RESUMEN
The influence of magnetic fields on biological systems, including fermentation processes and cocoa bean fermentation, is an area of study that is under development. Mechanisms, such as magnetosensitivity, protein conformational changes, changes to cellular biophysical properties, ROS production, regulation of gene expression, and epigenetic modifications, have been identified to explain how magnetic fields affect microorganisms and cellular processes. These mechanisms can alter enzyme activity, protein stability, cell signaling, intercellular communication, and oxidative stress. In cacao fermentation, electromagnetic fields offer a potential means to enhance the sensory attributes of chocolate by modulating microbial metabolism and optimizing flavor and aroma development. This area of study offers possibilities for innovation and the creation of premium food products. In this review, these aspects will be explored systematically and illustratively.
RESUMEN
Type 2 diabetes (T2D) is associated with insulin resistance and progressive dysfunction of ß-pancreatic cells, leading to persistent hyperglycemia. Macrophages play a crucial role in this context, influencing both the development and progression of insulin resistance. These innate immune cells respond to inflammatory stimuli and reprogram their metabolism, directly impacting the pathophysiology of T2D. Macrophages are highly plastic and can adopt either pro-inflammatory or pro-resolutive phenotypic profiles. In T2D, pro-inflammatory macrophages, which rely on glycolysis, exacerbate insulin resistance through increased production of pro-inflammatory cytokines and nitric oxide. In contrast, pro-resolutive macrophages, which prioritize fatty acid metabolism, have different effects on glucose homeostasis. Metaflammation, a chronic low-grade inflammation, is induced by pro-inflammatory macrophages and significantly contributes to the progression of T2D, creating an environment conducive to metabolic dysfunction. This review aims to clarify the contribution of macrophages to the progression of T2D by detailing how their inflammatory responses and metabolic reprogramming influence insulin resistance and the disease's pathophysiology. The review seeks to deepen the understanding of the biochemical and metabolic mechanisms involved, offering broader insights into the impact on the quality of life for millions of patients worldwide.
Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Macrófagos , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Inflamación/metabolismo , Animales , Reprogramación Celular , Reprogramación MetabólicaRESUMEN
Advances in melanoma research have unveiled critical insights into its genetic and molecular landscape, leading to significant therapeutic innovations. This review explores the intricate interplay between genetic alterations, such as mutations in BRAF, NRAS, and KIT, and melanoma pathogenesis. The MAPK and PI3K/Akt/mTOR signaling pathways are highlighted for their roles in tumor growth and resistance mechanisms. Additionally, this review delves into the impact of epigenetic modifications, including DNA methylation and histone changes, on melanoma progression. The tumor microenvironment, characterized by immune cells, stromal cells, and soluble factors, plays a pivotal role in modulating tumor behavior and treatment responses. Emerging technologies like single-cell sequencing, CRISPR-Cas9, and AI-driven diagnostics are transforming melanoma research, offering precise and personalized approaches to treatment. Immunotherapy, particularly immune checkpoint inhibitors and personalized mRNA vaccines, has revolutionized melanoma therapy by enhancing the body's immune response. Despite these advances, resistance mechanisms remain a challenge, underscoring the need for combined therapies and ongoing research to achieve durable therapeutic responses. This comprehensive overview aims to highlight the current state of melanoma research and the transformative impacts of these advancements on clinical practice.
RESUMEN
A previous study using miRNA sequencing revealed that exposure to a mixture of phthalates during pregnancy and lactation dysregulated rno-miR-184 and rno-miR-141-3p in the ventral prostate (VP) of offspring. Here, rno-miR-184 and rno-miR-141-3 expressions were obtained by RT-qPCR in the VP of F1 males as well as in F2 offspring, aiming to establish a relationship with possible oncogenic targets through in silico analyses with multigenerational approach. Additionally, some targets were measured by western blots to highlight a possible relationship between the deregulated miRNAs and some of their targets. VP samples from rats exposed to a mixture of phthalates maternally during pregnancy and lactation (GD10 to PND21-F1) and VP from offspring (F2) were examined. The phthalate mixture at both concentrations (20 µg and 200 mg/kg/day) increased the expression of both miRNAs in the F1 (PND22 and 120) and F2 (descendants of F1-treated males) prostate. Target prediction analysis revealed that both microRNAs are responsible for modulating the expression and synthesis of 40 common targets. A phthalate target association analysis and the HPA database showed an interesting relationship among these possible miRNAs modulated targets with prostate adenocarcinoma and other oncogenic processes. Western blots showed alteration in P63, P53, WNT5, and STAT3 expression, which are targeted by the miRNAs, in the VP of F1/F2 males. The data draw attention to the epigenetic modulation in the prostate of descendants exposed to phthalates and adds to one of the few currently found in the literature to point to microRNAs signature as biomarkers of exposure to plasticizers.
Asunto(s)
MicroARNs , Ácidos Ftálicos , Efectos Tardíos de la Exposición Prenatal , Neoplasias de la Próstata , MicroARNs/genética , MicroARNs/metabolismo , Masculino , Animales , Neoplasias de la Próstata/inducido químicamente , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Femenino , Ácidos Ftálicos/toxicidad , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/genética , Exposición Materna/efectos adversos , Próstata/efectos de los fármacos , Próstata/patología , Ratas Wistar , Ratas , Simulación por ComputadorRESUMEN
HLA-C, a gene located within the major histocompatibility complex, has emerged as a prominent target in biomedical research due to its involvement in various diseases, including cancer and autoimmune disorders; even though its recent addition to the MHC, the interaction between HLA-C and KIR is crucial for immune responses, particularly in viral infections. This review provides an overview of the structure, origin, function, and pathological implications of HLA-C in the major histocompatibility complex. In the last decade, we systematically reviewed original publications from Pubmed, ScienceDirect, Scopus, and Google Scholar. Our findings reveal that genetic variations in HLA-C can determine susceptibility or resistance to certain diseases. However, the first four exons of HLA-C are particularly susceptible to epigenetic modifications, which can lead to gene silencing and alterations in immune function. These alterations can manifest in diseases such as alopecia areata and psoriasis and can also impact susceptibility to cancer and the effectiveness of cancer treatments. By comprehending the intricate interplay between genetic and epigenetic factors that regulate HLA-C expression, researchers may develop novel strategies for preventing and treating diseases associated with HLA-C dysregulation.
RESUMEN
In recent years, it has been recognized that epigenetic alterations play an important role in the development and maintenance of cancer, including leukemias. Furthermore, it is known that these alterations are involved in the emergence of resistance to conventional chemotherapeutics. Consequently, molecules with an anticancer activity whose activity is ruled by epigenetic modifications are attractive to search for new therapies against cancer. The plant antimicrobial peptides have been widely evaluated as molecules with anticancer activity; however, the analysis of the epigenetic regulation induced by these molecules associated with this activity is scarce and still is an unexplored field. In this work, we show that the PaDef defensin, a plant antimicrobial peptide from Mexican avocado fruit (Persea americana var. drymifolia) is cytotoxic for Jurkat cell line from acute lymphoid leukemia cells, through an apoptotic process. PaDef inhibited cell viability in a concentration-dependent manner, with an IC50 = 47.3 µM. Treatment of Jurkat cells with PaDef (IC50) induced cell death by apoptosis dependent on caspases 8 and 9; besides, it was related to an increase in the production of reactive oxygen species and the loss of mitochondrial membrane potential. Interestingly, the inhibition of caspase activation by inhibitors of caspases 8 and 9 does not revert the reduction in viability, suggesting that other mechanisms, in addition to caspase activity, could be participating in the PaDef cytotoxic effect. Also, the modifications in the histone 3 tails induced by PaDef in Jurkat cells were evaluated, specifically acetylation and methylation. PaDef increased global histone 3 acetylation and lysine 9 specific marks (2-fold and up to 4-fold, respectively). These effects correlated with the reduction of the Histone Deacetylase activity (HDAC, â¼50%). Based on methylation marks, PaDef treatment increased lysine 9 di- and tri-methylation tags (2-fold in both cases). The epigenetic modulation induced by PaDef on Jurkat cells could be related to the chromatin compaction-decompaction promoting gene expression or repression; however, further studies are necessary to correlate these marks with the transcription of specific genes. Therefore, the study of new molecules that may have anticancer activity through epigenetic modulation is interesting.
RESUMEN
Flavonoids are ubiquitous groups of polyphenolic compounds present in most natural products and plants. These substances have been shown to have promising chemopreventive and chemotherapeutic properties with multiple target interactions and multiple pathway regulations against various human cancers. Polyphenolic flavonoid compounds can block the initiation or reverse the promotion stage of multistep carcinogenesis. Quercetin is one of the most abundant flavonoids found in fruits and vegetables and has been shown to have multiple properties capable of reducing cell growth in cancer cells. Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) therapy remains a challenge for hematologists worldwide, and the outcomes for patients with both disorders continue to be poor. This scenario indicates the increasing demand for innovative drugs and rational combinative therapies. Herein, we discuss the multitarget effects of the flavonoid quercetin, a naturally occurring flavonol, on AML and MDS.
Asunto(s)
Leucemia Mieloide Aguda/tratamiento farmacológico , Síndromes Mielodisplásicos/tratamiento farmacológico , Quercetina/uso terapéutico , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Leucemia Mieloide Aguda/metabolismo , Síndromes Mielodisplásicos/metabolismo , Quercetina/química , Quercetina/farmacología , Especies Reactivas de OxígenoRESUMEN
Aberrant metabolism is arising interest in the scientific community not only because of the role it plays in the development and establishment of the tumor mass but also the possibility of drug poisoning of key enzymes overexpressed in tumor cells. Moreover, tumor metabolism provides key molecules to maintain the epigenetic changes that are also an undisputed characteristic of each tumor type. This metabolic change includes the Warburg effect and alterations in key pathways involved in glutaminolysis, pentose phosphate, and unsaturated fatty acid biosynthesis. Modifications in all these pathways have consequences that impact genetics and epigenetics processes such as DNA methylation patterns, histone post-translational modifications, triggering oncogenes activation, and loss in tumor suppressor gene expression to lead the tumor establishment. In this review, we describe the metabolic rearrangement and its association with epigenetic regulation in breast cancer, as well as its implication in biological processes involved in cancer progression. A better understanding of these processes could help to find new targets for the diagnosis, prognosis, and treatment of this human health problem.
RESUMEN
In multicellular organisms, tissue generation, maintenance, and homeostasis depend on stem cells. Cellular metabolic status is an essential component of different differentiated states, from stem to fully differentiated cells. Threonine (Thr) metabolism has emerged as a critical factor required to maintain pluripotent/multipotent stem cells in both plants and animals. Thus, both kingdoms conserved or converged upon this fundamental feature of stem cell function. Here, we examine similarities and differences in Thr metabolism-dependent mechanisms supporting stem cell maintenance in these two kingdoms. We then consider common features of Thr metabolism in stem cell maintenance and predict and speculate that some knowledge about Thr metabolism and its role in stem cell function in one kingdom may apply to the other. Finally, we outline future research directions to explore these hypotheses.
RESUMEN
Obesity is defined as excessive body fat accumulation, and worldwide obesity has nearly tripled since 1975. Excess of free fatty acids (FFAs) and triglycerides in obese individuals promote ectopic lipid accumulation in the liver, skeletal muscle tissue, and heart, among others, inducing insulin resistance, hypertension, metabolic syndrome, type 2 diabetes (T2D), atherosclerosis, and cardiovascular disease (CVD). These diseases are promoted by visceral white adipocyte tissue (WAT) dysfunction through an increase in pro-inflammatory adipokines, oxidative stress, activation of the renin-angiotensin-aldosterone system (RAAS), and adverse changes in the gut microbiome. In the heart, obesity and T2D induce changes in substrate utilization, tissue metabolism, oxidative stress, and inflammation, leading to myocardial fibrosis and ultimately cardiac dysfunction. Peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of carbohydrate and lipid metabolism, also improve insulin sensitivity, triglyceride levels, inflammation, and oxidative stress. The purpose of this review is to provide an update on the molecular mechanisms involved in obesity-linked CVD pathophysiology, considering pro-inflammatory cytokines, adipokines, and hormones, as well as the role of oxidative stress, inflammation, and PPARs. In addition, cell lines and animal models, biomarkers, gut microbiota dysbiosis, epigenetic modifications, and current therapeutic treatments in CVD associated with obesity are outlined in this paper.
Asunto(s)
Sistema Cardiovascular/metabolismo , Metabolismo Energético , Cardiopatías/metabolismo , Grasa Intraabdominal/metabolismo , Metabolismo de los Lípidos , Obesidad/metabolismo , Adipoquinas/metabolismo , Adiposidad , Animales , Sistema Cardiovascular/fisiopatología , Disbiosis , Metabolismo Energético/genética , Epigénesis Genética , Microbioma Gastrointestinal , Factores de Riesgo de Enfermedad Cardiaca , Cardiopatías/genética , Cardiopatías/fisiopatología , Cardiopatías/terapia , Hemodinámica , Humanos , Mediadores de Inflamación/metabolismo , Grasa Intraabdominal/fisiopatología , Metabolismo de los Lípidos/genética , Obesidad/genética , Obesidad/fisiopatología , Obesidad/terapia , Estrés Oxidativo , PronósticoRESUMEN
The environmental contamination with lead (Pb) is considered a critical issue worldwide. Therefore, this study aimed to evaluate the expression levels of circulating miRNAs (miR-155, miR-126, and miR-145) in Mexican women exposed to Pb. Blood lead levels (BLL) were assessed in enrolled women (n = 190) using an atomic absorption method. Also, serum miRNAs expression levels were quantified through a real-time PCR assay. A mean BLL of 10.5 ± 4.50 µg/dL was detected. Overexpression of miR-155 was detected in highly exposed women. Besides, a significant simple positive relationship (p < 0.05) was found between BLL and serum miR-155 expression levels. Additionally, a significant inverse correlation (p < 0.05) was determined between BLL and serum miR-126 expression levels, as downregulation of miR-126 expression levels was observed in highly exposed women. The findings in this study are the concern, as epigenetic changes detected may represent a connection between health illnesses and Pb exposure.
Asunto(s)
Contaminantes Ambientales/sangre , Plomo/sangre , MicroARNs/sangre , Adulto , Exposición a Riesgos Ambientales/análisis , Epigénesis Genética , Femenino , Humanos , México , Persona de Mediana EdadRESUMEN
The overwhelming rates of obesity worldwide are a major concern due to the elevated medical costs associated and the poor quality of life of obese patients. In the recent years, it has become evident that the intrauterine milieu can have a long-term impact on the foetus health. The placenta is a highly dynamic organ; whose primary function is to carry nutrients from the mother to the foetus and to remove waste products from the foetus. Any alteration in maternal circulating metabolites elicits a response in order to ensure the developing foetus an adequate growth environment. This response can be translated into epigenetic modifications in coding genes for metabolic-related receptors located in the placenta and foetal tissues. The most studied receptors involved in the metabolic sensing are the leptin and the insulin receptors. A maternal metabolic disease-like state can alter the expression of these receptors in different organs, including placenta. There is evidence that these alterations not only affect the expression level of these receptors, but there are also differences in epigenetic marks in regulatory elements of these genes that may become permanent despite the mother's treatment. This review provides evidence about possible mechanisms involved in the foetal programming of metabolic diseases originated from the pre-natal environment that could contributive to increasing levels of obesity in the world.
Asunto(s)
Metilación de ADN , Desarrollo Fetal/fisiología , Leptina/genética , Leptina/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Epigénesis Genética/genética , Femenino , Homeostasis , Humanos , Insulina , Enfermedades Metabólicas , Obesidad/metabolismo , Placenta/metabolismo , Embarazo , Receptores de Leptina , Transducción de SeñalRESUMEN
During midbrain development, dopamine neuron differentiation occurs before birth. Epigenetic processes such as DNA methylation and demethylation as well as post-translational modification of histones occur during neurogenesis. Here, we administered histamine (HA) into the brain of E12 embryos in vivo and observed significant lower immunoreactivity of Lmx1a+ and Tyrosine Hydroxylase (TH)+ cells, with parallel decreases in the expression of early (Lmx1a, Msx1) and late (Th) midbrain dopaminergic (mDA) genes. With MeDIP assays we found that HA decreases the percentage of 5-methylcytosine of Pitx3 and Th, without changes in 5-hydroxymethylcytosine. Additionally, HA treatment caused a significant increase in the repressive epigenetic modifications H3K9me3 in Pitx3 and Th, and also more H3K27me3 marks in Th. Furthermore, HA has a long-term effect on the formation of the nigrostriatal and mesolimbic/mesocortical pathways, since it causes a significant decrease in midbrain TH immunoreactivity, as well as alterations in dopaminergic neuronal fibers, and significant lower TH-positive area in the forebrain in whole-mount stainings. These findings suggest that HA diminishes dopaminergic gene transcription by altering several epigenetic components related to DNA and histone modifications, which affects mDA neuron progression during development.
RESUMEN
Dendritic cells (DC) are a diverse group of leukocytes responsible for bridging innate and adaptive immunity. Despite their functional versatility, DCs exist primarily in two basic functional states: immature and mature. A large body of evidence suggests that upon interactions with pathogens, DCs undergo intricate cellular processes that culminate in their activation, which is paramount to the orchestration of effective immune responses against Leishmania parasites. Herein we offer a concise review of the emerging hallmarks of DCs activation in leishmaniasis as well as a comprehensive discussion of the following underlying molecular events: DC-Leishmania interaction, antigen uptake, costimulatory molecule expression, parasite ability to affect DC migration, antigen presentation, metabolic reprogramming, and epigenetic alterations.
Asunto(s)
Células Dendríticas/inmunología , Leishmaniasis/inmunología , Inmunidad Adaptativa , Animales , Presentación de Antígeno , Movimiento Celular , Células Dendríticas/clasificación , Células Dendríticas/metabolismo , Epigénesis Genética , Humanos , Ratones , Receptores Purinérgicos/fisiología , Receptores Toll-Like/fisiologíaRESUMEN
Previously, we have shown that perinatal exposure to a glyphosate-based herbicide (GBH) induces implantation failures in rats. Estrogen receptor alpha (ERα) is critical for successful implantation. ERα transcription is under the control of five promoters (E1, OT, O, ON, and OS), which yield different transcripts. Here, we studied whether perinatal exposure to a GBH alters uterine ERα gene expression and prompts epigenetic modifications in its regulatory regions during the preimplantation period. Pregnant rats (F0) were orally treated with 350â¯mg glyphosate/kg bw/day through food from gestational day (GD) 9 until weaning. F1 females were bred, and uterine samples were collected on GD5 (preimplantation period). ERα mRNA levels and its transcript variants were evaluated by RT-qPCR. Enzyme-specific restriction sites and predicted transcription factors were searched in silico in the ERα promoter regions to assess the methylation status using the methylation-sensitive restriction enzymes-PCR technique. Post-translational modifications of histones were studied by the chromatin immunoprecipitation assay. GBH upregulated the expression of total ERα mRNA by increasing the abundance of the ERα-O transcript variant. In addition, different epigenetic changes were detected in the O promoter. A decrease in DNA methylation was observed in one of the three sites evaluated in the O promoter. Moreover, histone H4 acetylation and histone H3 lysine 9 trimethylation (H3K9me3) were enriched in the O promoter in GBH-exposed rats, whereas H3K27me3 was decreased. All these alterations could account for the increase in ERα gene expression. Our findings show that perinatal exposure to a GBH causes long-term epigenetic disruption of the uterine ERα gene, which could be associated with the GBH-induced implantation failures.
Asunto(s)
Implantación del Embrión/genética , Epigénesis Genética , Receptor alfa de Estrógeno/genética , Glicina/análogos & derivados , Herbicidas/toxicidad , Útero/metabolismo , Animales , Sitios de Unión , Simulación por Computador , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Implantación del Embrión/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Receptor alfa de Estrógeno/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genoma , Glicina/toxicidad , Histonas/metabolismo , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos , Útero/efectos de los fármacos , GlifosatoRESUMEN
Para acortar la brecha entre lo molecular y la clínica, el personal de atención médica debe tener un conocimiento básico de los mecanismos moleculares que gobiernan la identidad celular, mediante la activación selectiva de genes. La expresión diferencial de genes permite a las células sintetizar las proteínas requeridas para cumplir con sus funciones biológicas, y ello posibilita a las células responder a estímulos internos y externos. Para esto se debe tener primero acceso a los genes que codifican las proteínas, determinando el fenotipo celular. Modificaciones en la estructura de la cromatina permiten a la maquinaria transcripcional tener acceso a secuencias de ADN. El ADN es transcripto en ARNm, que sufre diversas modificaciones antes de salir del núcleo para ser traducido en una proteína en el citoplasma. Cualquier desregulación en alguno de los procesos asociados se presenta como una patología. A inicios del siglo XXI se reportó la secuenciación del genoma humano, y sorprendentemente uno de los principales hallazgos fue que solo un 2% de la secuencia codifica para proteínas, lo cual dejó un interrogante sobre cómo funcionan y se regulan los procesos genéticos que llevan a la identidad celular. Desde entonces las investigaciones han permitido utilizar los principios que rigen estos procesos para ampliar el conocimiento de los mecanismos asociados a enfermedades. Gracias a estos avances, se ha buscado determinar aplicaciones clínicas dirigidas a los procesos involucrados en la expresión génica diferencial, lograr una mejor comprensión sobre los procesos patológicos de la enfermedad y desarrollar herramientas diagnósticas.
To narrow the gap between the bench and the clinic, healthcare personnel should have a basic understanding of molecular mechanisms ruling cell identity, since it establishes the key differences between health and disease states. Differential gene expression allows for protein synthesis required for the cell's biological function. In this process genes are selected from the entire genome to meet the cell's biological functioning and respond to internal and external stimuli. To this end, first the chromatin must be remodeled for the transcriptional machinery to gain access to DNA sequences coding for particular genes. DNA can then be transcribed into mRNA, followed by different processes leading to mature mRNA leaving the nucleus for protein synthesis in the cytoplasm. Any dysregulation in these processes results in disease. In the beginning of this millennium the human genome project sequenced the whole genome. Surprisingly, one of the main findings was only 2% of the genome represented protein coding sequences, which raised the question about the remainder of the genome and cell identity. Based on principles derived from the human genome project many investigations have shed light on mechanisms associated with disease. Thanks to advancements in differential gene expression, researchers are seeking for a better understanding in pathological processes associated with disease and the development of diagnostic tools.
Asunto(s)
Humanos , Epigenómica , Acetilación , MetilaciónRESUMEN
Recent research in psychiatric genetics has led to a move away from simple diathesis-stress models to more complex models of psychopathology incorporating a focus on gene-environment interactions and epigenetics. Our increased understanding of the way biology encodes the impact of life events on organisms has also generated more sophisticated theoretical models concerning the molecular processes at the interface between "nature" and "nurture." There is also increasing consensus that psychotherapy entails a specific type of learning in the context of an emotional relationship (i.e., the therapeutic relationship) that may also lead to epigenetic modifications across different therapeutic treatment modalities. This paper provides a systematic review of this emerging body of research. It is concluded that, although the evidence is still limited at this stage, extant research does indeed suggest that psychotherapy may be associated with epigenetic changes. Furthermore, it is argued that epigenetic studies may play a key role in the identification of biomarkers implicated in vulnerability for psychopathology, and thus may improve diagnosis and open up future research opportunities regarding the mechanism of action of psychotropic drugs as well as psychotherapy. We review evidence suggesting there may be important individual differences in susceptibility to environmental input, including psychotherapy. In addition, given that there is increasing evidence for the transgenerational transmission of epigenetic modifications in animals and humans exposed to trauma and adversity, epigenetic changes produced by psychotherapy may also potentially be passed on to the next generation, which opens up new perspective for prevention science. We conclude this paper stressing the limitations of current research and by proposing a set of recommendations for future research in this area.
RESUMEN
Background: Epigenetic modifications are key factors modulating the expression of genes involved in the synthesis of phytochemicals. The knowledge of plant epigenetic and genetic variations can contribute to enhance the production of bioactive compounds. These issues have been little explored thus far in Rorippa nasturtium var. aquaticum L. (watercress), an edible and medicinal plant. The aim of the current study was to determine and compare the phenolic composition and epigenetic and genetic variations between wild and cultivated watercress. Results: Significant differences were found in the quantitative phenolic composition between wild and cultivated watercress. The eight primer combinations used in the methylation-sensitive amplification polymorphism (MSAP) method revealed different epigenetic status for each watercress type, the cultivated one being the most epigenetically variable. The genetic variability revealed by the EcoRI/MspI amplification profile and also by eight inter-simple sequence repeat (ISSR) primers was different between the two types of watercress. The results of the Mantel test showed that the correlation between genetic and epigenetic variations has diminished in the cultivated type. Cluster analyses showed that the epigenetic and genetic characterizations clearly discriminated between wild and cultivated watercress. Conclusions: Relevant chemical, epigenetic, and genetic differences have emerged between wild and cultivated watercress. These differences can contribute to fingerprint and develop quality control tools for the integral and safety use and the commercialization of watercress. The richness of epialleles could support the development of tools to manipulate the watercress epigenome to develop high bioproductproducing cultivars