analyses included network pharmacology methodology, molecular docking studies, ultraperformance liquid chromatography UPLC-Orbitrap-Exploris-120-MS and a severe second-degree burn rat model to investigate the chemical constituents and potential therapeutic mechanisms of the SBS-EF. RESULTS: In vitro studies demonstrated the efficacy of SBS-EF in promoting HSF growth and migration. UPLC-Orbitrap-Exploris-120-MS analysis revealed that SBS-EF had ten major constituents, with flavonoids being the predominant compounds, especially catechin, quercetin, and kaempferol derivatives. Network pharmacology and molecular docking analyses indicated that SBS-EF may exert its healing effects by modulating the Wnt/ß-catenin signalling pathway. Subsequent in vivo experiments demonstrated that SBS-EF accelerated burn wound healing in rats, increased hydroxyproline expression in skin tissue, facilitated skin structure repair, and enhanced collagen production and organisation over a 21 d period. Additionally, exposure to SBS-EF upregulated WNT3a and ß-catenin while downregulating GSK-3ß levels in rat skin tissue. CONCLUSIONS: The wound healing properties of SBS-EF were attributed to its ability to enhance HSF growth and migration, increase hydroxyproline levels in the skin, promote collagen accumulation, reduce scarring, and decrease the skin water content. SBS-EF may also provide therapeutic benefits for burns by modulating the Wnt/ß-catenin signalling pathway, as evidenced by its effective site and likely mechanism of action in the treatment of burned rats.


Asunto(s)
Acetatos , Quemaduras , Proliferación Celular , Fibroblastos , Hippophae , Simulación del Acoplamiento Molecular , Extractos Vegetales , Ratas Sprague-Dawley , Semillas , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Hippophae/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Quemaduras/tratamiento farmacológico , Semillas/química , Humanos , Masculino , Proliferación Celular/efectos de los fármacos , Acetatos/química , Fibroblastos/efectos de los fármacos , Ratas , Movimiento Celular/efectos de los fármacos , Hidroxiprolina/metabolismo , Farmacología en Red
4.
Int J Mol Sci ; 25(16)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39201671

RESUMEN

Diabetic nephropathy, a leading cause of end-stage renal disease, accounts for significant morbidity and mortality. It is characterized by microinflammation in the glomeruli and myofibroblast activation in the tubulointerstitium. Salvia miltiorrhiza Bunge, a traditional Chinese medicine, is shown to possess anti-inflammatory and anti-fibrotic properties, implying its renal-protective potential. This study investigates which type of component can reduce the damage caused by diabetic nephropathy in a single setting. The ethyl acetate (EtOAc) layer was demonstrated to provoke peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ activities in renal mesangial cells by dual luciferase reporter assay. In a high glucose (HG)-cultured mesangial cell model, the EtOAc layer substantially inhibited HG-induced elevations of interleukin-1ß, transforming growth factor-ß1 (TGF-ß1), and fibronectin, whereas down-regulated PPAR-γ was restored. In addition, among the extracts of S. miltiorrhiza, the EtOAc layer effectively mitigated TGF-ß1-stimulated myofibroblast activation. The EtOAc layer also showed a potent ability to attenuate renal hypertrophy, proteinuria, and fibrotic severity by repressing diabetes-induced proinflammatory factor, extracellular matrix accumulation, and PPAR-γ reduction in the STZ-induced diabetes mouse model. Our findings, both in vitro and in vivo, indicate the potential of the EtOAc layer from S. miltiorrhiza for future drug development targeting diabetic nephropathy.


Asunto(s)
Acetatos , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Fibrosis , PPAR gamma , Salvia miltiorrhiza , Salvia miltiorrhiza/química , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Ratones , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , PPAR gamma/metabolismo , Acetatos/química , Acetatos/farmacología , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Células Mesangiales/efectos de los fármacos , Células Mesangiales/metabolismo , Fibronectinas/metabolismo , Ratones Endogámicos C57BL , PPAR alfa/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Glucosa/metabolismo
5.
Food Chem X ; 23: 101667, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39139493

RESUMEN

By examining and analyzing bran-free fermented Baijiu (BFB) with varying storage periods (0-20 years), it was observed that the overall concentration of volatile compounds initially increases and subsequently decreases over time. Furthermore, BFB exhibited more kinds of long chain esters, higher concentration of acetals, and reduced furfural content. The process of cellaring can enhance the aged, sweet, and fruity aroma of BFB. 16 flavor compounds, including 1,1-diethoxyethane, ethyl dodecanoate, and ethyl hexadecanoate, can be used as markers for vintage BFB, and electronic sensory technology was capable of discerning BFB in different years. The results of redundancy analysis (RDA) showed a positive correlation between metals and aldehydes, esters, and ketones, while indicating a negative correlation with acids and alcohols. Al, Fe, and Ca underwent the most significant changes during storage period, and they were positively correlated with differential substances, such as benzaldehyde, vanillin, ethyl isovalerate, and ethyl palmitate (P < 0.01).

6.
Heliyon ; 10(15): e34992, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39157403

RESUMEN

The aim of the present study was to evaluate the effect of the ethyl acetate fraction of amla (EAFA) extract on valproic acid (VPA)-induced postnatal autism in BALB/c mice. Our study revealed that mice treated with VPA on postnatal day 14 (PND14) showed significant abnormal behaviours such as social interaction, social affiliation, anxiety, and motor coordination compared to the control group, while EAFA extract treatment (100 mg/kg) ameliorated these symptoms. Our study highlights the protective effect of EAFA extract on improving behavioural alterations, significantly restoring anti-oxidative enzymes such as GST and GR, and reducing MDA and NO levels. Furthermore, the EAFA-treated group significantly lowered the proinflammatory markers (IL-1ß and TNF-α) and the expression of up-regulated 5-HT1D, 5-HT2A, and D2 receptor proteins. Based on histopathological studies, the percentage of neuronal injury in the EAFA-treated group as well as cellular structural changes were reduced using SEM analysis. In conclusion, the present study suggests that treatment with EAFA extract ameliorates VPA-induced autism due to its anti-oxidant and neuroprotective activity.

7.
Food Chem X ; 23: 101621, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39071928

RESUMEN

The value of Baijiu is affected by its flavor, age, and adulteration. Therefore, a simple and rapid identification method is crucial for the market. In this study, we present a rapid, non-intrusive identification technique for Baijiu utilizing the Tyndall effect combined with chemometrics analysis. Our experiment begins illuminating Baijiu with a 405 nm wavelength laser and recording the resulting bright light path due to the Tyndall effect. To further analyze the color and brightness information, Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Hierarchical Cluster Analysis (HCA), and Multilayer Perceptron (MLP) were employed. This study establishes correlations between the brightness of the Tyndall light path and seven trace flavor compounds in Baijiu. The findings demonstrate that this method effectively identifies the flavor, age cellar, and adulteration of Baijiu and also quantitatively detects the concentrations of flavor compounds. Additionally, an analysis platform was developed to enable the rapid identification of Baijiu.

8.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063091

RESUMEN

Allomyrina dichotoma larvae (ADL) is an insect type that is used ethnopharmacologically to treat various diseases; however, its use as an antiaging treatment has not been widely studied. Previously, we found that an ethyl acetate (EA) fraction derived from an ADL extract (ADLE) has a high polyphenol content and antioxidant properties. In this study, we identified the underlying molecular mechanism for the protective effect of the EA fraction against UVB-induced photodamage in vitro and ex vivo. UVB treatment increased intracellular reactive oxygen species levels and DNA damage; the latter of which was significantly decreased following cotreatment with the EA fraction. Biological markers of aging, such as p16INK4a, p21WAF1, and senescence-associated ß-gal levels, were induced by UVB treatment but significantly suppressed following EA-fraction treatment. UVB-induced upregulation of matrix metalloproteinase (MMP)-1 and downregulation of COL1A1 were also reversed by EA-fraction treatment in both cells and a 3D skin model, which resulted in increased keratin and collagen deposition. Moreover, EA-fraction treatment inhibited the phosphorylation of MAPKs (p38, ERK, and JNK) and nuclear factor (NF-)-kB and decreased the levels of inflammatory cytokines in UVB-treated cells. The results indicate that an EA fraction from ADLE ameliorates UVB-induced degradation of COL1A1 by inhibiting MMP expression and inactivating the MAPK/NF-κB p65/AP-1 signaling pathway involved in this process.


Asunto(s)
Acetatos , Fibroblastos , Larva , Envejecimiento de la Piel , Rayos Ultravioleta , Humanos , Rayos Ultravioleta/efectos adversos , Animales , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de la radiación , Acetatos/farmacología , Acetatos/química , Larva/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 1 de la Matriz/genética , FN-kappa B/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-38969883

RESUMEN

Ethyl acetate, acetone, 2-propanol, 1-propanol, and ethanol were screened among the class 3 category solvents as an alternative to hexane based on operational and occupational safety and bio-renewability potential. All five solvents exhibited higher extractability (22.3 to 23.2%) than hexane (21.5%) with soybean flour. Additionally, there was no significant difference in the fatty acid and triacylglycerol (TAG) composition of the oils extracted using alternate solvents and hexane, indicating the oil quality was not affected. More importantly, ethyl acetate (2.1%) resulted in a marginally higher yield of TAG, while 2-propanol showed a nearly equal yield to hexane. Further, membrane desolventizing was attempted to mitigate the limitations of higher thermal energy requirements. One of the polydimethylsiloxane membranes exhibited good selectivity (TAG rejection 85.8%) and acceptable flux (59.3 L·m-2·h-1) with an ethyl acetate miscella system. Under plant-simulated recirculation conditions, a two-stage membrane process reduced the oil content in permeate to 2.5%. The study revealed that ethyl acetate could potentially replace hexane, considering its higher TAG extractability and suitability for the membrane-augmented solvent recycling process in the extraction plants.

10.
Sci Rep ; 14(1): 16779, 2024 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039094

RESUMEN

Boswellia carterii (BC) resins plants have a long historical background as a treatment for inflammation, as indicated by information originating from multiple countries. Twenty-seven diterpenoids have been identified in ethyl acetate and total methanol BC, comprising seventeen boscartins of the cembrane-type diterpenoids and ten boscartols of the prenylaromadendrane-type diterpenoids. Moreover, twenty-one known triterpenoids have also been found, encompassing nine tirucallane-type, six ursane-type, four oleanane-type, and two lupane-type. The cembrane-type diterpenoids hold a significant position in pharmaceutical chemistry and related industries due to their captivating biological characteristics and promising pharmacological potentials. Extraction of BC, creation and assessment of nano sponges loaded with either B. carterii plant extract or DEX, are the subjects of our current investigation. With the use of ultrasound-assisted synthesis, nano sponges were produced. The entrapment efficiency (EE%) of medications in nano sponges was examined using spectrophotometry. Nano sponges were characterized using a number of methods. Within nano sponges, the EE% of medicines varied between 98.52 ± 0.07 and 99.64 ± 1.40%. The nano sponges' particle sizes varied from 105.9 ± 15.9 to 166.8 ± 26.3 nm. Drugs released from nano sponges using the Korsmeyer-Peppas concept. In respiratory distressed rats, the effects of BC plant extract, DEX salt and their nano formulations (D1, D5, P1 and P1), were tested. Treatment significantly reduced ICAM-1, LTB4, and ILß 4 levels and improved histopathologic profiles, when compared to the positive control group. Boswellia extract and its nano sponge formulation P1 showed promising therapeutic effects. The effect of P1 may be due to synergism between both the extract and the formulation. This effect was achieved by blocking both ICAM-1 and LTB4 pathways, therefore counteracting the effects of talc powder.


Asunto(s)
Boswellia , Extractos Vegetales , Terpenos , Animales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Boswellia/química , Ratas , Terpenos/química , Terpenos/farmacología , Acetatos/química , Ciclodextrinas/química , Masculino , Nanopartículas/química
11.
Phytomedicine ; 130: 155373, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38850630

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS) is an acute respiratory disease characterized by bilateral chest radiolucency and severe hypoxemia. Quzhou Fructus Aurantii ethyl acetate extract (QFAEE), which is prepared from the traditional Chinese respiratory anti-inflammatory natural herb Quzhou Fructus Arantii, has the potential to alleviate ARDS. In this work, we aimed to investigate the potential and mechanism underlying the action of QFAEE on ARDS and how QFAEE modulates the STING pathway to reduce type I interferon release to alleviate the inflammatory response. METHODS: Lipopolysaccharide (LPS), a potential proinflammatory stimulant capable of causing pulmonary inflammation with edema after nasal drops, was employed to model ARDS in vitro and in vivo. Under QFAEE intervention, the mechanism of action of QFAEE to alleviate ARDS was explored in this study. TREX1-/- mice were sued as a research model for the activation of the congenital STING signaling pathway. The effect of QFAEE on TREX1-/- mice could explain the STING-targeted effect of QFAEE on alleviating the inflammatory response. Our explorations covered several techniques, Western blot, histological assays, immunofluorescence staining, transcriptomic assays and qRT-PCR to determine the potential mechanism of action of QFAEE in antagonizing the inflammatory response in the lungs, as well as the mechanism of action of QFAEE in targeting the STING signaling pathway to regulate the release of type I interferon. RESULTS: QFAEE effectively alleviates ARDS symptoms in LPS-induced ARDS. We revealed that the mechanism underlying LPS-induced ARDS is the STING-TBK1 signaling pathway and further elucidated the molecular mechanism of QFAEE in the prevention and treatment of ARDS. QFAEE reduced the release of type I interferons by inhibiting the STING-TBK1-IRF3 axis, thus alleviating LPS-induced pneumonia and lung cell death in mice. Another key finding is that activation of the STING pathway by activators or targeted knockdown of the TREX1 gene can also induce ARDS. As expected, QFAEE was found to be an effective protective agent in alleviating ARDS and the antagonistic effect of QFAEE on ARDS was achieved by inhibiting the STING signaling pathway. CONCLUSIONS: The main anti-inflammatory effect of QFAEE was achieved by inhibiting the STING signaling pathway and reducing the release of type I interferons. According to this mechanism of effect, QFAEE can effectively alleviate ARDS and can be considered a potential therapeutic agent. In addition, the STING pathway plays an essential role in the development and progression of ARDS, and it is a potential target for ARDS therapy.


Asunto(s)
Antiinflamatorios , Interferón Tipo I , Lipopolisacáridos , Proteínas de la Membrana , Síndrome de Dificultad Respiratoria , Animales , Interferón Tipo I/metabolismo , Ratones , Antiinflamatorios/farmacología , Proteínas de la Membrana/metabolismo , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Pulmón/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Humanos , Ratones Endogámicos C57BL , Medicamentos Herbarios Chinos/farmacología , Extractos Vegetales/farmacología , Neumonía/tratamiento farmacológico , Neumonía/inducido químicamente
12.
Environ Sci Technol ; 58(26): 11760-11770, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38900969

RESUMEN

Oxygenated volatile organic compounds (OVOCs), emitted in large quantities by the chemical industry, are a major contributor to the formation of ozone and subsequent particulate matter. For the efficient catalytic oxidation of OVOCs, the challenges of molecular activation and intermediate inhibition remain. The construction of bifunctional active sites with specific structures offers a promising way to overcome these problems. Here, the Pd@Layered-CoOx/MFI bifunctional catalyst with core-shell active sites was rationally fabricated though a two-step ligand pyrolysis method, which exhibits a superb oxidation efficiency toward ethyl acetate (EA). Over this, 13.4% of EA (1000 ppm) can be oxidized at just 140 °C with a reaction rate of 13.85 mmol·gPd-1·s-1, around 176.7 times higher than that of the conventional Pd-CoOx/MFI catalyst. The electronic coupling of the Pd-Co pair promotes the electron back-donation from Pd nanoparticles to the layered CoOx shell and facilitates the formation of Pd2+ species, which greatly enhances the adsorption and activation of the electron-rich C═O bond of the EA molecules. In addition, the synergy of these core-shell Pd@Layered-CoOx sites accelerates the activation and transformation of *O species, which inhibit the formation of acetaldehyde and ethanol byproducts, ensuring the rapid total oxidation of EA molecules via the Mars-van Krevelen mechanism. This work established a solid foundation for exploring robust bifunctional catalysts for deep OVOC purification.


Asunto(s)
Oxidación-Reducción , Catálisis , Paladio/química , Compuestos Orgánicos Volátiles/química , Acetatos/química
13.
Heliyon ; 10(11): e31984, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38882306

RESUMEN

The inhibitory effect of hydrophilic volatile organic compounds (VOCs) on hydrophobic VOCs removal was found to be efficiently reduced by the fungal-bacterial biofilters (F&B-BFs) developed in the present study. Overall, the toluene and ethyl acetate mixture removal efficiencies (REs) and elimination capacities (ECs) of F&B-BFs were superior to those of bacterial biofilters (B-BFs). The REs for toluene and ethyl acetate were 32.5 ± 0.8 % and 74.6 ± 1.0 %, respectively, for F&B-BFs, in comparison to 8.0 ± 0.3 % and 60 ± 1.3 % for B-BFs. The ECs for toluene and ethyl acetate were 13.0 g m-3 h-1 and 149.2 g m-3 h-1, respectively, for the F&B-BF, compared to 3.2 g m-3 h-1 and 119.6 g m-3 h-1 for the B-BFs. This was achieved at a constant empty bed residence time (EBRT) of 45 s. F&B-BFs exhibited a superior mineralization efficiencies (MEs) compared to B-BFs for a VOC mixture of toluene and ethyl acetate (≈36.1 % vs ~ 29.6 %). This is attributed to the direct capture of VOCs by the presence of fungi, increased the contact time between VOCs and VOCs-degrading bacteria, and even distribution of VOCs-degrading bacteria in the F&B-BFs. Moreover, compared with B-BFs, the coupling effect of genus Pseudomonas degradation, and unclassified_f_Herpotrichiellaceae and unclassified_p_Ascomycota adsorption of F&B-BF resulted in a reduction in the impact of the presence of hydrophilic VOCs on the removal of hydrophobic VOCs, thereby enhancing the biofiltration performance of mixtures of hydrophilic and hydrophobic VOCs.

14.
Chem Biodivers ; : e202400873, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900486

RESUMEN

This study explores the anti-inflammatory potential of an endophytic fungus, Trametes versicolor CL-1, isolated from the fruit tissues of Rosa roxburghii. Morphological and molecular analyses confirmed the identity of CL-1. An ethyl acetate extract (CL-E) from its fermentation broth was subjected to UPLC-HRMS and GNPS molecular networking. The analysis revealed a diverse array of secondary metabolites, including 11 terpenes, 7 flavonoids, 10 cinnamic acid derivatives, 6 oligopeptides, and 9 fatty acids, as verified by LC-MS/MS. Notably, CL-E exhibited significant in vitro anti-inflammatory activity in RAW264.7 cells. Furthermore,  molecular docking studies predicted favorable binding interactions of key compounds 1 within CL-E with the NLRP3 inflammasome (PDB ID: 6NPY). These findings suggest T. versicolor CL-1 as a promising source of natural anti-inflammatory agents and unveil R. roxburghii as a potential reservoir for discovering novel bioactive metabolites.

15.
Food Chem ; 456: 140068, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38878549

RESUMEN

This study investigated the application of a hybrid nanocomposite of tin oxide nanorods (SnO2 NRs) and graphene oxide (GO) for the chemoresistive detection of some volatile compounds (hexanal, benzaldehyde, octanal, 1-octanol, and ethyl acetate vapours) emitted by Aspergillus flavus under simulated conditions. The synthesised materials were characterised using various analytical techniques, including high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, and Fourier transform infrared spectroscopy (FTIR). Three sensors were fabricated: individual nanomaterials (i.e., SnO2 and GO) and composites (SnO2-GO). The results showed that SnO2 NRs had limited sensitivity as a sensor, while GO-based sensors responded to various analyte vapours. However, the incorporation of SnO2 NRs into GO layers resulted in synergistic effects and improved sensor performance. The sensors' sensitivity, selectivity, recovery, and response times were quantitatively determined from the sensors' response curves. The nanocomposite sensor demonstrated superior sensitivity and selectivity for analyte vapours with acceptable response and recovery times. In addition, the sensor was insensitive to humidity and showed robust performance up to 62% RH, although sensor drift occurred at 70% RH. This study highlights the promising potential of using SnO2 NRs-GO composite-based sensor for sensitive and selective detection of analyte vapours, which has significant implications for food safety and environmental monitoring applications.


Asunto(s)
Aspergillus flavus , Grafito , Nanotubos , Compuestos de Estaño , Compuestos Orgánicos Volátiles , Grafito/química , Compuestos de Estaño/química , Compuestos Orgánicos Volátiles/química , Nanotubos/química , Aspergillus flavus/química , Nanocompuestos/química , Temperatura
16.
J Adv Pharm Technol Res ; 15(2): 70-74, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903553

RESUMEN

Leaves of Annona muricata have medicinal potential which has gained attention from researchers around the world. This study has an objective to screen the antioxidant and cytotoxicity of ethyl acetate extract from A. muricata leaves and its fraction. The fine powder of A. muricata was macerated in methanol and further partitioned using two different solvents, namely n-hexane and ethyl acetate. In this article, we reported the screening results for ethyl acetate extract. Fractionation was then performed on the extract by means of column chromatography by gradient elution resulting in five combined fractions. Brine shrimp lethality test and 1-diphenyl-2-pycrilhidrazil (DPPH) assays were employed to evaluate the cytotoxicity and antioxidant of the extract, respectively. Characterization using gas chromatography-mass spectroscopy (GC-MS) was then conducted. The cytotoxicity of the samples was indicated by median lethal concentration50 values ranging from 28.84 to 1023.3 ppm. As for the antioxidant activity, the DPPH median inhibitory concentration50 values ranged from 4.12 to 180.66 ppm. GC-MS analysis on the most bioactive fraction revealed the predominating phytochemical contents of neophytadiene, palmitic acid, and phytol. In conclusion, the fraction of ethyl acetate extract from A. muricata leaves could potentially act as a strong antioxidant and moderate cytotoxic agent.

17.
Lipids ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830807

RESUMEN

Omega-3-acid ethyl acetate 90 capsules (containing 465 mg of eicosapentaenoic acid and 375 mg docosahexaenoic acid) is composed of highly purified omega-3 polyunsaturated fatty acid (PUFA) ethyl esters, whose lipid-lowering effect for severe hypertriglyceridemia (HTG) treatment is unclear. This study aimed to evaluate the efficacy and safety of omega-3-acid ethyl acetate 90 capsules in patients with severe HTG. In this randomized, double-blind, placebo-controlled, multicenter study, 239 patients with severe HTG were enrolled and randomized (1:1) into omega-3 group (N = 122) and placebo group (N = 117) to receive 12-week corresponding treatments. Lipid-related indexes were obtained at treatment initiation (W0), 4 weeks (W4), W8, and W12 after treatment. Adverse events and adverse drug reactions were recorded. Triacylglycerols (TAG), total cholesterol (TC), non-high-density lipoprotein cholesterol (non-HDL-C), very-low-density lipoprotein cholesterol (VLDL-C), and apolipoprotein C-III (Apo C-III) at W4, W8, and W12 were decreased in the omega-3 group versus the placebo group (all p < 0.05). Moreover, the percentage changes of TAG, TC, non-HDL-C, and VLDL-C from W0 to W4, W8, and W12, and the percentage change of Apo C-III from W0 to W4 and W8, were more obvious in the omega-3 group compared with the placebo group (all p < 0.05). However, no difference was observed in the percentage changes of HDL-C, low-density lipoprotein cholesterol (LDL-C), and LDL-C/HDL-C ratio during follow-up between groups (all p > 0.05). Additionally, there was no discrepancy in adverse events and adverse drug reactions between groups (all p > 0.05). Omega-3-acid ethyl acetate 90 capsules exhibit satisfied lipid-lowering effect with tolerable safety profile in patients with severe HTG.

18.
Food Chem X ; 22: 101478, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813459

RESUMEN

Microbial composition plays an important role in the quality and flavor of bacon. The aims of this study were to detect bacterial community succession using high-throughput sequencing (HTS) and volatile flavor compound changes using gas chromatography-ion mobility spectrometry (GC-IMS) during the production of Zhenba bacon. The results showed that a total of 70 volatile compounds were detected. Among them, ketones, hydrocarbons, aldehydes, esters and alcohols were the main substances in the curing and smoking stages. In addition, the fungal abundance was greater than the bacterial abundance, and there was obvious succession of the microbial community with changes in fermentation time and processing technology. The main functional bacterial genera in the curing and smoking stages were Staphylococcus, Psychrobacter and Latilactobacillus, and the main fungal genera were Fusarium and Debaryomyces. Through correlation analysis, we found that pyrrole, 2-pentanol, methyl isobutyl ketone (MIBK) and ethyl acetate (EA) were significantly correlated with Staphylococcus, Psychrobacter, Pseudomonas and Myroides (p < 0.01), and it is speculated that they contribute significantly to flavor formation. The results of this study are helpful for understanding the microbial dynamics and characteristic volatile flavor compounds in Zhenba bacon, and provide new insights into the relationship between microorganisms and flavor through potential correlations.

19.
Fitoterapia ; 176: 106014, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740346

RESUMEN

Nymphaea rubra (N. rubra) flowers are prevalent in subtropical regions for both dietary and traditional medicinal purposes, attributing to their beneficial properties in supporting overall health. This study first time provides descriptions of the antidiabetic and dyslipidemic properties employing STZ induced high fat diet fed diabetic rats and inhibition of α-amylase enzyme activity first by in vitro analyses, followed by a confirmatory in silico study to create a stronger biochemical rationale. Furthermore, in 3 T3-L1 cells, this extract promoted the suppression of adipogenesis. GC-MS investigation of the ethyl acetate fraction of ethanolic extract of N. rubra flowers revealed the presence of marker compounds of N. rubra, Nuciferine, and Apomorphine, which were the focus of molecular docking studies. The acquired concentrations of Nuciferine (22.39%) and 10, 11-dimethoxy-Apomorphine (1.47%) were detected. Together with other alkaloids identified by GC-MS analysis from this extract, mechanistically suggested that it might be caused by the synergistic impact of these bioactive chemicals. Molecular docking has been done to check the binding affinities of various isolated phytochemicals with HPAA, the dose-response effect of 100 mg/kg and 250 mg/kg of flower extract after 30 days showed a significant effect on body weight, food, water intake, serum insulin, FBG, OGTT, lipid profile, glycated haemoglobin, liver and kidney function test. Kidney histopathology results show a significant effect. These findings offer a strong foundation for the potential application of the ethyl acetate fraction of ethanolic extract from Nymphaea rubra flowers and its bioactive constituent in an in vivo system for the treatment and control of diabetes and its associated condition dyslipidemia.


Asunto(s)
Diabetes Mellitus Experimental , Flores , Hipoglucemiantes , Simulación del Acoplamiento Molecular , Nymphaea , Fitoquímicos , Extractos Vegetales , Ratas Wistar , Animales , Flores/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Ratas , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Ratones , Masculino , Extractos Vegetales/farmacología , Extractos Vegetales/química , Nymphaea/química , Células 3T3-L1 , Adipogénesis/efectos de los fármacos , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Estructura Molecular , Dieta Alta en Grasa
20.
Plants (Basel) ; 13(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732461

RESUMEN

(1) Background: Due to the wide application in medicinal and pharmaceutical chemistry of flavonoid molecules, which are one of the most famous types of secondary plant metabolites, our work has come within the framework of bio-consulting to help in the identification of the molecule(s) responsible for the antibacterial effect which will be the active principle of a natural antibiotic developed from Algerian fir using bioinformatics tools. (2) Methods: The docking method was used to test the antiviral activity on SARS-CoV-2 virus and the antibacterial activity on Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli of 12 polyphenolic molecules present in the ethyl acetate and n-butanol extracts of Numidian fir leaves, and identify the molecules responsible for these specific biological activities. (3) Results: The findings revealed that it is possible that two molecules, hyperoside and quercitrin, have a high capacity to inhibit SARS-CoV-2, and it is important to mention that they are the most quantitatively abundant molecules in the extract. The molecule luteolin-7-glucoside is probably responsible for the antibacterial activity in the extract against Gram-negative bacteria such as Escherichia coli, and the molecule hesperidin is responsible for the antibacterial activity in the extract against Gram-positive bacteria such as Staphylococcus aureus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA