Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Ecotoxicol Environ Saf ; 234: 113380, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35298964

RESUMEN

BACKGROUND: Cervical cancer is the fourth most common cancer in women worldwide, and arsenic has a certain effect in solid tumor chemotherapy. As the rate-limiting enzyme subunit of GSH synthesis, GCLC may be an important target for arsenic to induce apoptosis through mitochondrial apoptosis pathway to exert anti-tumor effect. NF-κB plays an important role in the occurrence and development of cervical cancer and can regulate the expression of GCLC. miR-21 is a potential biomarker of cervical cancer, which can induce apoptosis through ROS regulated the mitochondrial pathway of cells. However, the role of miR-21 in the mitochondrial pathway of cervical cancer cells induced by NaAsO2 through NF-κB/GCLC and GSH synthesis regulated oxidative stress is rarely reported. Therefore, the purpose of this study was to investigate whether NaAsO2 might induce mitochondrial damage and apoptosis of cervical cancer cells through NF-κB/ miR-21 /GCLC induced oxidative stress, and play the anti-tumor role of arsenic as a potential drug for the treatment of cervical cancer. METHODS: Hela cells were treated with different concentrations of NaAsO2, D, L-Buthionine-(SR)-sulfoximine (BSO), IκBα inhibitor (BAY 11-7082) and miR-21 Inhibitor. CCK-8 assay, Western Blot, qRT PCR, immunofluorescence, transmission electron microscopy, mitochondrial Membrane Potential Assay Kit with JC-1,2',7'-Dichlorofluorescin diacetate fluorescent probe and Annexin V-FITC were used to measure cell activity, GSH and ROS, mitochondrial morphology and membrane potential (ΔΨm), protein and mRNA expression of GCLC, GCLM, p65, IκBα, p-P65, p-I κBα, Bcl-2, BAX, Caspase3, cleaved-caspase3 and miR-21. RESULTS: Compared with the control group, with the gradual increasing dose of NaAsO2, cell viability was considerable reduced, and increased rate of apoptosis, intracellular GSH level was decreased significantly, ROS was increased, mitochondrial structure was damaged, mitochondrial membrane potential ΔΨm and Bcl2/BAX lowered, the expression of Caspase3 and cleaved-caspase3 were significantly increased, resulting in mitochondrial apoptosis. When Hela cells were treated with 15, 20, and 25 µmol/L NaAsO2, the mRNA and protein levels of GCLC and GCLM were reduced, the expression of p65 in the nucleus was increased, the expression of p-p65/p65, p-IκBα/IκBα and miR-21 were significantly increased. When BSO increased the inhibitory effect of NaAsO2 on GCLC, Compared with NaAsO2 group, the ΔΨm and protein of Bcl-2/BAX, caspase3 and cleaved-capsase3 were increased. When BAY 11-7082 combined with NaAsO2 co-treated, compared with the NaAsO2 group, the protein and mRNA expression of GCLC was increased, NaAsO2-increased expression level of miR-21 was suppressed, and the ΔΨm and cell viability were higher. In addition, compared with the combination of NaAsO2 and miR-21NC, the protein expression of GCLC was increased, the ΔΨm and cell viability reduction were alleviated by miR-21 Inhibitor combined with NaAsO2. CONCLUSION: NaAsO2 may lead to ROS accumulation in Hela cells and trigger mitochondrial apoptosis. The mechanism may be related to the activation of NF-κB signaling pathway and the promotion of miR-21 expression which leads to the inhibition of GCLC expression and the significant decrease of intracellular reductive GSH synthesis.

3.
Toxins (Basel) ; 13(5)2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33925951

RESUMEN

AB5 protein toxins are produced by certain bacterial pathogens and are composed of an enzymatically active A-subunit and a B-subunit pentamer, the latter being responsible for cell receptor recognition, cellular uptake, and transport of the A-subunit into the cytosol of eukaryotic target cells. Two members of the AB5 toxin family were described in Shiga toxin-producing Escherichia coli (STEC), namely Shiga toxin (Stx) and subtilase cytotoxin (SubAB). The functional paradigm of AB toxins includes the B-subunit being mandatory for the uptake of the toxin into its target cells. Recent studies have shown that this paradigm cannot be maintained for SubAB, since SubA alone was demonstrated to intoxicate human epithelial cells in vitro. In the current study, we raised the hypothesis that this may also be true for the A-subunit of the most clinically relevant Stx-variant, Stx2a. After separate expression and purification, the recombinant Stx2a subunits StxA2a-His and StxB2a-His were applied either alone or in combination in a 1:5 molar ratio to Vero B4, HeLa, and HCT-116 cells. For all cell lines, a cytotoxic effect of StxA2a-His alone was detected. Competition experiments with Stx and SubAB subunits in combination revealed that the intoxication of StxA2a-His was reduced by addition of SubB1-His. This study showed that the enzymatic subunit StxA2a alone was active on different cells and might therefore play a yet unknown role in STEC disease development.


Asunto(s)
Toxina Shiga/toxicidad , Animales , Chlorocebus aethiops , Células Epiteliales/efectos de los fármacos , Células HCT116/efectos de los fármacos , Células HeLa/efectos de los fármacos , Humanos , Proteínas Recombinantes , Toxina Shiga/química , Toxina Shiga/aislamiento & purificación , Toxina Shiga II , Células Vero/efectos de los fármacos
4.
J Biol Chem ; 295(19): 6741-6753, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32249212

RESUMEN

SUMOylation is a posttranslational modification (PTM) at a lysine residue and is crucial for the proper functions of many proteins, particularly of transcription factors, in various biological processes. Zinc finger homeobox 3 (ZFHX3), also known as AT motif-binding factor 1 (ATBF1), is a large transcription factor that is active in multiple pathological processes, including atrial fibrillation and carcinogenesis, and in circadian regulation and development. We have previously demonstrated that ZFHX3 is SUMOylated at three or more lysine residues. Here, we investigated which enzymes regulate ZFHX3 SUMOylation and whether SUMOylation modulates ZFHX3 stability and function. We found that SUMO1, SUMO2, and SUMO3 each are conjugated to ZFHX3. Multiple lysine residues in ZFHX3 were SUMOylated, but Lys-2806 was the major SUMOylation site, and we also found that it is highly conserved among ZFHX3 orthologs from different animal species. Using molecular analyses, we identified the enzymes that mediate ZFHX3 SUMOylation; these included SUMO1-activating enzyme subunit 1 (SAE1), an E1-activating enzyme; SUMO-conjugating enzyme UBC9 (UBC9), an E2-conjugating enzyme; and protein inhibitor of activated STAT2 (PIAS2), an E3 ligase. Multiple analyses established that both SUMO-specific peptidase 1 (SENP1) and SENP2 deSUMOylate ZFHX3. SUMOylation at Lys-2806 enhanced ZFHX3 stability by interfering with its ubiquitination and proteasomal degradation. Functionally, Lys-2806 SUMOylation enabled ZFHX3-mediated cell proliferation and xenograft tumor growth of the MDA-MB-231 breast cancer cell line. These findings reveal the enzymes involved in, and the functional consequences of, ZFHX3 SUMOylation, insights that may help shed light on ZFHX3's roles in various cellular and pathophysiological processes.


Asunto(s)
Proliferación Celular , Proteínas de Homeodominio/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Sumoilación , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Células HEK293 , Células HeLa , Proteínas de Homeodominio/genética , Humanos , Ratones , Proteínas de Neoplasias/genética , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Proteínas Inhibidoras de STAT Activados/genética , Estabilidad Proteica , Enzimas Activadoras de Ubiquitina/genética , Enzimas Ubiquitina-Conjugadoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA