Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Neuron ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39019041

RESUMEN

Traumatic brain injury (TBI) heterogeneity remains a critical barrier to translating therapies. Identifying final common pathways/molecular signatures that integrate this heterogeneity informs biomarker and therapeutic-target development. We present the first large-scale murine single-cell atlas of the transcriptomic response to TBI (334,376 cells) across clinically relevant models, sex, brain region, and time as a foundational step in molecularly deconstructing TBI heterogeneity. Results were unique to cell populations, injury models, sex, brain regions, and time, highlighting the importance of cell-level resolution. We identify cell-specific targets and previously unrecognized roles for microglial and ependymal subtypes. Ependymal-4 was a hub of neuroinflammatory signaling. A distinct microglial lineage shared features with disease-associated microglia at 24 h, with persistent gene-expression changes in microglia-4 even 6 months after contusional TBI, contrasting all other cell types that mostly returned to naive levels. Regional and sexual dimorphism were noted. CEREBRI, our searchable atlas (https://shiny.crc.pitt.edu/cerebri/), identifies previously unrecognized cell subtypes/molecular targets and is a leverageable platform for future efforts in TBI and other diseases with overlapping pathophysiology.

2.
Brain Res ; 1840: 149082, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38866307

RESUMEN

Ubiquitin specific protease 18 (USP18) serves as a potent inhibitor of Type I interferon (IFN) signaling. Previous studies have shown that Usp18 deficient (homozygous Usp18 gene knockout) mice exhibit hydrocephalus; however, the precise molecular mechanism underlying hydrocephalus development remains elusive. In this study, we demonstrate that mice lacking both type I IFN receptor subunit 1 (Ifnar1) and Usp18 (Ifnar1/Usp18 double knockout mice) are viable and do not display a hydrocephalus phenotype. Moreover, we observed that suppression of USP18 in ependymal cells treated with IFN significantly increased cell death, including pyroptosis, and decreased proliferation. These findings suggest that heightened sensitivity to type I IFN during brain development contributes to the onset of hydrocephalus. Furthermore, they imply that inhibition of IFN signaling may hold promise as a therapeutic strategy for hydrocephalus.


Asunto(s)
Hidrocefalia , Interferón Tipo I , Ratones Noqueados , Receptor de Interferón alfa y beta , Ubiquitina Tiolesterasa , Animales , Hidrocefalia/genética , Hidrocefalia/patología , Interferón Tipo I/metabolismo , Ratones , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/efectos de los fármacos , Epéndimo/metabolismo , Proliferación Celular/efectos de los fármacos , Piroptosis/efectos de los fármacos , Piroptosis/fisiología
3.
Int Rev Neurobiol ; 176: 381-450, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38802179

RESUMEN

Amyotrophic lateral sclerosis (ALS) has traditionally been considered a neuron-centric disease. This view is now outdated, with increasing recognition of cell autonomous and non-cell autonomous contributions of central and peripheral nervous system glia to ALS pathomechanisms. With glial research rapidly accelerating, we comprehensively interrogate the roles of astrocytes, microglia, oligodendrocytes, ependymal cells, Schwann cells and satellite glia in nervous system physiology and ALS-associated pathology. Moreover, we highlight the inter-glial, glial-neuronal and inter-system polylogue which constitutes the healthy nervous system and destabilises in disease. We also propose classification based on function for complex glial reactive phenotypes and discuss the pre-requisite for integrative modelling to advance translation. Given the paucity of life-enhancing therapies currently available for ALS patients, we discuss the promising potential of harnessing glia in driving ALS therapeutic discovery.


Asunto(s)
Esclerosis Amiotrófica Lateral , Neuroglía , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Esclerosis Amiotrófica Lateral/terapia , Humanos , Neuroglía/fisiología , Animales
4.
Cells ; 13(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38667283

RESUMEN

Astrocytes and ependymal cells have been reported to be able to switch from a mature cell identity towards that of a neural stem/progenitor cell. Astrocytes are widely scattered in the brain where they exert multiple functions and are routinely targeted for in vitro and in vivo reprogramming. Ependymal cells serve more specialized functions, lining the ventricles and the central canal, and are multiciliated, epithelial-like cells that, in the spinal cord, act as bi-potent progenitors in response to injury. Here, we isolate or generate ependymal cells and post-mitotic astrocytes, respectively, from the lateral ventricles of the mouse brain and we investigate their capacity to reverse towards a progenitor-like identity in culture. Inhibition of the GSK3 and TGFß pathways facilitates the switch of mature astrocytes to Sox2-expressing, mitotic cells that generate oligodendrocytes. Although this medium allows for the expansion of quiescent NSCs, isolated from live rats by "milking of the brain", it does not fully reverse astrocytes towards the bona fide NSC identity; this is a failure correlated with a concomitant lack of neurogenic activity. Ependymal cells could be induced to enter mitosis either via exposure to neuraminidase-dependent stress or by culturing them in the presence of FGF2 and EGF. Overall, our data confirm that astrocytes and ependymal cells retain a high capacity to reverse to a progenitor identity and set up a simple and highly controlled platform for the elucidation of the molecular mechanisms that regulate this reversal.


Asunto(s)
Astrocitos , Epéndimo , Fenotipo , Animales , Astrocitos/metabolismo , Astrocitos/citología , Epéndimo/citología , Epéndimo/metabolismo , Ratones , Células Cultivadas , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Diferenciación Celular , Encéfalo/citología , Encéfalo/metabolismo , Ratas , Factores de Transcripción SOXB1/metabolismo , Ratones Endogámicos C57BL , Mitosis , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Animales Recién Nacidos
5.
FASEB J ; 37(9): e23138, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37584603

RESUMEN

Motile cilia lining on the ependymal cells are crucial for cerebrospinal fluid (CSF) flow and its dysfunction is often associated with hydrocephalus. Unc51-like-kinase 4 (Ulk4) was previously linked to CSF flow and motile ciliogenesis in mice, as the hypomorph mutant of Ulk4 (Ulk4tm1a/tm1a ) developed hydrocephalic phenotype resulted from defective ciliogenesis and disturbed ciliary motility, while the underling mechanism is largely obscure. Here, we report that serine/threonine kinase 36 (STK36), a paralog of ULK4, directly interacts with ULK4 and this was demonstrated by yeast two-hybrid (Y2H) in yeast and coimmunoprecipitation (co-IP) assays in HEK293T cells, respectively. The interaction region was confined to their respective N-terminal kinase domain. The hypomorph mutant of Stk36 (Stk36tmE4-/- ) also developed progressive hydrocephalus postnatally and dysfunctional CSF flow, with multiple defects of motile cilia, including reduced ciliary number, disorganized ciliary orientation, defected axonemal structure and inconsistent base body (BB) orientation. Stk36tmE4-/- also disturbed the expression of Foxj1 transcription factor and a range of other ciliogenesis-related genes. All these morphological changes, motile cilia defects and transcriptional dysregulation in the Stk36tmE4-/- are practically copied from that in Ulk4tm1a/tm1a mice. Taken together, we conclude that both Stk36 and Ulk4 are crucial for CSF flow, they cooperate by direct binding with their kinase domain to regulate the Foxj1 transcription factor pathways for ciliogenesis and cilia function, not limited to CSF flow. The underlying molecular mechanism probably conserved in evolution and could be extended to other metazoans.


Asunto(s)
Hidrocefalia , Proteínas Quinasas , Ratones , Animales , Humanos , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Células HEK293 , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Hidrocefalia/genética , Factores de Transcripción/metabolismo , Cilios/metabolismo
6.
Front Cell Neurosci ; 17: 1216420, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396927

RESUMEN

Mild traumatic brain injury (mTBI) is a common neurological condition affecting millions of individuals worldwide. Although the pathology of mTBI is not fully understood, ependymal cells present a promising approach for studying the pathogenesis of mTBI. Previous studies have revealed that DNA damage in the form of γH2AX accumulates in ependymal cells following mTBI, with evidence of widespread cellular senescence in the brain. Ependymal ciliary dysfunction has also been observed, leading to altered cerebrospinal fluid homeostasis. Even though ependymal cells have not been extensively studied in the context of mTBI, these observations reflect the pathological potential of ependymal cells that may underlie the neuropathological and clinical presentations of mTBI. This mini review explores the molecular and structural alterations that have been reported in ependymal cells following mTBI, as well as the potential pathological mechanisms mediated by ependymal cells that may contribute to overall dysfunction of the brain post-mTBI. Specifically, we address the topics of DNA damage-induced cellular senescence, dysregulation of cerebrospinal fluid homeostasis, and the consequences of impaired ependymal cell barriers. Moreover, we highlight potential ependymal cell-based therapies for the treatment of mTBI, with a focus on neurogenesis, ependymal cell repair, and modulation of senescence signaling pathways. Further insight and research in this field will help to establish the role of ependymal cells in the pathogenesis of mTBI and may lead to improved treatments that leverage ependymal cells to target the origins of mTBI pathology.

7.
Stem Cell Res Ther ; 14(1): 175, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37408068

RESUMEN

Ependymal cells, a dormant population of ciliated progenitors found within the central canal of the spinal cord, undergo significant alterations after spinal cord injury (SCI). Understanding the molecular events that induce ependymal cell activation after SCI represents the first step toward controlling the response of the endogenous regenerative machinery in damaged tissues. This response involves the activation of specific signaling pathways in the spinal cord that promotes self-renewal, proliferation, and differentiation. We review our current understanding of the signaling pathways and molecular events that mediate the SCI-induced activation of ependymal cells by focusing on the roles of some cell adhesion molecules, cellular membrane receptors, ion channels (and their crosstalk), and transcription factors. An orchestrated response regulating the expression of receptors and ion channels fine-tunes and coordinates the activation of ependymal cells after SCI or cell transplantation. Understanding the major players in the activation of ependymal cells may help us to understand whether these cells represent a critical source of cells contributing to cellular replacement and tissue regeneration after SCI. A more complete understanding of the role and function of individual signaling pathways in endogenous spinal cord progenitors may foster the development of novel targeted therapies to induce the regeneration of the injured spinal cord.


Asunto(s)
Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal , Neuroglía/metabolismo , Epéndimo/metabolismo , Canales Iónicos/metabolismo
8.
J Mech Behav Biomed Mater ; 143: 105921, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37269602

RESUMEN

Progressive white matter degeneration in periventricular and deep white matter regions appears as white matter hyperintensities (WMH) on MRI scans. To date, periventricular WMHs are often associated with vascular dysfunction. Here, we demonstrate that ventricular inflation resulting from cerebral atrophy and hemodynamic pulsation with every heartbeat leads to a mechanical loading state of periventricular tissues that significantly affects the ventricular wall. Specifically, we present a physics-based modeling approach that provides a rationale for ependymal cell involvement in periventricular WMH formation. Building on eight previously created 2D finite element brain models, we introduce novel mechanomarkers for ependymal cell loading and geometric measures that characterize lateral ventricular shape. We show that our novel mechanomarkers, such as maximum ependymal cell deformations and maximum curvature of the ventricular wall, spatially overlap with periventricular WMH locations and are sensitive predictors for WMH formation. We also explore the role of the septum pellucidum in mitigating mechanical loading of the ventricular wall by constraining the radial expansion of the lateral ventricles during loading. Our models consistently show that ependymal cells are stretched thin only in the horns of the ventricles irrespective of ventricular shape. We therefore pose that periventricular WMH etiology is strongly linked to the deterioration of the over-stretched ventricular wall resulting in CSF leakage into periventricular white matter. Subsequent secondary damage mechanisms, including vascular degeneration, exacerbate lesion formation and lead to progressive growth into deep white matter regions.


Asunto(s)
Enfermedades Neurodegenerativas , Sustancia Blanca , Animales , Sustancia Blanca/diagnóstico por imagen , Imagen por Resonancia Magnética , Enfermedades Neurodegenerativas/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología
10.
Cell Biosci ; 13(1): 98, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248485

RESUMEN

BACKGROUND: Syringomyelia is a cerebrospinal fluid (CSF) disorder resulted in separation of pain and temperature, dilation of central canal and formation of syrinx in central canal. It is unclear about mechanisms of the dilation and syrinx formation. We aimed to investigate roles of ependymal cells lining central canal on the dilation, trying to reduce syrinx formation in central canal. METHODS: We employed 78 Sprague-Dawley (SD) rats totally with syringomyelia to detect the contribution of ependymal cells to the dilation of central canal. Immunofluorescence was used to examine the activation of ependymal cells in 54 syringomyelia rat models. BrdU was used to indicate the proliferation of ependymal cells through intraperitoneal administration in 6 syringomyelia rat models. 18 rats with syringomyelia were injected with SIS3, an inhibitor of TGFßR-Smad3, and rats injected with DMSO  were used as control. Among the 18 rats, 12 rats were used for observation of syrinx following SIS3 or DMSO administration by using magnetic resonance imaging (MRI) on day 14 and day 30 under syringomyelia without decompression. All the data were expressed as mean ± standard deviation (mean ± SD). Differences between groups were compared using the two-tailed Student's t-test or ANOVA. Differences were considered significant when *p < 0.05. RESULTS: Our study showed the dilation and protrusions of central canal on day 5 and enlargement from day 14 after syringomyelia induction in rats with activation of ependymal cells lining central canal. Moreover, the ependymal cells contributed to protrusion formation possibly through migration along with central canal. Furthermore, suppression of TGFßR-Smad3 which was crucial for migration reversed the size of syrnix in central canal without treatment of decompression, suggesting TGFßR-Smad3 signal might be key for dilation of central canal and formation of syrinx. CONCLUSIONS: The size of syrinx was decreased after SIS3 administration without decompression. Our study depicted the mechanisms of syrinx formation and suggested TGFßR-Smad3 signal might be key for dilation of central canal and formation of syrinx.

11.
Aging Dis ; 14(2): 468-483, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37008045

RESUMEN

Ependymal cells are indispensable components of the central nervous system (CNS). They originate from neuroepithelial cells of the neural plate and show heterogeneity, with at least three types that are localized in different locations of the CNS. As glial cells in the CNS, accumulating evidence demonstrates that ependymal cells play key roles in mammalian CNS development and normal physiological processes by controlling the production and flow of cerebrospinal fluid (CSF), brain metabolism, and waste clearance. Ependymal cells have been attached to great importance by neuroscientists because of their potential to participate in CNS disease progression. Recent studies have demonstrated that ependymal cells participate in the development and progression of various neurological diseases, such as spinal cord injury and hydrocephalus, raising the possibility that they may serve as a potential therapeutic target for the disease. This review focuses on the function of ependymal cells in the developmental CNS as well as in the CNS after injury and discusses the underlying mechanisms of controlling the functions of ependymal cells.

12.
Front Cell Neurosci ; 17: 1288676, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38164435

RESUMEN

The ependyma of the spinal cord is a latent stem cell niche that is reactivated by injury, generating new cells that migrate to the lesion site to limit the damage. The mechanisms by which ependymal cells are reactivated after injury remain poorly understood. ATP has been proposed to act as a diffusible "danger signal" to alert about damage and start repair. Indeed, spinal cord injury (SCI) generates an increase in extracellular ATP around the lesion epicenter that lasts for several hours and affects the functional outcome after the damage. The P2X7 receptor (P2X7r) has functional properties (e.g., low sensitivity for ATP, high permeability for Ca2+) that makes it a suitable candidate to act as a detector of tissue damage. Because ependymal cells express functional P2X7r that generate an inward current and regenerative Ca2+ waves, we hypothesize that the P2X7r has a main role in the mechanisms by which progenitor-like cells in the ependyma react to tissue damage. To test this possibility, we simulated the P2X7r activation that occurs after SCI by in vivo intraspinal injection of the selective agonist BzATP nearby the central canal. We found that BzATP rescued ependymal cells from quiescence by triggering a proliferative response similar to that generated by injury. In addition, P2X7r activation by BzATP induced a shift of ependymal cells to a glial fibrillary acidic protein (GFAP) phenotype similar to that induced by injury. However, P2X7r activation did not trigger the migration of ependyma-derived cells as occurs after tissue damage. Injection of BzATP induced the expression of connexin 26 (Cx26) in ependymal cells, an event needed for the proliferative reaction after injury. BzATP did not induce these changes in ependymal cells of P2X7-/- mice supporting a specific action on P2X7r. In vivo blockade of P2X7r with the potent antagonist AZ10606120 reduced significantly the injury-induced proliferation of ependymal cells. Our data indicate that P2X7r has a key role in the "awakening" of the ependymal stem cell niche after injury and suggest purinergic signaling is an interesting target to improve the contribution of endogenous progenitors to repair.

13.
Brain Commun ; 4(6): fcac288, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36415662

RESUMEN

Within the central nervous system, ependymal cells form critical components of the blood-cerebrospinal fluid barrier and the cerebrospinal fluid-brain barrier. These barriers provide biochemical, immunological and physical protection against the entry of molecules and foreign substances into the cerebrospinal fluid while also regulating cerebrospinal fluid dynamics, such as the composition, flow and removal of waste from the cerebrospinal fluid. Previous research has demonstrated that several neurodegenerative diseases, such as Alzheimer's disease and multiple sclerosis, display irregularities in ependymal cell function, morphology, gene expression and metabolism. Despite playing key roles in maintaining overall brain health, ependymal barriers are largely overlooked and understudied in the context of disease, thus limiting the development of novel diagnostic and treatment options. Therefore, this review explores the anatomical properties, functions and structures that define ependymal cells in the healthy brain, as well as the ways in which ependymal cell dysregulation manifests across several neurodegenerative diseases. Specifically, we will address potential mechanisms, causes and consequences of ependymal cell dysfunction and describe how compromising the integrity of ependymal barriers may initiate, contribute to, or drive widespread neurodegeneration in the brain.

15.
Neurobiol Dis ; 175: 105913, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36341771

RESUMEN

Dysfunction of motile cilia in ependymal cells has been proposed to be a pathogenic cause of cerebrospinal fluid (CSF) overaccumulation leading to ventricular expansion in hydrocephalus, primarily based on observations of enlarged ventricles in mouse models of primary ciliary dyskinesia. Here, we review human and animal evidence that warrants a rethinking of the cilia hypothesis in hydrocephalus. First, we discuss neuroembryology and physiology data that do not support a role for ependymal cilia as the primary propeller of CSF movement across the ventricles in the human brain, particularly during in utero development prior to the functional maturation of ependymal cilia. Second, we highlight that in contrast to mouse models, motile ciliopathies infrequently cause hydrocephalus in humans. Instead, gene mutations affecting motile cilia function impact not only ependymal cilia but also motile cilia found in other organ systems outside of the brain, causing a clinical syndrome of recurrent respiratory infections and situs inversus, symptoms that do not typically accompany most cases of human hydrocephalus. Finally, we postulate that certain cases of hydrocephalus associated with ciliary gene mutations may arise not necessarily just from loss of cilia-generated CSF flow but also from altered neurodevelopment, given the potential functions of ciliary genes in signaling and neural stem cell fate beyond generating fluid flow. Further investigations are needed to clarify the link between motile cilia, CSF physiology, and brain development, the understanding of which has implications for the care of patients with hydrocephalus and other related neurodevelopmental disorders.


Asunto(s)
Cilios , Hidrocefalia , Animales , Ratones , Humanos , Cilios/patología , Hidrocefalia/etiología , Hidrocefalia/patología , Epéndimo/patología , Encéfalo/patología , Modelos Animales de Enfermedad
16.
Fac Rev ; 11: 27, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225209

RESUMEN

The vertebrate neural tube is a representative example of a morphogen-patterned tissue that generates different cell types with spatial and temporal precision. More specifically, the development of the dorsal region of the neural tube is of particular interest because of its highly dynamic behavior. First, early premigratory neural crest progenitors undergo an epithelial-to-mesenchymal transition, exit the neural primordium, and generate, among many derivatives, most of the peripheral nervous system. Subsequently, the dorsal neural tube becomes populated by definitive roof plate cells that constitute an organizing center for dorsal interneurons and guide axonal patterning. In turn, roof plate cells transform into dorsal radial glia that contributes to and shapes the formation of the dorsal ependyma of the central nervous system. To form a normal functional spinal cord, these extraordinary transitions should be tightly regulated in time and space. Thus far, the underlying cellular changes and molecular mechanisms are only beginning to be uncovered. In this review, we discuss recent results that shed light on the end of neural crest production and delamination, the early formation of the definitive roof plate, and its further maturation into radial glia. The last of these processes culminate in the formation of the dorsal ependyma, a component of the stem cell niche of the central nervous system. We highlight how similar mechanisms operate throughout these transitions, which may serve to reveal common design principles applicable to the ontogeny of epithelial tissues.

17.
Cells ; 11(20)2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36291193

RESUMEN

The identification of new proteins that regulate the function of one of the main cellular phosphatases, protein phosphatase 1 (PP1), is essential to find possible pharmacological targets to alter phosphatase function in various cellular processes, including the initiation and development of multiple diseases. IIIG9 is a regulatory subunit of PP1 initially identified in highly polarized ciliated cells. In addition to its ciliary location in ependymal cells, we recently showed that IIIG9 has extraciliary functions that regulate the integrity of adherens junctions. In this review, we perform a detailed analysis of the expression, localization, and function of IIIG9 in adult and developing normal brains. In addition, we provide a 3D model of IIIG9 protein structure for the first time, verifying that the classic structural and conformational characteristics of the PP1 regulatory subunits are maintained. Our review is especially focused on finding evidence linking IIIG9 dysfunction with the course of some pathologies, such as ciliopathies, drug dependence, diseases based on neurological development, and the development of specific high-malignancy and -frequency brain tumors in the pediatric population. Finally, we propose that IIIG9 is a relevant regulator of PP1 function in physiological and pathological processes in the CNS.


Asunto(s)
Neoplasias , Proteína Fosfatasa 1 , Niño , Humanos , Encéfalo/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteínas/metabolismo
18.
Cells ; 11(17)2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-36078068

RESUMEN

This study was conducted on 16 adult specimens of molly fish (Poecilia sphenops) to investigate ependymal cells (ECs) and their role in neurogenesis using ultrastructural examination and immunohistochemistry. The ECs lined the ventral and lateral surfaces of the optic ventricle and their processes extended through the tectal laminae and ended at the surface of the tectum as a subpial end-foot. Two cell types of ECs were identified: cuboidal non-ciliated (5.68 ± 0.84/100 µm2) and columnar ciliated (EC3.22 ± 0.71/100 µm2). Immunohistochemical analysis revealed two types of GFAP immunoreactive cells: ECs and astrocytes. The ECs showed the expression of IL-1ß, APG5, and Nfr2. Moreover, ECs showed immunostaining for myostatin, S100, and SOX9 in their cytoplasmic processes. The proliferative activity of the neighboring stem cells was also distinct. The most interesting finding in this study was the glia-neuron interaction, where the processes of ECs met the progenitor neuronal cells in the ependymal area of the ventricular wall. These cells showed bundles of intermediate filaments in their processes and basal poles and were connected by desmosomes, followed by gap junctions. Many membrane-bounded vesicles could be demonstrated on the surface of the ciliated ECs that contained neurosecretion. The abluminal and lateral cell surfaces of ECs showed pinocytotic activities with many coated vesicles, while their apical cytoplasm contained centrioles. The occurrence of stem cells in close position to the ECs, and the presence of bundles of generating axons in direct contact with these stem cells indicate the role of ECs in neurogenesis. The TEM results revealed the presence of neural stem cells in a close position to the ECs, in addition to the presence of bundles of generating axons in direct contact with these stem cells. The present study indicates the role of ECs in neurogenesis.


Asunto(s)
Células-Madre Neurales , Poecilia , Animales , Encéfalo , Epéndimo , Neuroglía
19.
Dev Cell ; 57(16): 1957-1975.e9, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35998585

RESUMEN

Cells with latent stem ability can contribute to mammalian tissue regeneration after damage. Whether the central nervous system (CNS) harbors such cells remains controversial. Here, we report that DNGR-1 lineage tracing in mice identifies an ependymal cell subset, wherein resides latent regenerative potential. We demonstrate that DNGR-1-lineage-traced ependymal cells arise early in embryogenesis (E11.5) and subsequently spread across the lining of cerebrospinal fluid (CSF)-filled compartments to form a contiguous sheet from the brain to the end of the spinal cord. In the steady state, these DNGR-1-traced cells are quiescent, committed to their ependymal cell fate, and do not contribute to neuronal or glial lineages. However, trans-differentiation can be induced in adult mice by CNS injury or in vitro by culture with suitable factors. Our findings highlight previously unappreciated ependymal cell heterogeneity and identify across the entire CNS an ependymal cell subset wherein resides damage-responsive neural stem cell potential.


Asunto(s)
Células-Madre Neurales , Animales , Diferenciación Celular , Epéndimo , Mamíferos , Ratones , Neuroglía , Médula Espinal
20.
Cells ; 11(15)2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35954220

RESUMEN

Nuclear factor one X (NFIX) is a transcription factor required for normal ependymal development. Constitutive loss of Nfix in mice (Nfix-/-) is associated with hydrocephalus and sloughing of the dorsal ependyma within the lateral ventricles. Previous studies have implicated NFIX in the transcriptional regulation of genes encoding for factors essential to ependymal development. However, the cellular and molecular mechanisms underpinning hydrocephalus in Nfix-/- mice are unknown. To investigate the role of NFIX in hydrocephalus, we examined ependymal cells in brains from postnatal Nfix-/- and control (Nfix+/+) mice using a combination of confocal and electron microscopy. This revealed that the ependymal cells in Nfix-/- mice exhibited abnormal cilia structure and disrupted localisation of adhesion proteins. Furthermore, we modelled ependymal cell adhesion using epithelial cell culture and revealed changes in extracellular matrix and adherens junction gene expression following knockdown of NFIX. Finally, the ablation of Nfix from ependymal cells in the adult brain using a conditional approach culminated in enlarged ventricles, sloughing of ependymal cells from the lateral ventricles and abnormal localisation of adhesion proteins, which are phenotypes observed during development. Collectively, these data demonstrate a pivotal role for NFIX in the regulation of cell adhesion within ependymal cells of the lateral ventricles.


Asunto(s)
Epéndimo , Hidrocefalia , Factores de Transcripción NFI , Animales , Fenómenos Fisiológicos Celulares , Hidrocefalia/genética , Ventrículos Laterales , Ratones , Factores de Transcripción NFI/genética , Neuroglía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA