Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genes Genet Syst ; 95(5): 225-234, 2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177249

RESUMEN

Thlaspi arvense (field pennycress) is widespread in temperate regions of the northern hemisphere. We estimated the genetic and epigenetic structure of eight T. arvense populations (131 individuals) in China using amplified fragment length polymorphism and methylation-sensitive amplified polymorphism molecular-marker techniques. We detected low diversity at both genetic (mean = 0.03; total = 0.07) and epigenetic (mean = 0.04; total = 0.07) levels, while significant genetic (FST = 0.42, P < 0.001) and epigenetic (FST = 0.32, P < 0.001) divergence was found across the distribution range. Using Mantel testing, we found spatial genetic and epigenetic differentiation, consistent with isolation-by-distance models. We also identified a strong correlation between genetic and epigenetic differentiation (r = 0.7438, P < 0.001), suggesting genetic control of the epigenetic variation. Our results indicate that mating system, natural selection and gene flow events jointly structure spatial patterns of genetic and epigenetic variation. Moreover, epigenetic variation may serve as a basis of natural selection and ecological evolution to enable species to adapt to heterogeneous habitats. Our study provides novel clues for the adaptation of T. arvense.


Asunto(s)
Epigénesis Genética , Polimorfismo Genético , Thlaspi/genética , China , Metilación de ADN , Flujo Génico , Aislamiento Reproductivo
2.
Front Plant Sci ; 9: 41, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29441078

RESUMEN

Increasing evidence shows that epigenetics plays an important role in phenotypic variance. However, little is known about epigenetic variation in the important ornamental tree Prunus mume. We used amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) techniques, and association analysis and sequencing to investigate epigenetic variation and its relationships with genetic variance, environment factors, and traits. By performing leaf sampling, the relative total methylation level (29.80%) was detected in 96 accessions of P. mume. And the relative hemi-methylation level (15.77%) was higher than the relative full methylation level (14.03%). The epigenetic diversity (I∗ = 0.575, h∗ = 0.393) was higher than the genetic diversity (I = 0.484, h = 0.319). The cultivated population displayed greater epigenetic diversity than the wild populations in both southwest and southeast China. We found that epigenetic variance and genetic variance, and environmental factors performed cooperative structures, respectively. In particular, leaf length, width and area were positively correlated with relative full methylation level and total methylation level, indicating that the DNA methylation level played a role in trait variation. In total, 203 AFLP and 423 MSAP associated markers were detected and 68 of them were sequenced. Homologous analysis and functional prediction suggested that the candidate marker-linked genes were essential for leaf morphology development and metabolism, implying that these markers play critical roles in the establishment of leaf length, width, area, and ratio of length to width.

3.
J Exp Bot ; 67(3): 723-37, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26552881

RESUMEN

DNA methylation, one of the best-studied types of chromatin modification, suppresses the expression of transposable elements, pseudogenes, repetitive sequences, and individual genes. However, the extent and variation of genome-wide DNA methylation in natural populations of plants remain relatively unknown. To investigate variation in DNA methylation and whether this variation associates with important plant traits, including leaf shape and photosynthesis, 20 413 DNA methylation sites were examined in a poplar association population (505 individuals) using methylation-sensitive amplification polymorphism (MSAP) technology. Calculation of epi-population structure and kinships assigned individuals into subsets (K=3), revealing that the natural population of P. simonii consists of three subpopulations. Population epigenetic distance and geographic distance showed a significant correlation (r=0.4688, P<0.001), suggesting that environmental factors may affect epigenetics. Single-marker approaches were also used to identify significant marker-trait associations, which found 1087 high-confidence DNA methylation markers associated with different phenotypic traits explaining ~5-15% of the phenotypic variance. Among these loci, 147 differentially methylated fragments were obtained by sequencing, representing 130 candidate genes. Expression analysis of six candidate genes indicated that these genes might play important roles in leaf development and regulation of photosynthesis. This study provides association analysis to study the effects of DNA methylation on plant development and these data indicate that epigenetics bridges environmental and genetic factors in affecting plant growth and development.


Asunto(s)
Metilación de ADN/genética , Variación Genética , Genoma de Planta , Fotosíntesis/genética , Hojas de la Planta/anatomía & histología , Populus/anatomía & histología , Populus/genética , China , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Marcadores Genéticos , Geografía , Fenotipo , Hojas de la Planta/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA