Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Genet Genomics ; 51(8): 801-810, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38570113

RESUMEN

KCNA1 is the coding gene for Kv1.1 voltage-gated potassium-channel α subunit. Three variants of KCNA1 have been reported to manifest as paroxysmal kinesigenic dyskinesia (PKD), but the correlation between them remains unclear due to the phenotypic complexity of KCNA1 variants as well as the rarity of PKD cases. Using the whole exome sequencing followed by Sanger sequencing, we screen for potential pathogenic KCNA1 variants in patients clinically diagnosed with paroxysmal movement disorders and identify three previously unreported missense variants of KCNA1 in three unrelated Chinese families. The proband of one family (c.496G>A, p.A166T) manifests as episodic ataxia type 1, and the other two (c.877G>A, p.V293I and c.1112C>A, p.T371A) manifest as PKD. The pathogenicity of these variants is confirmed by functional studies, suggesting that p.A166T and p.T371A cause a loss-of-function of the channel, while p.V293I leads to a gain-of-function with the property of voltage-dependent gating and activation kinetic affected. By reviewing the locations of PKD-manifested KCNA1 variants in Kv1.1 protein, we find that these variants tend to cluster around the pore domain, which is similar to epilepsy. Thus, our study strengthens the correlation between KCNA1 variants and PKD and provides more information on genotype-phenotype correlations of KCNA1 channelopathy.


Asunto(s)
Distonía , Canal de Potasio Kv.1.1 , Mutación Missense , Linaje , Humanos , Canal de Potasio Kv.1.1/genética , Masculino , Femenino , Distonía/genética , Distonía/patología , Mutación Missense/genética , Secuenciación del Exoma , Mutación con Pérdida de Función/genética , Adulto , Mutación con Ganancia de Función/genética , Niño , Adolescente , Predisposición Genética a la Enfermedad , Células HEK293 , Ataxia , Miocimia
2.
Cerebellum ; 23(2): 833-837, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37460907

RESUMEN

Potassium channels (KCN) are transmembrane complexes that regulate the resting membrane potential and the duration of action potentials in cells. The opening of KCN brings about an efflux of K+ ions that induces cell repolarization after depolarization, returns the transmembrane potential to its resting state, and enables for continuous spiking ability. The aim of this work was to assess the role of KCN dysfunction in the pathogenesis of hereditary ataxias and the mechanisms of action of KCN opening agents (KCO). In consequence, a review of the ad hoc medical literature was performed. Among hereditary KCN diseases causing ataxia, mutated Kv3.3, Kv4.3, and Kv1.1 channels provoke spinocerebellar ataxia (SCA) type 13, SCA19/22, and episodic ataxia type 1 (EA1), respectively. The K+ efflux was found to be reduced in experimental models of these diseases, resulting in abnormally prolonged depolarization and incomplete repolarization, thereby interfering with repetitive discharges in the cells. Hence, substances able to promote normal spiking activity in the cerebellum could provide symptomatic benefit. Although drugs used in clinical practice do not activate Kv3.3 or Kv4.3 directly, available KCO probably could ameliorate ataxic symptoms in SCA13 and SCA19/22, as verified with acetazolamide in EA1, and retigabine in a mouse model of hypokalemic periodic paralysis. To summarize, ataxia could possibly be improved by non-specific KCO in SCA13 and SCA19/22. The identification of new specific KCO agents will undoubtedly constitute a promising therapeutic strategy for these diseases.


Asunto(s)
Ataxia Cerebelosa , Canalopatías , Miocimia , Ataxias Espinocerebelosas/congénito , Degeneraciones Espinocerebelosas , Ratones , Animales , Canalopatías/tratamiento farmacológico , Canalopatías/genética , Ataxia/tratamiento farmacológico , Ataxia/genética , Mutación
3.
Proc Natl Acad Sci U S A ; 120(31): e2207978120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487086

RESUMEN

Loss-of-function mutations in the KCNA1(Kv1.1) gene cause episodic ataxia type 1 (EA1), a neurological disease characterized by cerebellar dysfunction, ataxic attacks, persistent myokymia with painful cramps in skeletal muscles, and epilepsy. Precision medicine for EA1 treatment is currently unfeasible, as no drug that can enhance the activity of Kv1.1-containing channels and offset the functional defects caused by KCNA1 mutations has been clinically approved. Here, we uncovered that niflumic acid (NFA), a currently prescribed analgesic and anti-inflammatory drug with an excellent safety profile in the clinic, potentiates the activity of Kv1.1 channels. NFA increased Kv1.1 current amplitudes by enhancing the channel open probability, causing a hyperpolarizing shift in the voltage dependence of both channel opening and gating charge movement, slowing the OFF-gating current decay. NFA exerted similar actions on both homomeric Kv1.2 and heteromeric Kv1.1/Kv1.2 channels, which are formed in most brain structures. We show that through its potentiating action, NFA mitigated the EA1 mutation-induced functional defects in Kv1.1 and restored cerebellar synaptic transmission, Purkinje cell availability, and precision of firing. In addition, NFA ameliorated the motor performance of a knock-in mouse model of EA1 and restored the neuromuscular transmission and climbing ability in Shaker (Kv1.1) mutant Drosophila melanogaster flies (Sh5). By virtue of its multiple actions, NFA has strong potential as an efficacious single-molecule-based therapeutic agent for EA1 and serves as a valuable model for drug discovery.


Asunto(s)
Miocimia , Animales , Ratones , Drosophila melanogaster , Ataxia , Drosophila , Canal de Potasio Kv.1.2
4.
Cells ; 12(10)2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-37408217

RESUMEN

Dominantly inherited missense mutations of the KCNA1 gene, which encodes the KV1.1 potassium channel subunit, cause Episodic Ataxia type 1 (EA1). Although the cerebellar incoordination is thought to arise from abnormal Purkinje cell output, the underlying functional deficit remains unclear. Here we examine synaptic and non-synaptic inhibition of Purkinje cells by cerebellar basket cells in an adult mouse model of EA1. The synaptic function of basket cell terminals was unaffected, despite their intense enrichment for KV1.1-containing channels. In turn, the phase response curve quantifying the influence of basket cell input on Purkine cell output was maintained. However, ultra-fast non-synaptic ephaptic coupling, which occurs in the cerebellar 'pinceau' formation surrounding the axon initial segment of Purkinje cells, was profoundly reduced in EA1 mice in comparison with their wild type littermates. The altered temporal profile of basket cell inhibition of Purkinje cells underlines the importance of Kv1.1 channels for this form of signalling, and may contribute to the clinical phenotype of EA1.


Asunto(s)
Ataxia , Canal de Potasio Kv.1.1 , Miocimia , Inhibición Neural , Células de Purkinje , Células de Purkinje/metabolismo , Células de Purkinje/patología , Animales , Ratones , Modelos Animales de Enfermedad , Canal de Potasio Kv.1.1/genética , Canal de Potasio Kv.1.1/metabolismo , Sinapsis/fisiología , Comunicación Celular , Transmisión Sináptica , Ataxia/genética , Ataxia/patología , Ataxia/fisiopatología , Miocimia/genética , Miocimia/patología , Miocimia/fisiopatología , Potenciales Evocados , Ratones Endogámicos C57BL , Masculino , Femenino
5.
Epilepsia ; 64(8): 2186-2199, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37209379

RESUMEN

OBJECTIVE: KCNA1 mutations are associated with a rare neurological movement disorder known as episodic ataxia type 1 (EA1), and epilepsy is a common comorbidity. Current medications provide only partial relief for ataxia and/or seizures, making new drugs needed. Here, we characterized zebrafish kcna1a-/- as a model of EA1 with epilepsy and compared the efficacy of the first-line therapy carbamazepine in kcna1a-/- zebrafish to Kcna1-/- rodents. METHODS: CRISPR/Cas9 mutagenesis was used to introduce a mutation in the sixth transmembrane segment of the zebrafish Kcna1 protein. Behavioral and electrophysiological assays were performed on kcna1a-/- larvae to assess ataxia- and epilepsy-related phenotypes. Real-time quantitative polymerase chain reaction (qPCR) was conducted to measure mRNA levels of brain hyperexcitability markers in kcna1a-/- larvae, followed by bioenergetics profiling to evaluate metabolic function. Drug efficacies were tested using behavioral and electrophysiological assessments, as well as seizure frequency in kcna1a-/- zebrafish and Kcna1-/- mice, respectively. RESULTS: Zebrafish kcna1a-/- larvae showed uncoordinated movements and locomotor deficits, along with scoliosis and increased mortality. The mutants also exhibited impaired startle responses when exposed to light-dark flashes and acoustic stimulation as well as hyperexcitability as measured by extracellular field recordings and upregulated fosab transcripts. Neural vglut2a and gad1b transcript levels were disrupted in kcna1a-/- larvae, indicative of a neuronal excitatory/inhibitory imbalance, as well as a significant reduction in cellular respiration in kcna1a-/- , consistent with dysregulation of neurometabolism. Notably, carbamazepine suppressed the impaired startle response and brain hyperexcitability in kcna1a-/- zebrafish but had no effect on the seizure frequency in Kcna1-/- mice, suggesting that this EA1 zebrafish model might better translate to humans than rodents. SIGNIFICANCE: We conclude that zebrafish kcna1a-/- show ataxia and epilepsy-related phenotypes and are responsive to carbamazepine treatment, consistent with EA1 patients. These findings suggest that kcna1-/- zebrafish are a useful model for drug screening as well as studying the underlying disease biology.


Asunto(s)
Epilepsia , Pez Cebra , Humanos , Ratones , Animales , Ataxia/tratamiento farmacológico , Ataxia/genética , Ataxia/complicaciones , Convulsiones/complicaciones , Carbamazepina/farmacología , Carbamazepina/uso terapéutico , Canal de Potasio Kv.1.1/genética
6.
Cerebellum ; 22(4): 578-586, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35655106

RESUMEN

Episodic ataxia type 1 (EA1) is a rare autosomal potassium channelopathy, due to mutations in KCNA1. Patients have childhood onset of intermittent attacks of ataxia, dizziness or imbalance. In order to quantify the natural history of EA1, its effect on quality of life and in preparation for future clinical trials, we set up an international multi-centre study of EA1. We recruited thirty-three participants with EA1: twenty-three completed 1-year follow-up and eighteen completed 2-year follow-up. There was very little accumulation of disability or impairment over the course of the 2 years of the study. The outcome measures of ataxia (SARA and functional rating of ataxia) and the activities of daily living scale were largely stable over time. Self-reported health-related quality of life (SF-36) scores were lower across all domains than controls, in keeping with a chronic condition. Physical subdomain scores appeared to deteriorate over time, which seems to be driven by the female participants in the study. This is an interesting finding and warrants further study. Attacks of EA1 reported by participants in real time via an interactive voice response system showed that symptoms were not stereotyped; however, attack duration and frequency was stable between individuals. This large prospective study is the first ever completed in subjects with EA1. We document the natural history of the disorder over 2 years. These data will enable the development of outcome measures for clinical trials of treatment.


Asunto(s)
Actividades Cotidianas , Calidad de Vida , Humanos , Femenino , Niño , Estudios Prospectivos , Canal de Potasio Kv.1.1/genética , Ataxia/diagnóstico
8.
J Comput Neurosci ; 48(4): 377-386, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33063225

RESUMEN

Channelopathies involving acquired or genetic modifications of the delayed rectifier K+ channel Kv1.1 include phenotypes characterized by enhanced neuronal excitability. Affected Kv1.1 channels exhibit combinations of altered expression, voltage sensitivity, and rates of activation and deactivation. Computational modeling and analysis can reveal the potential of particular channelopathies to alter neuronal excitability. A dynamical systems approach was taken to study the excitability and underlying dynamical structure of the Hodgkin-Huxley (HH) model of neural excitation as properties of the delayed rectifier K+ channel were altered. Bifurcation patterns of the HH model were determined as the amplitude of steady injection current was varied simultaneously with single parameters describing the delayed rectifier rates of activation and deactivation, maximal conductance, and voltage sensitivity. Relatively modest changes in the properties of the delayed rectifier K+ channel analogous to what is described for its channelopathies alter the bifurcation structure of the HH model and profoundly modify excitability of the HH model. Channelopathies associated with Kv1.1 can reduce the threshold for onset of neural activity. These studies also demonstrate how pathological delayed rectifier K+ channels could lead to the observation of the generalized Hopf bifurcation and, perhaps, other variants of the Hopf bifurcation. The observed bifurcation patterns collectively demonstrate that properties of the nominal delayed rectifier in the HH model appear optimized to permit activation of the HH model over the broadest possible range of input currents.


Asunto(s)
Canalopatías/fisiopatología , Canales de Potasio de Tipo Rectificador Tardío/genética , Potenciales de la Membrana/fisiología , Modelos Neurológicos , Neuronas/fisiología , Animales , Canalopatías/genética , Simulación por Computador
9.
Mol Genet Genomic Med ; 8(10): e1434, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32705822

RESUMEN

BACKGROUND: Pathogenic KCNA1 variants have been linked to episodic ataxia type 1 (EA1), a rare neurological syndrome characterized by continuous myokymia and attacks of generalized ataxia that can be triggered by fever, abrupt movements, emotional stress, and fatigue. Currently, over 40 KCNA1 variants have been identified in individuals with EA1. METHODS: A male patient displayed partial seizures in addition to EA1 symptoms, often triggered by fever. A sibling presented with typical EA1 symptoms, seizures, and learning difficulties. In addition, the older brother displayed cognitive impairment, developmental delay, and slurred speech, which were absent in his younger sister. Whole-exome sequencing was performed for the patients. RESULTS: A novel de novo missense variant in KCNA1 (p.Ala261Thr) was identified in the male patient, which is located in a base of the 3rd transmembrane domain (S3). The other novel KCNA1 variant (p.Gly376Ser) was identified in the sibling and was inherited from an unaffected father with low-level mosaicism. The variant was located in the S5-S6 extracellular linker of the voltage sensor domain of the Kv channel. Next, we systematically reviewed the available clinical phenotypes of individuals with EA1 and observed that individuals with KCNA1 variants at the C-terminus were more likely to suffer from seizures and neurodevelopmental disorders than those with variants at the N-terminus. CONCLUSION: Our study expands the mutation spectrum of KCNA1 and improves our understanding of the genotype-phenotype correlations of KCNA1. Definitive genetic diagnosis is beneficial for the genetic counseling and clinical management of individuals with EA1.


Asunto(s)
Ataxia/genética , Discapacidades del Desarrollo/genética , Canal de Potasio Kv.1.1/genética , Mutación Missense , Miocimia/genética , Ataxia/patología , Preescolar , Discapacidades del Desarrollo/patología , Femenino , Humanos , Lactante , Canal de Potasio Kv.1.1/química , Masculino , Mosaicismo , Miocimia/patología , Fenotipo , Dominios Proteicos
10.
Pflugers Arch ; 472(7): 899-909, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32577860

RESUMEN

Investigating the Shaker-related K+ channel Kv1.1, the dysfunction of which is responsible for episodic ataxia 1 (EA1), at the functional and molecular level provides valuable understandings on normal channel dynamics, structural correlates underlying voltage-gating, and disease-causing mechanisms. Most studies focused on apparently functional amino acid residues composing voltage-gated K+ channels, neglecting the simplest ones. Glycine at position 311 of Kv1.1 is highly conserved both evolutionarily and within the Kv channel superfamily, is located in a region functionally relevant (the S4-S5 linker), and results in overt disease when mutated (p.G311D). By mutating the G311 residue to aspartate, we show here that the channel voltage-gating, activation, deactivation, inactivation, and window currents are markedly affected. In silico, modeling shows this glycine residue is strategically placed at one end of the linker helix which must be free to both bend and move past other portions of the protein during the channel's opening and closing. This is befitting of a glycine residue as its small neutral side chain allows for movement unhindered by interaction with any other amino acid. Results presented reveal the crucial importance of a distinct glycine residue, within the S4-S5 linker, in the voltage-dependent electromechanical coupling that control channel gating.


Asunto(s)
Aminoácidos/metabolismo , Activación del Canal Iónico/fisiología , Canal de Potasio Kv.1.1/genética , Secuencia de Aminoácidos , Animales , Ataxia/metabolismo , Ataxia/patología , Xenopus laevis/metabolismo
11.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331416

RESUMEN

Kv1.1 belongs to the Shaker subfamily of voltage-gated potassium channels and acts as a critical regulator of neuronal excitability in the central and peripheral nervous systems. KCNA1 is the only gene that has been associated with episodic ataxia type 1 (EA1), an autosomal dominant disorder characterized by ataxia and myokymia and for which different and variable phenotypes have now been reported. The iterative characterization of channel defects at the molecular, network, and organismal levels contributed to elucidating the functional consequences of KCNA1 mutations and to demonstrate that ataxic attacks and neuromyotonia result from cerebellum and motor nerve alterations. Dysfunctions of the Kv1.1 channel have been also associated with epilepsy and kcna1 knock-out mouse is considered a model of sudden unexpected death in epilepsy. The tissue-specific association of Kv1.1 with other Kv1 members, auxiliary and interacting subunits amplifies Kv1.1 physiological roles and expands the pathogenesis of Kv1.1-associated diseases. In line with the current knowledge, Kv1.1 has been proposed as a novel and promising target for the treatment of brain disorders characterized by hyperexcitability, in the attempt to overcome limited response and side effects of available therapies. This review recounts past and current studies clarifying the roles of Kv1.1 in and beyond the nervous system and its contribution to EA1 and seizure susceptibility as well as its wide pharmacological potential.


Asunto(s)
Canalopatías/etiología , Canalopatías/terapia , Predisposición Genética a la Enfermedad , Canal de Potasio Kv.1.1/genética , Mutación , Alelos , Animales , Canalopatías/diagnóstico , Canalopatías/metabolismo , Manejo de la Enfermedad , Regulación de la Expresión Génica , Estudios de Asociación Genética , Genotipo , Humanos , Activación del Canal Iónico , Canal de Potasio Kv.1.1/química , Canal de Potasio Kv.1.1/metabolismo , Terapia Molecular Dirigida , Fenotipo , Relación Estructura-Actividad
12.
Drugs Context ; 8: 212576, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30891074

RESUMEN

Episodic ataxias (EAs) are characterized by recurrent, discrete episodes of vertigo and ataxia. EA1 and EA2 are the two most common forms. In the interictal interval, myokymia is typically present in EA1, whereas EA2 patients present with interictal nystagmus. Specific pharmacological therapies are available for EA1 and especially EA2. We briefly discuss the case of an Italian young man with EA2, with a novel de novo CACNA1A mutation, who in our opinion is particularly illustrative for introducing the therapeutic approach. Acetazolamide could fully suppress EA episodes in our patient. We also provide a perspective review of the topic. 4-Aminopyridine is another valid treatment option. For EA1 (and for rarer EAs), the therapeutic possibilities are more limited. Carbamazepine is probably the treatment of choice for EA1, but the optimal treatment plan is unknown. A better understanding of the molecular processes involved in the mediation of EAs will lead to more specific and efficacious therapies for this still elusive group of disorders.

13.
Front Neurol ; 9: 587, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30140249

RESUMEN

Episodic ataxia type 1 (EA1), a Shaker-like K+channelopathy, is a consequence of genetic anomalies in the KCNA1 gene that lead to dysfunctions in the voltage-gated K+ channel Kv1. 1. Generally, KCNA1 mutations are inherited in an autosomal dominant manner. Here we report the clinical phenotype of an EA1 patient characterized by ataxia attacks that decrease in frequency with age, and eventually leading to therapy discontinuation. A new de novo mutation (c.932G>A) that changed a highly conserved glycine residue into an aspartate (p.G311D) was identified by using targeted next-generation sequencing. The conserved glycine is located in the S4-S5 linker, a crucial domain controlling Kv1.1 channel gating. In silico analyses predicted the mutation deleterious. Heterologous expression of the mutant (Kv1.1-G311D) channels resulted in remarkably decreased amplitudes of measured current, confirming the identified variant is pathogenic. Collectively, these findings corroborate the notion that EA1 also results from de novo variants and point out that regardless of the mutation-induced deleterious loss of Kv1.1 channel function the ataxia phenotype may improve spontaneously.

14.
Front Cell Neurosci ; 9: 317, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26347608

RESUMEN

Episodic ataxia type 1 (EA1) is a K(+) channelopathy characterized by a broad spectrum of symptoms. Generally, patients may experience constant myokymia and dramatic episodes of spastic contractions of the skeletal muscles of the head, arms, and legs with loss of both motor coordination and balance. During attacks additional symptoms may be reported such as vertigo, blurred vision, diplopia, nausea, headache, diaphoresis, clumsiness, stiffening of the body, dysarthric speech, and difficulty in breathing. These episodes may be precipitated by anxiety, emotional stress, fatigue, startle response or sudden postural changes. Epilepsy is overrepresented in EA1. The disease is inherited in an autosomal dominant manner, and genetic analysis of several families has led to the discovery of a number of point mutations in the voltage-dependent K(+) channel gene KCNA1 (Kv1.1), on chromosome 12p13. To date KCNA1 is the only gene known to be associated with EA1. Functional studies have shown that these mutations impair Kv1.1 channel function with variable effects on channel assembly, trafficking and biophysics. Despite the solid evidence obtained on the molecular mechanisms underlying EA1, how these cause dysfunctions within the central and peripheral nervous systems circuitries remains elusive. This review summarizes the main breakthrough findings in EA1, discusses the neurophysiological mechanisms underlying the disease, current therapies, future challenges and opens a window onto the role of Kv1.1 channels in central nervous system (CNS) and peripheral nervous system (PNS) functions.

15.
Muscle Nerve ; 50(2): 289-91, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24639406

RESUMEN

We describe the clinical phenotype of a novel de novo KNCA1 mutation, and functional characterization of the effects of the mutation on Kv1.1 channel function. HEK293 cells were transfected transiently with either wild-type or mutant channels. Representative currents were evoked after application of a series of square voltage steps from -80 mV to +50 mV in 200-ms intervals from Vh = -80 mV. Extracellular K(+) was added to evoke tail currents. Equal amounts of wild-type and Kv1.1(I262M) mutant DNA were transfected transiently in HEK293 cells to evaluate the influence of the mutation. We found that Kv1.1(I262M) leads to a defective voltage-gated potassium channel. Coexpression studies revealed a dominant-negative effect. We describe the phenotype of a novel KCNA1 mutation causing episodic ataxia. Patch-clamp studies confirm the pathogenicity of the mutation in vitro and suggest that it is dominant with respect to wild-type.


Asunto(s)
Canal de Potasio Kv.1.1/genética , Mutación/genética , Ataxias Espinocerebelosas/genética , Adulto , Análisis Mutacional de ADN , Humanos
16.
Brain ; 137(Pt 4): 1009-18, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24578548

RESUMEN

Episodic ataxia type 1 is considered a rare neuronal ion channel disorder characterized by brief attacks of unsteadiness and dizziness with persistent myokymia. To characterize the natural history, develop outcome measures for future clinical trials, and correlate genotype with phenotype, we undertook an international, prospective, cross-sectional study. Thirty-nine individuals (51% male) were enrolled: median age 37 years (range 15-65 years). We identified 10 different pathogenic point mutations in KCNA1 that accounted for the genetic basis of 85% of the cohort. Participants with KCNA1 mutations were more likely to have a positive family history. Analysis of the total cohort showed that the first episode of ataxia occurred before age 20 in all but one patient, with an average age of onset of 7.9 years. Physical exertion, emotional stress and environmental temperature were the most common triggers for attacks. Attack frequency ranged from daily to monthly, even with the same KCNA1 genotype. Average attack duration was in the order of minutes. Ten participants (26%) developed permanent cerebellar signs, which were related to disease duration. The average Scale for the Assessment and Rating of Ataxia score (SARA, a standardized measure of cerebellar dysfunction on clinical examination, scores range from 0-40) was an average of 3.15 for all participants (range 0-14), but was only 2 in those with isolated episodic ataxia compared with 7.7 in those with progressive cerebellar ataxia in addition to episodic ataxia. Thirty-seven participants completed the SF-36, a quality of life survey; all eight domain norm-based average scores (mean=50) were below normal with mental health being the lowest (41.3) in those with mutation positive episodic ataxia type 1. Scores on SF-36 correlated negatively with attack frequency. Of the 39 participants in the study, 33 harboured mutations in KCNA1 whereas the remaining six had no mutation identified. Episodic ataxia type 1 phenocopies have not been described previously and we report their clinical features, which appear to be different to those with a KCNA1 mutation. This large prospective study of both genetically confirmed episodic ataxia type 1 and episodic ataxia type 1 phenocopies provides detailed baseline characteristics of these disorders and their impact on participants. We found that attacks had a significant effect on quality of life. Unlike previous studies, we found that a significant number of individuals with genetically confirmed episodic ataxia type 1 (21%) had accumulated persistent cerebellar symptoms and signs. These data will enable the development of outcome measures for clinical trials of treatment.


Asunto(s)
Ataxia/genética , Ataxia/psicología , Estudios de Asociación Genética , Miocimia/genética , Miocimia/psicología , Calidad de Vida , Adolescente , Adulto , Edad de Inicio , Anciano , Ataxia/complicaciones , Estudios Transversales , Femenino , Humanos , Canal de Potasio Kv.1.1/genética , Masculino , Persona de Mediana Edad , Miocimia/complicaciones , Mutación Puntual , Adulto Joven
17.
Front Physiol ; 5: 525, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25642194

RESUMEN

Episodic ataxia type 1 (EA1) is an autosomal dominant K(+) channelopathy which manifests with short attacks of cerebellar ataxia and dysarthria, and may also show interictal myokymia. Episodes can be triggered by emotional or physical stress, startle response, sudden postural change or fever. Here we describe a 31-year-old man displaying markedly atypical symptoms, including long-lasting attacks of jerking muscle contractions associated with hyperthermia, severe migraine, and a relatively short-sleep phenotype. A single nucleotide change in KCNA1 (c.555C>G) was identified that changes a highly conserved residue (p.C185W) in the first transmembrane segment of the voltage-gated K(+) channel Kv1.1. The patient is heterozygous and the mutation was inherited from his asymptomatic mother. Next generation sequencing revealed no variations in the CACNA1A, CACNB4, KCNC3, KCNJ10, PRRT2 or SCN8A genes of either the patient or mother, except for a benign variant in SLC1A3. Functional analysis of the p.C185W mutation in KCNA1 demonstrated a deleterious dominant-negative phenotype where the remaining current displayed slower activation kinetics, subtle changes in voltage-dependence and faster recovery from slow inactivation. Structural modeling also predicts the C185W mutation to be functionally deleterious. This description of novel clinical features, associated with a Kv1.1 mutation highlights a possibly unrecognized relationship between K(+) channel dysfunction, hyperthermia and migraine in EA1, and suggests that thorough assessments for these symptoms should be carefully considered for all patients affected by EA1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA