Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1146699, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275914

RESUMEN

Introduction: Transcriptional activation depends on the interplay of chromatin modifiers to establish a permissive epigenetic landscape. While histone 3 lysine 9 (H3K9) methylation has long been associated with gene repression, there is limited evidence to support a role for H3K9 demethylases in gene activation. Methods: We leveraged knockdown and overexpression of JMJD2d / Kdm4d in mouse embryonic fibroblasts, coupled with extensive epigenomic analysesm to decipher the role of histone 3 lysine 9 demethylases in the innate immune response. Results: Here we describe the H3K9 demethylase Kdm4d/JMJD2d as a positive regulator of type I interferon responses. In mouse embryonic fibroblasts (MEFs), depletion of JMJD2d attenuates the transcriptional response, conferring increased viral susceptibility, while overexpression of the demethylase results in more robust IFN activation. We find that the underlying mechanism of JMJD2d in type I interferon responses consists of an effect both on the transcription of enhancer RNAs (eRNAs) and on dynamic H3K9me2 at associated promoters. In support of these findings, we establish that JMJD2d is associated with enhancer regions throughout the genome prior to stimulation but is redistributed to inducible promoters in conjunction with transcriptional activation. Discussion: Taken together, our data reveal JMJD2d as a chromatin modifier that connects enhancer transcription with promoter demethylation to modulate transcriptional responses.


Asunto(s)
Histona Demetilasas , Interferón Tipo I , Animales , Ratones , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histonas/genética , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Interferón Tipo I/genética , Lisina/genética , Fibroblastos/metabolismo , Cromatina/genética
2.
Cells ; 8(10)2019 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-31635067

RESUMEN

Spatiotemporal patterns of gene expression depend on enhancer elements and other factors during individual development and disease progression. The rapid progress of high-throughput techniques has led to well-defined enhancer chromatin properties. Various genome-wide methods have revealed a large number of enhancers and the discovery of three-dimensional (3D) genome architecture showing the distant interacting mechanisms of enhancers that loop to target gene promoters. Whole genome sequencing projects directed at cancer have led to the discovery of substantial enhancer dysfunction in misregulating gene expression and in tumor initiation and progression. Results from genome-wide association studies (GWAS) combined with functional genomics analyses have elucidated the functional impacts of many cancer risk-associated variants that are enriched within the enhancer regions of chromatin. Risk variants dysregulate the expression of enhancer variant-associated genes via 3D genomic interactions. Moreover, these enhancer variants often alter the chromatin binding affinity for cancer-relevant transcription factors, which in turn leads to aberrant expression of the genes associated with cancer susceptibility. In this review, we investigate the extent to which these genetic regulatory circuits affect cancer predisposition and how the recent development of genome-editing methods have enabled the determination of the impacts of genomic variation and alteration on cancer phenotype, which will eventually lead to better management plans and treatment responses to human cancer in the clinic.


Asunto(s)
Genoma Humano/genética , Neoplasias/metabolismo , Animales , Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Neoplasias/genética , Polimorfismo de Nucleótido Simple/genética
3.
Data Brief ; 23: 103812, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31372457

RESUMEN

Atherosclerosis involves phenotypic modulation and transdifferentiation of vascular smooth muscle cells (SMCs). Data are given in tabular or figure format that illustrate genome-wide DNA methylation alterations in atherosclerotic vs. control aorta (athero DMRs). Data based upon publicly available chromatin state profiles are also shown for normal aorta, monocyte, and skeletal muscle tissue-specific DMRs and for aorta-specific chromatin features (enhancer chromatin, promoter chromatin, repressed chromatin, actively transcribed chromatin). Athero hypomethylated and hypermethylated DMRs as well as epigenetic and transcription profiles are described for the following genes: ACTA2, MYH10, MYH11 (SMC-associated genes); SMAD3 (a signaling gene for SMCs and other cell types); CD79B and SH3BP2 (leukocyte-associated genes); and TBX20 and genes in the HOXA, HOXB, HOXC, and HOXD clusters (T-box and homeobox developmental genes). The data reveal strong correlations between athero hypermethylated DMRs and regions of enhancer chromatin in aorta, which are discussed in the linked research article "Atherosclerosis-associated differentially methylated regions can reflect the disease phenotype and are often at enhancers" (M. Lacey et al., 2019).

4.
Oncotarget ; 9(47): 28717-28730, 2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-29983891

RESUMEN

Ulcerative colitis (UC) is a prevalent form of inflammatory bowel disease (IBD) whose pathogenic mechanisms remain unclear. Elucidating these mechanisms is important to reduce UC symptoms and to prevent UC progression into colitis-associated colon cancer (CAC). Our goal was to develop and validate faithful, human-derived, UC models and analyze them at histologic, transcriptomic and epigenetic levels to allow mechanistic studies of UC and CAC pathogenesis. We generated patient-derived primary-organoid cultures from UC and non-IBD colonic epithelium. We phenotyped them histologically and used next-generation-sequencing approaches to profile whole transcriptomes and epigenomes of organoids and primary tissues. Tissue organization and expression of mucin 2 (MUC2) and lysozyme (LYZ) demonstrated histologic faithfulness of organoids to healthy and diseased colonic epithelium. Transcriptomic analyses showed increased expression of inflammatory pathways in UC patient-derived organoids and tissues. Profiling for active enhancers using the H3K27ac histone modification revealed UC-derived organoid enrichment for pathways indicative of gastrointestinal cancer, including S100 calcium-binding protein P (S100P), and revealed novel markers for GI cancer, including both LYZ and neuropeptide S receptor 1 (NPSR1). Immunolocalization showed increased levels of LYZ, S100P, and NPSR1 proteins in UC and CAC. In conclusion, primary colonic organoid cultures from UC and non-IBD patients can be established that faithfully represent diseased or normal colonic states. These models reveal precancerous molecular pathways that are already activated in UC. The findings demonstrate the suitability of primary organoids for dissecting UC and CAC pathogenic mechanisms and suggest new targets for therapeutic intervention.

5.
Elife ; 2: e01503, 2013 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-24368734

RESUMEN

Enhancers play a central role in cell-type-specific gene expression and are marked by H3K4me1/2. Active enhancers are further marked by H3K27ac. However, the methyltransferases responsible for H3K4me1/2 on enhancers remain elusive. Furthermore, how these enzymes function on enhancers to regulate cell-type-specific gene expression is unclear. In this study, we identify MLL4 (KMT2D) as a major mammalian H3K4 mono- and di-methyltransferase with partial functional redundancy with MLL3 (KMT2C). Using adipogenesis and myogenesis as model systems, we show that MLL4 exhibits cell-type- and differentiation-stage-specific genomic binding and is predominantly localized on enhancers. MLL4 co-localizes with lineage-determining transcription factors (TFs) on active enhancers during differentiation. Deletion of Mll4 markedly decreases H3K4me1/2, H3K27ac, Mediator and Polymerase II levels on enhancers and leads to severe defects in cell-type-specific gene expression and cell differentiation. Together, these findings identify MLL4 as a major mammalian H3K4 mono- and di-methyltransferase essential for enhancer activation during cell differentiation. DOI: http://dx.doi.org/10.7554/eLife.01503.001.


Asunto(s)
Adipocitos/enzimología , Adipogénesis , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Células Musculares/enzimología , Desarrollo de Músculos , Células 3T3-L1 , Animales , Sitios de Unión , Linaje de la Célula , Biología Computacional , ADN Polimerasa II/metabolismo , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Genómica/métodos , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Complejo Mediador/metabolismo , Metilación , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas , Factores de Tiempo , Factores de Transcripción/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA