RESUMEN
Monolayer transition metal dichalcogenides (TMDs) have emerged as promising materials to generate single-photon emitters (SPEs). While there are several previous reports in the literature about TMD-based SPEs, the precise nature of the excitonic states involved in them is still under debate. Here, we use magneto-optical techniques under in-plane and out-of-plane magnetic fields to investigate the nature of SPEs in WSe2 monolayers on glass substrates under different strain profiles. Our results reveal important changes on the exciton localization and, consequently, on the optical properties of SPEs. Remarkably, we observe an anomalous PL energy redshift with no significant changes of photoluminescence (PL) intensity under an in-plane magnetic field. We present a model to explain this redshift based on intervalley defect excitons under a parallel magnetic field. Overall, our results offer important insights into the nature of SPEs in TMDs, which are valuable for future applications in quantum technologies.
RESUMEN
Enhancing the biocompatibility and mechanical stability of small diameter vascular scaffolds remain significant challenges. To address this challenge, small-diameter tubular structures were electrospun from silk fibroin (SF) from silk textile industry discarded materials to generate bilayer scaffolds that mimic native blood vessels, but derived from a sustainable natural material resource. The inner layer was obtained by directly dissolving SF in formic acid, while the middle layer (SF-M) was achieved through aqueous concentration of the protein. Structural and biological properties of each layer as well as the bilayer were evaluated. The inner layer exhibited nano-scale fiber diameters and 57.9% crystallinity, and degradation rates comparable with the SF-M layer. The middle layer displayed micrometer-scale fibers diameters with an ultimate extension of about 274%. Both layers presented contact angles suitable for cell growth and cytocompatibility, while the bilayer material displayed an intermediate mechanical response and a reduced enzymatic degradation rate when compared to each individual layer. The bilayer material emulates many of the characteristics of native small-diameter vessels, thereby suggesting further studies towards in vivo opportunities.
RESUMEN
Tryptamines play diverse roles as neurotransmitters and psychoactive compounds found in various organisms. Psilocybin, a notable tryptamine, has garnered attention for its therapeutic potential in treating mental health disorders like depression and anxiety. Despite its promising applications, current extraction methods for psilocybin are labor-intensive and economically limiting. We suggest biocatalysis as a sustainable alternative, leveraging enzymes to synthesize psilocybin and other tryptamines efficiently. By elucidating psilocybin biosynthesis pathways, researchers aim to advance synthetic methodologies and industrial applications. This review underscores the transformative potential of biocatalysis in enhancing our understanding of tryptamine biosynthesis and facilitating the production of high-purity psilocybin and other tryptamines for therapeutic and research use.
RESUMEN
The production of bioethanol from lignocellulosic biomass requires the efficient conversion of glucose and xylose to ethanol, a process that depends on the ability of microorganisms to internalize these sugars. Although glucose transporters exist in several species, xylose transporters are less common. Several types of transporters have been identified in diverse microorganisms, including members of the Major Facilitator Superfamily (MFS) and Sugars Will Eventually be Exported Transporter (SWEET) families. Considering that Saccharomyces cerevisiae lacks an effective xylose transport system, engineered yeast strains capable of efficiently consuming this sugar are critical for obtaining high ethanol yields. This article reviews the structure-function relationship of sugar transporters from the MFS and SWEET families. It provides information on several tools and approaches used to identify and characterize them to optimize xylose consumption and, consequently, second-generation ethanol production.
RESUMEN
Calcium phosphate (CaP) scaffolds doping with therapeutic ions are one of the focuses of recent bone tissue engineering research. Among the therapeutic ions, strontium stands out for its role in bone remodeling. This work reports a simple method to produce Sr-doped 3D-printed CaP scaffolds, using Sr-doping to induce partial phase transformation from ß-tricalcium phosphate (ß-TCP) to hydroxyapatite (HA), resulting in a doped biphasic calcium phosphate (BCP) scaffold. Strontium carbonate (SrCO3) was incorporated in the formulation of the 3D-printing ink, studying ß-TCP:SrO mass ratios of 100:0, 95:5, and 90:10 (named as ß-TCP, ß-TCP/5-Sr, and ß-TCP/10-Sr, respectively). Adding SrCO3 in the 3D-printing ink led to a slight increase in viscosity but did not affect its printability, resulting in scaffolds with a high printing fidelity compared to the computational design. Interestingly, Sr was incorporated into the lattice structure of the scaffolds, forming hydroxyapatite (HA). No residual SrO or SrCO3 were observed in the XRD patterns of any composition, and HA was the majority phase of the ß-TCP/10-Sr scaffolds. The addition of Sr increased the compression strength of the scaffolds, with both ß-TCP/5-Sr and ß-TCP/10-Sr performing better than the ß-TCP. Overall, ß-TCP/5-Sr presented higher mineralized nodules and mechanical strength, while ß-TCP scaffolds presented superior cell viability. The incorporation of SrCO3 in the ink formulation is a viable method to obtain Sr-BCP scaffolds. Thus, this approach could be explored with other CaP scaffolds aiming to optimize their performance and the addition of alternative therapeutic ions.
RESUMEN
Bacteria, the primary microorganisms used for industrial molecule production, do not naturally generate miRNAs. This study aims to systematically review current literature on miRNA expression systems in bacteria and address three key questions: (1) Which microorganism is most efficient for heterologous miRNA production? (2) What essential elements should be included in a plasmid construction to optimize miRNA expression? (3) Which commercial plasmid is most used for miRNA expression? Initially, 832 studies were identified across three databases, with fifteen included in this review. Three species-Escherichia coli, Salmonella typhimurium, and Rhodovulum sulfidophilum-were found as host organisms for recombinant miRNA expression. A total of 78 miRNAs were identified, out of which 75 were produced in E. coli, one in R. sulfidophilum (miR-29b), and two in S. typhimurium (mi-INHA and miRNA CCL22). Among gram-negative bacteria, R. sulfidophilum emerged as an efficient platform for heterologous production, thanks to features like nucleic acid secretion, RNase non-secretion, and seawater cultivation capability. However, E. coli remains the widely recognized model for large-scale miRNA production in biotechnology market. Regarding plasmids for miRNA expression in bacteria, those with an lpp promoter and multiple cloning sites appear to be the most suitable due to their robust expression cassette. The reengineering of recombinant constructs holds potential, as improvements in construct characteristics maximize the expression of desired molecules. The utilization of recombinant bacteria as platforms for producing new molecules is a widely used approach, with a focus on miRNAs expression for therapeutic contexts.
RESUMEN
Phosphonates (PHTs), organic compounds with a stable C-P bond, are widely distributed in nature. Glyphosate (GP), a synthetic PHT, is extensively used in agriculture and has been linked to various human health issues and environmental damage. Given the prevalence of GP, developing cost-effective, on-site methods for GP detection is key for assessing pollution and reducing exposure risks. We adopted Agrobacterium tumefaciens CHLDO, a natural GP degrader, as a host and the source of genetic parts for constructing PHT biosensors. In this bacterial species, the phn gene cluster, encoding the C-P lyase pathway, is regulated by the PhnF transcriptional repressor. We selected the phnG promoter, which displays a dose-dependent response to GP, to build a set of whole-cell biosensors. Through stepwise genetic optimization of the transcriptional cascade, we created a whole-cell biosensor capable of detecting GP in the 0.25-50 µM range in various samples, including soil and water.
Asunto(s)
Agrobacterium tumefaciens , Técnicas Biosensibles , Glicina , Glifosato , Organofosfonatos , Agrobacterium tumefaciens/genética , Técnicas Biosensibles/métodos , Glicina/análogos & derivados , Glicina/farmacología , Glicina/metabolismo , Organofosfonatos/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Familia de Multigenes , LiasasRESUMEN
Biomaterials derived from biological matrices have been widely investigated due to their great therapeutic potential in regenerative medicine, since they are able to induce cell proliferation, tissue remodeling, and angiogenesis in situ. In this context, highly vascularized and proliferative tissues, such as the uterine wall, present an interesting source to produce acellular matrices that can be used as bioactive materials to induce tissue regeneration. Therefore, this study aimed to establish an optimized protocol to generate decellularized uterine scaffolds (dUT), characterizing their structural, compositional, and biomechanical properties. In addition, in vitro performance and in vivo biocompatibility were also evaluated to verify their potential applications for tissue repair. Results showed that the protocol was efficient to promote cell removal, and dUT general structure and extracellular matrix composition remained preserved compared with native tissue. In addition, the scaffolds were cytocompatible, allowing cell growth and survival. In terms of biocompatibility, the matrices did not induce any signs of immune rejection in vivo in a model of subcutaneous implantation in immunocompetent rats, demonstrating an indication of tissue integration after 30 days of implantation. In summary, these findings suggest that dUT scaffolds could be explored as a biomaterial for regenerative purposes, which is beyond the studies in the reproductive field.
RESUMEN
Large bone defects are a significant health problem today with various origins, including extensive trauma, tumours, or congenital musculoskeletal disorders. Tissue engineering, and in particular bone tissue engineering, aims to respond to this demand. As such, we propose a specific model based on Elastin-Like Recombinamers-based click-chemistry hydrogels given their high biocompatibility and their potent on bone regeneration effect conferred by different bioactive sequences. In this work we demonstrate, using biochemistry, histology, histomorphometry and imaging techniques, the biocompatibility of our matrix and its potent effect on bone regeneration in a model of bone parietal lesion in female New Zealand rabbits.
Asunto(s)
Materiales Biocompatibles , Regeneración Ósea , Elastina , Hidrogeles , Ingeniería de Tejidos , Animales , Femenino , Conejos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Regeneración Ósea/efectos de los fármacos , Química Clic/métodos , Elastina/química , Hidrogeles/química , Hidrogeles/farmacología , Ingeniería de Tejidos/métodos , Andamios del Tejido/químicaRESUMEN
BACKGROUND: Tissue engineering seeks to improve, maintain, or replace the biological functions of damaged organs or tissues with biological substitutes such as the development of scaffolds. In the case of bone tissue, they must have excellent mechanical properties like native bone. OBJECTIVE: In this work, three geometric models were designed for scaffolds with different structure lattices and porosity that could be biomechanically suitable and support cell growth for trabecular bone replacement applications in tissue engineering and regenerative medicine to the proximal femur area. METHODS: Geometries were designed using computer-aided design (CAD) software and evaluated using finite element analysis in compression tests. Three loads were considered according to the daily activity: 1177 N for slow walking, 2060 N for fast walking, and 245.25 N for a person in a bipedal position. All these loads for an adult weight of 75 kg. For each of them, three biomaterials were assigned: two polymers (poly-glycolic acid (PGA) and poly-lactic acid (PLA)) and one mineral (hydroxyapatite (HA)). 54 tests were performed: 27 for each of the tests. RESULTS: The results showed Young's modulus (E) between 1 and 4 GPa. CONCLUSION: If the resultant E is in the range of 0.1 to 5 GPa, the biomaterial is considered an appropriate alternative for the trabecular bone which is the main component of the proximal bone. However, for the models applied in this study, the best option is the poly-lactic acid which will allow absorbing the acting loads.
Asunto(s)
Diseño Asistido por Computadora , Análisis de Elementos Finitos , Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Humanos , Ingeniería de Tejidos/métodos , Durapatita/química , Módulo de Elasticidad , Bioimpresión/métodos , Poliésteres/química , Porosidad , Simulación por Computador , Materiales Biocompatibles/química , Sustitutos de Huesos/química , Ácido Poliglicólico/química , Impresión Tridimensional , Ensayo de Materiales , HuesosRESUMEN
This study aimed to comprehensively assess the influence of the nanotube diameter and the presence of a silicon carbide (SiC) coating on microbial proliferation on nanostructured titanium surfaces. An experiment used 72 anodized titanium sheets with varying nanotube diameters of 50 and 100 nm. These sheets were divided into four groups: non-coated 50 nm titanium nanotubes, SiC-coated 50 nm titanium nanotubes, non-coated 100 nm titanium nanotubes, and SiC-coated 100 nm titanium nanotubes, totaling 36 samples per group. P. gingivalis and T. denticola reference strains were used to evaluate microbial proliferation. Samples were assessed over 3 and 7 days using fluorescence microscopy with a live/dead viability kit and scanning electron microscopy (SEM). At the 3-day time point, fluorescence and SEM images revealed a lower density of microorganisms in the 50 nm samples than in the 100 nm samples. However, there was a consistently low density of T. denticola across all the groups. Fluorescence images indicated that most bacteria were viable at this time. By the 7th day, there was a decrease in the microorganism density, except for T. denticola in the non-coated samples. Additionally, more dead bacteria were detected at this later time point. These findings suggest that the titanium nanotube diameter and the presence of the SiC coating influenced bacterial proliferation. The results hinted at a potential antibacterial effect on the 50 nm diameter and the coated surfaces. These insights contribute valuable knowledge to dental implantology, paving the way for developing innovative strategies to enhance the antimicrobial properties of dental implant materials and mitigate peri-implant infections.
RESUMEN
The skin is a tissue constantly exposed to the risk of damage, such as cuts, burns, and genetic disorders. The standard treatment is autograft, but it can cause pain to the patient being extremely complex in patients suffering from burns on large body surfaces. Considering that there is a need to develop technologies for the repair of skin tissue like 3D bioprinting. Skin is a tissue that is approximately 1/16 of the total body weight and has three main layers: epidermis, dermis, and hypodermis. Therefore, there are several studies using cells, biomaterials, and bioprinting for skin regeneration. Here, we provide an overview of the structure and function of the epidermis, dermis, and hypodermis, and showed in the recent research in skin regeneration, the main cells used, biomaterials studied that provide initial support for these cells, allowing the growth and formation of the neotissue and general characteristics, advantages and disadvantages of each methodology and the landmarks in recent research in the 3D skin bioprinting.
Asunto(s)
Materiales Biocompatibles , Bioimpresión , Impresión Tridimensional , Medicina Regenerativa , Piel , Ingeniería de Tejidos , Humanos , Medicina Regenerativa/métodos , Materiales Biocompatibles/química , Ingeniería de Tejidos/métodos , Animales , Piel/citología , Andamios del Tejido/química , RegeneraciónRESUMEN
Cardiovascular diseases, particularly myocardial infarction, have significant healthcare challenges due to the limited regenerative capacity of injured heart tissue. Cardiac tissue engineering (CTE) offers a promising approach to repairing myocardial damage using biomaterials that mimic the heart's extracellular matrix. This study investigates the potential of graphene nanopowder (Gnp)-enhanced polycaprolactone (PCL) scaffolds fabricated via electrospinning to improve the properties necessary for effective cardiac repair. This work aimed to analyze scaffolds with varying graphene concentrations (0.5%, 1%, 1.5%, and 2% by weight) to determine their morphological, chemical, mechanical, and biocompatibility characteristics. The results presented that incorporating graphene improves PCL scaffolds' mechanical properties and cellular interactions. The optimal concentration of 1% graphene significantly enhanced mechanical properties and biocompatibility, promoting cell adhesion and proliferation. These findings suggest that Gnp-enhanced PCL scaffolds at this concentration can serve as a potent substrate for CTE providing insights into designing more effective biomaterials for myocardial restoration.
Asunto(s)
Proliferación Celular , Grafito , Nanofibras , Poliésteres , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Grafito/química , Poliésteres/química , Proliferación Celular/efectos de los fármacos , Materiales Biocompatibles , Adhesión Celular/efectos de los fármacos , Ensayo de Materiales , Animales , Miocitos Cardíacos/efectos de los fármacos , Humanos , Miocardio/patologíaRESUMEN
Due to bioactive properties, introducing spongin-like collagen (SPG) into the biosilica (BS) extracted from marine sponges would present an enhanced biological material for improving osteoporotic fracture healing by increasing bone formation rate. Our aim was to characterize the morphology of the BS/SPG scaffolds by scanning electron microscopy (SEM), the chemical bonds of the material by Fourier transform infrared spectroscopy (FTIR), and evaluating the orthotopic in vivo response of BS/SPG scaffolds in tibial defects of osteoporotic fractures in rats (histology, histomorphometry, and immunohistochemistry) in two experimental periods (15 and 30 days). SEM showed that scaffolds were porous, showing the spicules of BS and fibrous aspect of SPG. FTIR showed characteristic peaks of BS and SPG. For the in vivo studies, after 30 days, BS and BS/SPG showed a higher amount of newly formed bone compared to the first experimental period, observed both in the periphery and in the central region of the bone defect. For histomorphometry, BS/SPG presented higher %BV/TV compared to the other experimental groups. After 15 days, BS presented higher volumes of collagen type I. After 30 days, all groups demonstrated higher volumes of collagen type III compared to volumes at 15 days. After 30 days, BS/SPG presented higher immunostaining of osteoprotegerin compared to the other experimental groups at the same experimental period. The results showed that BS and BS/SPG scaffolds were able to improve bone healing. Future research should focus on the effects of BS/SPG on longer periods in vivo studies.
Asunto(s)
Colágeno , Poríferos , Andamios del Tejido , Animales , Ratas , Andamios del Tejido/química , Poríferos/química , Colágeno/metabolismo , Femenino , Dióxido de Silicio/química , Osteoporosis/patología , Ratas Wistar , Fracturas Osteoporóticas , Microscopía Electrónica de Rastreo , Osteogénesis/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier , TibiaRESUMEN
Projects and construction management in healthcare facilities are usually assigned to architectural firms and engineering companies with previous experience. However, there is no evaluation system to ensure their level of competence in the healthcare sector. In the past, this was also the case for clinicians when they were self-appointed specialists without any supervision. Currently, the Specialised Health Training (SHT) programme in Spain is the only official specialisation pathway and consists of a period that combines training and paid healthcare practice. Similarly, but from Argentina, hospital residencies in architecture have been carried out for specialised postgraduate training. The aim of this article was to show the experience in Argentina and to propose the extension of the SHT in Spain. Our proposal consists of a programme of residencies in architecture and engineering to be developed in healthcare centres. We believe that this initiative has great potential to address health from its multiple disciplines and to reinforce the maturity of a National Health System in constant change.
Los proyectos y la dirección de obras en los centros sanitarios se suelen asignar a estudios de arquitectura y empresas de ingeniería con experiencia previa. Sin embargo, no hay un sistema de evaluación que asegure su nivel de competencia en el sector sanitario. Antiguamente, esta situación también se daba en los profesionales clínicos, cuando se autotitulaban especialistas sin ningún tipo de supervisión. En la actualidad, el programa de Formación Sanitaria Especializada (FSE) en España es la única vía de especialización oficial y consiste en un periodo que aúna formación y práctica asistencial remunerada. De manera similar, pero desde Argentina, se llevan realizando unas residencias hospitalarias de arquitectura para la formación especializada de posgrado. El objetivo de este artículo fue mostrar la experiencia en Argentina y proponer la ampliación de la FSE en España. Nuestra propuesta consiste en un programa de residencias en arquitectura e ingeniería a desarrollar en centros sanitarios. Consideramos que esta iniciativa tiene un gran potencial para abordar la salud desde sus múltiples disciplinas y reforzar la madurez de un Sistema Nacional de Salud en constante cambio.
Asunto(s)
Ingeniería , España , Ingeniería/educación , Humanos , Argentina , EspecializaciónRESUMEN
This work describes a mathematical model for handwriting devices without a specific reference surface (SRS). The research was carried out on two hypotheses: the first considers possible circular segments that could be made during execution for the reconstruction of the trace, and the second is the combination of lines and circles. The proposed system has no flat reference surface, since the sensor is inside the pencil that describes the trace, not on the surface as in tablets or cell phones. An inertial sensor was used for the measurements, in this case, a commercial Micro-Electro Mechanical sensor of linear acceleration. The tracking device is an IMU sensor and a processing card that allows inertial measurements of the pen during on-the-fly tracing. It is essential to highlight that the system has a non-inertial reference frame. Comparing the two proposed models shows that it is possible to construct shapes from curved lines and that the patterns obtained are similar to what is recognized; this method provides an alternative to quaternion calculus for poorly specified orientation problems.
RESUMEN
BACKGROUND: Tissue engineering represents a promising field in regenerative medicine, with bioresorbable polymers such as polycaprolactone (PCL) playing a crucial role as scaffolds. These scaffolds support the growth and repair of tissues by mimicking the extracellular matrix. OBJECTIVE: This study aimed to assess the in vivo performance of three-dimensional PCL scaffolds by evaluating their effects on bone repair in rat calvaria and the tissue reaction in subcutaneous implant sites, as well as their impact on major organs such as the kidneys, lungs, and liver. METHODS: Three-dimensional scaffolds made of PCL were implanted in the subcutaneous tissue of rats' backs and calvaria. Histological analyses were conducted to observe the bone repair process in calvaria and the tissue response in subcutaneous implant sites. Additionally, the kidneys, lungs, and livers of the animals were examined for any adverse tissue alterations. RESULTS: The histological analysis of the bone repair in calvaria revealed newly formed bone growing towards the center of the defects. In subcutaneous tissues, a thin fibrous capsule with collagenous fibers enveloping the implant was observed in all animals, indicating a positive tissue response. Importantly, no harmful alterations or signs of inflammation, hyperplasia, metaplasia, dysplasia, or hemorrhage were detected in the kidneys, lungs, and liver. CONCLUSIONS: The findings demonstrate that PCL scaffolds produced through additive manufacturing are biocompatible, non-cytotoxic, and bioresorbable, promoting osteoconduction without adverse effects on major organs. Hence, PCL is confirmed as a suitable biomaterial for further studies in tissue engineering and regenerative medicine.
RESUMEN
A significant limitation of numerous current genetic engineering therapy approaches is their limited control over the strength, timing, or cellular context of their therapeutic effect. Synthetic gene/genetic circuits are synthetic biology approaches that can control the generation, transformation, or depletion of a specific DNA, RNA, or protein and provide precise control over gene expression and cellular behavior. They can be designed to perform logical operations by carefully selecting promoters, repressors, and other genetic components. Patent search was performed in Espacenet, resulting in 38 selected patents with 15 most frequent international classifications. Patent embodiments were categorized into applications for the delivery of therapeutic molecules, treatment of infectious diseases, treatment of cancer, treatment of bleeding, and treatment of metabolic disorders. The logic gates of selected genetic circuits are described to comprehensively demonstrate their therapeutic applications. Synthetic gene circuits can be customized for precise control of therapeutic interventions, leading to personalized therapies that respond specifically to individual patient needs, enhancing treatment efficacy and minimizing side effects. They can be highly sensitive biosensors that provide real-time therapy by accurate monitoring various biomarkers or pathogens and appropriately synthesizing a therapeutic molecule. Synthetic gene circuits may also lead to the development of advanced regenerative therapies and to implantable biodevices that produce on-demand bioactive molecules. However, this technology faces challenges for commercial profitability. The genetic circuit designs need adjustments for specific applications, and may have disadvantages like toxicity from multiple regulators, homologous recombination, context dependency, resource overuse, and environmental variability.
RESUMEN
Embryonic stem cells (ESCs) have proven to be a great in vitro model that faithfully recapitulates the events that occur during in vivo embryogenesis, making them a unique tool to study the cellular and molecular mechanisms that define tissue specification during embryonic development. Livestock ESCs are particularly attractive and have broad prospects including drug selection and human disease modeling, improvement of reproductive biotechniques and agriculture-related applications such as production of genetically modified animals. While mice and human ESCs have been established many years ago, no significant advances were made in livestock species until recently. Nowadays, livestock ESCs are available from cattle, pigs, sheep, horses and rabbits with different states of pluripotency. In this review, we summarize the current advances on livestock ESCs establishment and maintenance along with their present and future applications.
RESUMEN
There are several reasons for skin damage, including genetic factors, disorders, acute trauma, hard-to-heal wounds, or surgical interventions. Whatever the cause, wounds have a substantial impact on people who experience them, their caregivers and the healthcare system. Advanced wound care products have been researched and developed, providing an opportunity for faster and more complete healing. Tissue engineering (TE) is a promising strategy that can overcome limitations when choosing a graft for a wound. Amniotic membrane is a highly abundant, readily available, and inexpensive biological tissue that does not raise ethical concerns, with many applications in different fields of TE and regenerative medicine. It has attractive physical characteristics, such as elasticity, rigidity and mechanical strength, among others. The effects can also be potentiated by association with other substances, such as hyaluronic acid and growth factors. This paper describes new perspectives involving the use of amniotic membranes.