Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 278(Pt 4): 135064, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39182884

RESUMEN

Enzyme specificity towards cofactors like NAD(P)H is crucial for applications in bioremediation and eco-friendly chemical synthesis. Despite their role in converting pollutants and creating sustainable products, predicting enzyme specificity faces challenges due to sparse data and inadequate models. To bridge this gap, we developed the cutting-edge INSIGHT platform to enhance the prediction of coenzyme specificity in NAD(P)-dependent enzymes. INSIGHT integrates extensive data from principal bioinformatics resources, concentrating on both NADH and NADPH specificities, and utilizes advanced protein language models to refine the predictions. This integration not only strengthens computational predictions but also meets the practical demands of high-throughput screening and optimization. Experimental validation confirms INSIGHT's effectiveness, boosting our ability to engineer enzymes for efficient, sustainable industrial and environmental processes. This work advances the practical use of computational tools in enzyme research, addressing industrial needs and offering scalable solutions for environmental challenges.


Asunto(s)
NADP , NAD , Ingeniería de Proteínas , NADP/metabolismo , NADP/química , Especificidad por Sustrato , NAD/metabolismo , NAD/química , Ingeniería de Proteínas/métodos , Biología Computacional/métodos , Modelos Moleculares , Coenzimas/metabolismo , Coenzimas/química
2.
J Biosci Bioeng ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39142977

RESUMEN

l-Amino acid oxidase (LAAO), an FAD-dependent enzyme, catalyzes the oxidation of l-amino acids (l-AAs) to their corresponding imino acids. While LAAOs, which can oxidize charged or aromatic l-AAs specifically, have been extensively characterized across various species, LAAOs that have high specificity toward alkyl-chain l-AAs, such as l-Met, are hardly characterized for now. In this study, we screened a highly specific l-Met oxidizing LAAOs from Burkholderiales bacterium (BbMetOx) and Undibacterium sp. KW1 (UndMetOx) using sequence similarity network (SSN) analysis. These enzymes displayed an order of magnitude higher specific activity towards l-Met compared to other l-AAs. Enzyme activity assays showed that these LAAOs operate optimally at moderate condition because the optimal pH and Tm values were pH 7.0 and 58-60°C. We determined the crystal structures of wild-type BbMetOx (BbMetOx(WT)) and an inactivated mutant, BbMetOx (K304A), at 2.7 Å and 2.2 Å resolution, respectively. The overall structure of BbMetOx is closely similar to other known LAAOs of which structures were determined. Comparative analysis of the BbMetOx structures revealed significant conformational changes in the catalytic domain, particularly a movement of approximately 8 Å in the Cα atom of residue Y180. Further analysis highlighted four residues, i.e., Y180, M182, F300, and M302, as critical for l-Met recognition, with alanine substitution at these positions resulting in loss of activity. This study not only underscores the utility of SSN for discovering novel LAAOs but also advances our understanding of substrate specificity in this enzyme family.

3.
J Oleo Sci ; 73(8): 1045-1055, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39085081

RESUMEN

Docosahexaenoic acid plays a crucial role in infant brain function, and the market demand of high-purity docosahexaenoic acid is continuously increasing. The availability of docosahexaenoic acid in natural fish oil is limited, prompting the exploration of alternative sources like microalgae. For algal oil, enzymatic ethanolysis is preferred to chemical methods because the former is milder and can avoid docosahexaenoic acid oxidation. However, enzymatic methods have generally low yield due to the poor substrate-specificity of lipase to long-chain polyunsaturated fatty acids, affecting the yield and purity of docosahexaenoic acid. Therefore, we developed an efficient process to produce high-purity docosahexaenoic acid ethyl ester from algal oil, by screening lipases, optimizing enzymatic ethanolysis and applying molecular distillation. Lipase UM1 was the best lipase to produce ethyl ester from algal oil with the highest ethyl ester yield (95.41%). Meanwhile, it was a catalyst for the reaction of long-chain polyunsaturated fatty acids with ethanol. The fatty acid docosahexaenoic acid conversion rates exceeded 90%. After molecular distillation, a final product containing 96.52% ethyl ester was obtained with a docosahexaenoic acid content up to 80.11%. Our findings provide an highly effective enzymatic method for the production of high-purity docosahexaenoic acid ethyl esters, with potential commercial applications.


Asunto(s)
Ácidos Docosahexaenoicos , Ésteres , Etanol , Lipasa , Ácidos Docosahexaenoicos/aislamiento & purificación , Ácidos Docosahexaenoicos/química , Lipasa/metabolismo , Lipasa/química , Ésteres/química , Etanol/química , Microalgas/química , Aceites de Pescado/química , Destilación/métodos , Esterificación , Biocatálisis
4.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38487850

RESUMEN

The screening of enzymes for catalyzing specific substrate-product pairs is often constrained in the realms of metabolic engineering and synthetic biology. Existing tools based on substrate and reaction similarity predominantly rely on prior knowledge, demonstrating limited extrapolative capabilities and an inability to incorporate custom candidate-enzyme libraries. Addressing these limitations, we have developed the Substrate-product Pair-based Enzyme Promiscuity Prediction (SPEPP) model. This innovative approach utilizes transfer learning and transformer architecture to predict enzyme promiscuity, thereby elucidating the intricate interplay between enzymes and substrate-product pairs. SPEPP exhibited robust predictive ability, eliminating the need for prior knowledge of reactions and allowing users to define their own candidate-enzyme libraries. It can be seamlessly integrated into various applications, including metabolic engineering, de novo pathway design, and hazardous material degradation. To better assist metabolic engineers in designing and refining biochemical pathways, particularly those without programming skills, we also designed EnzyPick, an easy-to-use web server for enzyme screening based on SPEPP. EnzyPick is accessible at http://www.biosynther.com/enzypick/.

5.
J Agric Food Chem ; 72(11): 5842-5848, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38441872

RESUMEN

Microbial production of genistein, an isoflavonoid primarily found in soybeans, is gaining prominence in the food industry due to its significant nutritional and health benefits. However, challenges arise in redesigning strains due to intricate regulatory nodes between cell growth and genistein production and in systematically exploring core enzymes involving genistein biosynthesis. To address this, this study devised a strategy that simultaneously and precisely rewires flux at both acetyl-CoA and malonyl-CoA nodes toward genistein synthesis. In particular, naringenin, the primary precursor of genistein, was accumulated 2.6 times more than the unoptimized strain through transcriptional repressor-based genetic regulators. Building upon this, a combination of isoflavone synthase and cytochrome P450 reductase with the remarkable conversion of naringenin to genistein was screened from enzyme homologue libraries. The integrated metabolic engineering strategy yields the highest reported production (98 mg/L of genistein) to date, providing a framework for the biosynthesis of diverse flavonoids, including genistein.


Asunto(s)
Vías Biosintéticas , Genisteína , Genisteína/metabolismo , Glycine max/genética , Flavonoides , Ingeniería Metabólica
6.
Microbiol Spectr ; 12(3): e0371023, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38294247

RESUMEN

Hot springs are potential sources of diverse arrays of microbes and their thermostable hydrolytic enzymes. Water and sediment samples were collected from three hot springs of Ethiopia and enriched on nutrient and thermus agar media to isolate pure cultures of potential microbes. A total of 252 bacterial isolates were screened and evaluated for the production of amylase, protease, cellulase, and lipase. About 95.23%, 84.12%, 76.58%, and 65.07% of the isolates displayed promising amylase, proteases, cellulase, and lipase activities, respectively. Based on the diameter of the clear zone formed, 45 isolates were further screened and identified to species level using matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry analysis and 16S rRNA gene sequencing. Five of the 45 isolates showed significantly high (P < 0.05) clear zone ratios as compared to others. The identified isolates were categorized under five bacterial species, namely, Bacillus licheniformis, Bacillus cereus, Paenibacillus thiaminolyticus, Paenibacillus dendritiformis, and Brevibacillus borstelensis. The most dominant species (66.7%) was B. licheniformis. It could be concluded that hot springs of Ethiopia are potential sources of thermostable extracellular hydrolytic enzymes for various industrial applications. Further optimization of the growth conditions and evaluation for better productivity of the desired products is recommended before attempting for large-scale production of the hydrolytic enzymes. IMPORTANCE: Thermostable microbial enzymes play an important role in industries due to their stability under harsh environmental conditions, including extreme temperatures. Despite their huge application in different industries, however, the thermostable enzymes of thermophilic microorganism origin have not yet been fully explored in Ethiopia. Here, we explored thermophilic bacteria and their enzymes from selected hot spring water and sediment samples. Accordingly, thermophilic bacteria were isolated and screened for the production of extracellular hydrolytic enzymes. Promising numbers of isolates were found as producers of the enzymes. The potent enzyme producers were further identified using matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry analysis and 16S rRNA gene sequencing. The findings revealed the presence of potential hydrolytic enzyme-producing thermophilic bacteria in hot springs of Ethiopia and necessitate further comprehensive study involving other extreme environments. Our findings also revealed the potential of Ethiopian hot springs in the production of thermostable enzymes of significant application in different industries, including food industries.


Asunto(s)
Celulasas , Manantiales de Aguas Termales , Manantiales de Aguas Termales/microbiología , ARN Ribosómico 16S/genética , Etiopía , Lipasa , Péptido Hidrolasas , Endopeptidasas , Amilasas , Agua
7.
Artículo en Inglés | MEDLINE | ID: mdl-38183603

RESUMEN

Psychrophilic enzymes are primarily produced by microorganisms from extremely low-temperature environments which are known as psychrophiles. Their high efficiency at low temperatures and easy heat inactivation property have attracted extensive attention from various food and industrial bioprocesses. However, the application of these enzymes in molecular biology is still limited. In a previous review, the applications of psychrophilic enzymes in industries such as the detergent additives, the food additives, the bioremediation, and the pharmaceutical medicine, and cosmetics have been discussed. In this review, we discuss the main cold adaptation characteristics of psychrophiles and psychrophilic enzymes, as well as the relevant information on different psychrophilic enzymes in molecular biology. We summarize the mining and screening methods of psychrophilic enzymes. We finally recap the expression of psychrophilic enzymes. We aim to provide a reference process for the exploration and expression of new generation of psychrophilic enzymes.

8.
Chembiochem ; 24(14): e202300382, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37305956

RESUMEN

Stereoselective carbon-carbon bond forming reactions are quintessential transformations in organic synthesis. One example is the Diels-Alder reaction, a [4+2] cycloaddition between a conjugated diene and a dienophile to form cyclohexenes. The development of biocatalysts for this reaction is paramount for unlocking sustainable routes to a plethora of important molecules. To obtain a comprehensive understanding of naturally evolved [4+2] cyclases, and to identify hitherto uncharacterised biocatalysts for this reaction, we constructed a library comprising forty-five enzymes with reported or predicted [4+2] cycloaddition activity. Thirty-one library members were successfully produced in recombinant form. In vitro assays employing a synthetic substrate incorporating a diene and a dienophile revealed broad-ranging cycloaddition activity amongst these polypeptides. The hypothetical protein Cyc15 was found to catalyse an intramolecular cycloaddition to generate a novel spirotetronate. The crystal structure of this enzyme, along with docking studies, establishes the basis for stereoselectivity in Cyc15, as compared to other spirotetronate cyclases.


Asunto(s)
Carbono , Proteínas , Catálisis , Reacción de Cicloadición , Técnicas de Química Sintética
9.
Angew Chem Int Ed Engl ; 62(31): e202303764, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37278513

RESUMEN

Affinity purification of recombinant proteins is an essential technique in biotechnology. However, current affinity purification methods are very cost-intensive, and this imposes limits on versatile use of affinity purification for obtaining purified proteins for a variety of applications. To overcome this problem, we developed a new affinity purification system which we call CSAP (chitin- and streptavidin-mediated affinity purification) for low-cost purification of Strep-tag II fusion proteins. The CSAP system is designed to utilize commercially available chitin powder as a chromatography matrix, thereby significantly improving the cost-efficiency of protein affinity purification. We investigated the CSAP system for protein screening in 96-well format as a demonstration. Through the screening of 96 types of purified hemoproteins, several proteins capable of the catalytic diastereodivergent synthesis of cyclopropanes were identified as candidates for an abiotic carbene transfer reaction.


Asunto(s)
Quitina , Escherichia coli , Estreptavidina/química , Quitina/química , Escherichia coli/metabolismo , Proteínas Recombinantes/química , Cromatografía de Afinidad/métodos , Proteínas Recombinantes de Fusión/química
10.
ACS Synth Biol ; 12(3): 877-891, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36821745

RESUMEN

Although a variety of whole-cell-based biosensors have been developed for different applications in recent years, most cannot meet practical requirements due to insufficient sensing performance. Here, we constructed two sets of modular genetic circuits by serial and parallel modes capable of significantly amplifying the input/output signal in Escherichia coli. The biosensors are engineered using σ54-dependent phenol-responsive regulator DmpR as a sensor and enhanced green fluorescent protein as a reporter. Cells harboring serial and parallel genetic circuits displayed nearly 9- and 16-fold higher sensitivity than the general circuit. The genetic circuits enabled rapid detection of six phenolic contaminants in 12 h and showed the low limit of detection of 2.5 and 2.2 ppb for benzopyrene (BaP) and tetracycline (Tet), with a broad detection range of 0.01-1 and 0.005-5 µM, respectively. Furthermore, the positive rate was as high as 73% when the biosensor was applied to screen intracellular enzymes with ester-hydrolysis activity from soil metagenomic libraries using phenyl acetate as a phenolic substrate. Several novel enzymes were isolated, identified, and biochemically characterized, including serine peptidases and alkaline phosphatase family protein/metalloenzyme. Consequently, this study provides a new signal amplification method for cell-based biosensors that can be widely applied to environmental contaminant assessment and screening of intracellular enzymes.


Asunto(s)
Proteínas Bacterianas , Técnicas Biosensibles , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Técnicas Biosensibles/métodos
11.
J Biol Chem ; 299(3): 102939, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36702250

RESUMEN

Aminotransferases (ATs) catalyze pyridoxal 5'-phosphate-dependent transamination reactions between amino donor and keto acceptor substrates and play central roles in nitrogen metabolism of all organisms. ATs are involved in the biosynthesis and degradation of both proteinogenic and nonproteinogenic amino acids and also carry out a wide variety of functions in photorespiration, detoxification, and secondary metabolism. Despite the importance of ATs, their functionality is poorly understood as only a small fraction of putative ATs, predicted from DNA sequences, are associated with experimental data. Even for characterized ATs, the full spectrum of substrate specificity, among many potential substrates, has not been explored in most cases. This is largely due to the lack of suitable high-throughput assays that can screen for AT activity and specificity at scale. Here we present a new high-throughput platform for screening AT activity using bioconjugate chemistry and mass spectrometry imaging-based analysis. Detection of AT reaction products is achieved by forming an oxime linkage between the ketone groups of transaminated amino donors and a probe molecule that facilitates mass spectrometry-based analysis using nanostructure-initiator mass spectrometry or MALDI-mass spectrometry. As a proof-of-principle, we applied the newly established method and found that a previously uncharacterized Arabidopsis thaliana tryptophan AT-related protein 1 is a highly promiscuous enzyme that can utilize 13 amino acid donors and three keto acid acceptors. These results demonstrate that this oxime-mass spectrometry imaging AT assay enables high-throughput discovery and comprehensive characterization of AT enzymes, leading to an accurate understanding of the nitrogen metabolic network.


Asunto(s)
Aminoácidos , Pruebas de Enzimas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Transaminasas , Aminoácidos/metabolismo , Especificidad por Sustrato , Transaminasas/química , Transaminasas/metabolismo , Pruebas de Enzimas/métodos , Arabidopsis/enzimología
12.
Enzyme Microb Technol ; 160: 110092, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35797848

RESUMEN

Quorum sensing (QS) is a molecular communication system used by microorganisms to adopt behaviors in a cell density-dependent manner. Lactonase enzymes, able to hydrolyze the signal molecules acyl-homoserine lactones (AHL) can counteract QS-mediated virulence in Gram-negative bacteria. Optimizing lactonases activity or specificity for AHL through enzyme engineering approaches is thus highly attractive to increase protective effect. However, only a limited number of screening methods have been developed to handle and evaluate AHL-degrading enzyme libraries. Here, a series of screening procedures were developed to identify improved lactonases using two previously reported enzymes as benchmarks, namely SsoPox and GcL. Specifically, molecular screenings using six different AHL and based on two reporter strains; i.e., Chromobacterium violaceum CV026 and Pseudomonas putida KS35, are reported. In addition, three phenotype-based screenings aiming to evaluate the ability of enzymes to quench a particular QS-related behavior are reported, using C. violaceum, Pseudomonas aeruginosa and Vibrio harveyi as pathogenic type strains. These assays were used to screen a small-sized library and allowed for the identification of various improved variants. To confirm that these variants were real "hits", four of them were produced and purified. Their kinetic parameters against AHL substrates were found to be increased by 2-44.5 -fold as compared to the starting enzyme. Moreover, their increased activity was confirmed by measuring their ability to quench QS in different bacterial systems. These new assays will facilitate the screening of enzyme libraries and will pave the way for the development of proficient engineered QS-disrupting enzymes.


Asunto(s)
Acil-Butirolactonas , Percepción de Quorum , Acil-Butirolactonas/química , Acil-Butirolactonas/metabolismo , Fenotipo , Pseudomonas aeruginosa/metabolismo , Virulencia
13.
Chembiochem ; 23(15): e202200121, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35593146

RESUMEN

Azoreductases are potent biocatalysts for the cleavage of azo bonds. Various gene sequences coding for potential azoreductases are available in databases, but many of their gene products are still uncharacterized. To avoid the laborious heterologous expression in a host organism, we developed a screening approach involving cell-free protein synthesis (CFPS) combined with a colorimetric activity assay, which allows the parallel screening of putative azoreductases in a short time. First, we evaluated different CFPS systems and optimized the synthesis conditions of a model azoreductase. With the findings obtained, 10 azoreductases, half of them undescribed so far, were screened for their ability to degrade the azo dye methyl red. All novel enzymes catalyzed the degradation of methyl red and can therefore be referred to as azoreductases. In addition, all enzymes degraded the more complex and bulkier azo dye Brilliant Black and four of them also showed the ability to reduce p-benzoquinone. NADH was the preferred electron donor for the most enzymes, although the synthetic nicotinamide co-substrate analogue 1-benzyl-1,4-dihydronicotinamide (BNAH) was also accepted by all active azoreductases. This screening approach allows accelerated identification of potential biocatalysts for various applications.


Asunto(s)
Electrones , NADH NADPH Oxidorreductasas , Compuestos Azo/química , Colorantes/química , NADH NADPH Oxidorreductasas/metabolismo , Nitrorreductasas
14.
ACS Synth Biol ; 11(2): 732-746, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35034449

RESUMEN

The use of linear DNA templates in cell-free systems promises to accelerate the prototyping and engineering of synthetic gene circuits. A key challenge is that linear templates are rapidly degraded by exonucleases present in cell extracts. Current approaches tackle the problem by adding exonuclease inhibitors and DNA-binding proteins to protect the linear DNA, requiring additional time- and resource-intensive steps. Here, we delete the recBCD exonuclease gene cluster from the Escherichia coli BL21 genome. We show that the resulting cell-free systems, with buffers optimized specifically for linear DNA, enable near-plasmid levels of expression from σ70 promoters in linear DNA templates without employing additional protection strategies. When using linear or plasmid DNA templates at the buffer calibration step, the optimal potassium glutamate concentrations obtained when using linear DNA were consistently lower than those obtained when using plasmid DNA for the same extract. We demonstrate the robustness of the exonuclease deficient extracts across seven different batches and a wide range of experimental conditions across two different laboratories. Finally, we illustrate the use of the ΔrecBCD extracts for two applications: toehold switch characterization and enzyme screening. Our work provides a simple, efficient, and cost-effective solution for using linear DNA templates in cell-free systems and highlights the importance of specifically tailoring buffer composition for the final experimental setup. Our data also suggest that similar exonuclease deletion strategies can be applied to other species suitable for cell-free synthetic biology.


Asunto(s)
Escherichia coli , Exonucleasas , Sistema Libre de Células/metabolismo , ADN/genética , ADN/metabolismo , Escherichia coli/metabolismo , Exonucleasas/metabolismo
15.
Adv Biochem Eng Biotechnol ; 179: 129-157, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-32888037

RESUMEN

Droplet microfluidics has recently evolved as a prominent platform for high-throughput experimentation for various research fields including microbiology. Key features of droplet microfluidics, like compartmentalization, miniaturization, and parallelization, have enabled many possibilities for microbiology including cultivation of microorganisms at a single-cell level, study of microbial interactions in a community, detection and analysis of microbial products, and screening of extensive microbial libraries with ultrahigh-throughput and minimal reagent consumptions. In this book chapter, we present several aspects and applications of droplet microfluidics for its implementation in various fields of microbial biotechnology. Recent advances in the cultivation of microorganisms in droplets including methods for isolation and domestication of rare microbes are reviewed. Similarly, a comparison of different detection and analysis techniques for microbial activities is summarized. Finally, several microbial applications are discussed with a focus on exploring new antimicrobials and high-throughput enzyme activity screening. We aim to highlight the advantages, limitations, and current developments in droplet microfluidics for microbial biotechnology while envisioning its enormous potential applications in the future.


Asunto(s)
Biotecnología , Microfluídica , Ensayos Analíticos de Alto Rendimiento/métodos , Microfluídica/métodos
16.
Methods Mol Biol ; 2397: 19-32, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34813057

RESUMEN

Droplet microfluidics enables the ultrahigh-throughput screening of the natural or man-made genetic diversity for industrial enzymes, with reduced reagent consumption and lower costs than conventional robotic alternatives. Here we describe an example of metagenomic screening for nucleoside 2'-deoxyribosyl transferases using FACS as a more widespread and accessible alternative than microfluidic on-chip sorters. This protocol can be easily adapted to directed evolution libraries by replacing the library construction steps and to other enzyme activities, e.g., oxidases, by replacing the proposed coupled assay.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Microfluídica , Humanos , Metagenoma , Metagenómica
17.
ACS Synth Biol ; 10(8): 1946-1955, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34264647

RESUMEN

1,3-Butanediol (1,3-BDO) is an important C4 platform chemical widely used as a solvent in cosmetics and a key intermediate for the synthesis of fragrances, pheromones, and pharmaceuticals. The development of sustainable bioprocesses to produce enantiopure 1,3-BDO from renewable bioresources by fermentation is a promising alternative to conventional chemical routes and has aroused great interest in recent years. Although two metabolic pathways have been previously established for the biosynthesis of (R)-1,3-PDO, the reported titer and yield are too low for cost-competitive production. In this study, we report the combination of different metabolic engineering strategies to improve the production of (R)-1,3-BDO by Escherichia coli, including (1) screening of key pathway enzymes; (2) increasing NADPH supply by cofactor engineering; (3) optimization of fermentation conditions to divert more flux into 1,3-BDO pathway; (4) reduction of byproducts formation by pathway engineering. With these efforts, the best engineered E. coli strain can efficiently produce (R)-1,3-BDO with a yield of 0.6 mol/mol glucose, corresponding to 60% of the theoretical yield. Besides, we also showed the feasibility of aerobically producing 1,3-BDO via a new pathway using 3-hydroxybutyrate as an intermediate.


Asunto(s)
Butileno Glicoles/metabolismo , Escherichia coli , Ingeniería Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosa/metabolismo , NADP/genética , NADP/metabolismo
18.
Appl Microbiol Biotechnol ; 105(3): 1063-1078, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33427933

RESUMEN

Members of the human gut microbiota use glycoside hydrolase (GH) enzymes, such as ß-galactosidases, to forage on host mucin glycans and dietary fibres. A human faecal metagenomic fosmid library was constructed and functionally screened to identify novel ß-galactosidases. Out of the 16,000 clones screened, 30 ß-galactosidase-positive clones were identified. The ß-galactosidase gene found in the majority of the clones was BAD_1582 from Bifidobacterium adolescentis, subsequently named bgaC. This gene was cloned with a hexahistidine tag, expressed in Escherichia coli and His-tagged-BgaC was purified using Ni2+-NTA affinity chromatography and size filtration. The enzyme had optimal activity at pH 7.0 and 37 °C, with a wide range of pH (4-10) and temperature (0-40 °C) stability. It required a divalent metal ion co-factor; maximum activity was detected with Mg2+, while Cu2+ and Mn2+ were inhibitory. Kinetic parameters were determined using ortho-nitrophenyl-ß-D-galactopyranoside (ONPG) and lactose substrates. BgaC had a Vmax of 107 µmol/min/mg and a Km of 2.5 mM for ONPG and a Vmax of 22 µmol/min/mg and a Km of 3.7 mM for lactose. It exhibited low product inhibition by galactose with a Ki of 116 mM and high tolerance for glucose (66% activity retained in presence of 700 mM glucose). In addition, BgaC possessed transglycosylation activity to produce galactooligosaccharides (GOS) from lactose, as determined by TLC and HPLC analysis. The enzymatic characteristics of B. adolescentis BgaC make it an ideal candidate for dairy industry applications and prebiotic manufacture.Key points• Bifidobacterium adolescentis BgaC ß-galactosidase was selected from human faecal metagenome.• BgaC possesses sought-after properties for biotechnology, e.g. low product inhibition.• BgaC has transglycosylation activity producing prebiotic oligosaccharides. Graphical Abstract.


Asunto(s)
Bifidobacterium adolescentis , Galactosa , Humanos , Concentración de Iones de Hidrógeno , Lactosa , Metagenoma , Oligosacáridos , Temperatura , beta-Galactosidasa/genética
19.
Arch Microbiol ; 203(3): 1079-1088, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33156373

RESUMEN

This study aimed to identify the yeast strains associated with the tree bark samples collected from the Aegean and Marmara regions and from rotten fruit samples. Fifty-one yeast strains were successfully isolated and screened for their abilities to produce industrially important extracellular enzymes. Thirty isolates demonstrated ability to produce at least two different enzymes and were selected for subsequent molecular identification using sequence analysis of ITS region and D1/D2 domain of the 26S rDNA. The most prevalent strains belonged to Papiliotrema laurentii (%23), Papiliotrema terrestris (%13) and Candida membranifaciens (%10). Papiliotrema laurentii and Papiliotrema terrestris recorded the highest enzymatic activities for all the screened enzymes. To the best of our knowledge, this is the first report that identifies the yeast strains associated with the tree barks of Turkey and among the limited comprehensive studies that screened considerable number of isolates for their ability to produce several industrially important enzymes.


Asunto(s)
Frutas/microbiología , Microbiología Industrial , Corteza de la Planta/microbiología , Levaduras/enzimología , Levaduras/genética , ADN de Hongos/genética , Tipificación Molecular , ARN Ribosómico/genética , Turquía , Levaduras/aislamiento & purificación
20.
ACS Synth Biol ; 10(1): 192-203, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33301309

RESUMEN

1,5-Pentanediol (1,5-PDO) is an important C5 building block for the synthesis of different value-added polyurethanes and polyesters. However, no natural metabolic pathway exists for the biosynthesis of 1,5-PDO. Herein we designed and constructed a promising nonnatural pathway for de novo production of 1,5-PDO from cheap carbohydrates. This biosynthesis route expands natural lysine pathways and employs two artificial metabolic modules to sequentially convert lysine into 5-hydroxyvalerate (5-HV) and 1,5-PDO via 5-hydroxyvaleryl-CoA. Theoretically, the 5-hydroxyvaleryl-CoA-based pathway is more energy-efficient than a recently published carboxylic acid reductase-based pathway for 1,5-PDO production. By combining strategies of systematic enzyme screening, pathway balancing, and transporter engineering, we successfully constructed a minimally engineered Escherichia coli strain capable of producing 3.19 g/L of 5-HV and 0.35 g/L of 1,5-PDO in a medium containing 20 g/L of glucose and 5 g/L lysine. Introducing the synthetic modules into a lysine producer and enhancing NADPH supply enabled the strain to accumulate 1.04 g/L of 5-HV and 0.12 g/L of 1,5-PDO using glucose as the main carbon source. This work lays the basis for the development of a biological route for 1,5-PDO production from renewable bioresources.


Asunto(s)
Escherichia coli/metabolismo , Glucosa/metabolismo , Glicoles/metabolismo , Ingeniería Metabólica/métodos , Pentanos/metabolismo , Vías Biosintéticas/genética , Escherichia coli/química , Glicoles/química , Hidroliasas/metabolismo , Lisina/metabolismo , Pentanos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA