Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.317
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124875, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39137707

RESUMEN

Lanthanide chelates with dimethyl(phenylsulfonyl)amidophosphate (labeled as HSP) and Lewis base ligands (bpy = 2,2;-bipyridine and phen = 1,10-phenanthroline) of formula Na[Ln(SP)4] (1Ln), [Ln(SP)3bpy] (2Ln); [Ln(SP)3phen] (3Ln) (Ln = Eu3+, Gd3+, Tb3+ and Lu3+) were obtained and characterized by the X-ray, photoluminescence spectroscopy at 293 and 77 K as well as by intrinsic (QLnLn) and overall (QLnL) luminescence quantum yields. These phosphors manifest a very strong emission after excitation in the UV range of the molecular singlet states (S1) and two of them have very high QLnL values (Eu3+ and Tb3+ chelates of the type 2Ln and 3Ln). The dynamics of the excited states are discussed based on the intramolecular energy transfer theory, considering the dipole-dipole, the dipole-multipole and the exchange mechanisms. From the calculated energy transfer rates, a rate equation model was constructed and, thus, the theoretical QLnL can be obtained. A good correlation between the experimentally determined and theoretically calculated QLnL values was achieved, with the triplet state (T1) playing a predominant role in the energy transfer process for Eu3+ compounds, while the sensitization for Tb3+ compounds is dominated by the energy transfer rates from the singlet state (S1).

2.
Biomaterials ; 312: 122743, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39111233

RESUMEN

Photodynamic therapy (PDT) is an appealing modality for cancer treatments. However, the limited tissue penetration depth of external-excitation light makes PDT impossible in treating deep-seated tumors. Meanwhile, tumor hypoxia and intracellular reductive microenvironment restrain the generation of reactive oxygen species (ROS). To overcome these limitations, a tumor-targeted self-illuminating supramolecular nanoparticle T-NPCe6-L-N is proposed by integrating photosensitizer Ce6 with luminol and nitric oxide (NO) for chemiluminescence resonance energy transfer (CRET)-activated PDT. The high H2O2 level in tumor can trigger chemiluminescence of luminol to realize CRET-activated PDT without exposure of external light. Meanwhile, the released NO significantly relieves tumor hypoxia via vascular normalization and reduces intracellular reductive GSH level, further enhancing ROS abundance. Importantly, due to the different ROS levels between cancer cells and normal cells, T-NPCe6-L-N can selectively trigger PDT in cancer cells while sparing normal cells, which ensured low side effect. The combination of CRET-based photosensitizer-activation and tumor microenvironment modulation overcomes the innate challenges of conventional PDT, demonstrating efficient inhibition of orthotopic and metastatic tumors on mice. It also provoked potent immunogenic cell death to ensure long-term suppression effects. The proof-of-concept research proved as a new strategy to solve the dilemma of PDT in treatment of deep-seated tumors.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Microambiente Tumoral , Fotoquimioterapia/métodos , Microambiente Tumoral/efectos de los fármacos , Animales , Nanopartículas/química , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Humanos , Ratones , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Transferencia de Energía , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Ratones Endogámicos BALB C , Luz , Ratones Desnudos , Óxido Nítrico/metabolismo
3.
Sensors (Basel) ; 24(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39275449

RESUMEN

The article addresses the energy consumption minimization problem in wireless powered communication networks (WPCNs) and proposes a time allocation scheme, named DaTA, which is based on the Different Target Simultaneous Wireless Information and Power Transfer (DT-SWIPT) scheme such that the wireless station can share the remaining energy after transmission to the Hybrid Access Point (HAP) to those who have not transmitted to the HAP to minimize the energy consumption of the WPCN. In addition to proposing a new frame structure, the article also considers the Signal-to-Noise (SNR) constraint to guarantee that the HAP can successfully receive data from wireless stations. In the article, the problem of minimization of energy consumption is formulated as a nonlinear programming model. We employ the SQP (Sequential Quadratic Programming) algorithm to figure out the optimal solution. Moreover, a heuristic method is proposed as well to obtain a near-optimal solution in a shorter time. The simulation results showed that the proposed scheme outperforms the related work in terms of energy consumption and energy efficiency.

4.
Angew Chem Int Ed Engl ; : e202414026, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291884

RESUMEN

Organic linker-based luminescent metal-organic frameworks (LMOFs) have received extensive studies due to the unlimited species of emissive organic linkers and tunable structure of MOFs. However, the multiple-step organic synthesis is always a great challenge for the development of LMOFs. As an alternative strategy, in situ "one-pot" strategy, in which the generation of emissive organic linkers and sequential construction of LMOFs happen in one reaction condition, can avoid time-consuming pre-synthesis of organic linkers. In the present work, we demonstrate the successful utilization of in situ "one-pot" strategy to construct a series of LMOFs via the single-site modification between the reaction of aldehydes and o-phenylenediamine-based tetratopic carboxylic acid. The resultant MOFs possess csq topology with emission covering blue to near-infrared. The nanosized LMOFs exhibit excellent sensitivity and selectivity for tryptophan detection. In addition, two component-based LMOFs can also be prepared via the in situ "one-pot" strategy and used to study energy transfer. This work not only reports the construction of LMOFs with full-color emissions, which can be utilized for various applications, but also indicates that in situ "one-pot" strategy indeed is a useful and powerful method to complement the traditional MOFs construction method for preparing porous materials with tunable functionalities and properties.

5.
Angew Chem Int Ed Engl ; : e202412606, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292148

RESUMEN

Photocatalysis mediated by low energy light wavelengths has potential to enable safer, sustainable synthetic methods. A phenanthroline-derived ligand bathocupSani, with a large two-photon absorption (TPA) cross section was used to construct a heteroleptic complex [Cu(bathocupSani)(DPEPhos)]BF4 and a homoleptic complex [Cu(bathocupSani)2]BF4. The ligand and the respective homoleptic complex with copper exhibit two-photon upconversion with an anti-Stokes shift of 1.2 eV using red light. The complex [Cu(bathocupSani)2]BF4 promoted energy transfer photocatalysis enabling oxidative dimerization of benzylic amines, sulfide oxidation, phosphine oxidation, boronic acid oxidation and atom-transfer radical addition.

6.
Angew Chem Int Ed Engl ; : e202412625, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287973

RESUMEN

A remarkable and unexpected increase in the photopolymerization efficiency of an acrylic resin by a bisacylphosphine oxide photoinitiator was observed when an optical brightener was present in the medium. High values for the maximal rates of photopolymerization were obtained by RT-FTIR at 365 nm under a very low irradiance of 1 mW/cm2. Fluorescence studies revealed that the quenching process was attributed to singlet-singlet energy transfer between the first singlet excited state of the optical brightener and the ground state photoinitiator. This mechanism acts as an additional pathway for the excitation of the photoinitiator, thereby increasing the total amount of initiating radicals. Using the Förster resonance energy transfer model, we calculated the relative efficiency of the photosensitization process compared to the direct excitation efficiency of the photoinitiator. The results demonstrate that the photosensitization process can be predicted, paving the way for further improvements in photoinitiating systems.

7.
Talanta ; 281: 126888, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39288589

RESUMEN

Serotonin is an essential neurotransmitter that regulates many physiological processes and is related to a variety of diseases. Herein, a novel electrochemiluminescence-resonance energy transfer (ECL-RET) aptasensor for serotonin detection was developed, with zinc-based metal-organic frameworks (Zn-MOFs) as an ECL donor and Pt@Cu2O cubic nanocrystals (CNs) as an acceptor. In the presence of target, numerous Pt@Cu2O CNs were brought to electrode surface through the catalytic hairpin assembly (CHA)-driven DNA walker, resulting in a significant inhibition of ECL signal. The efficient ECL-RET device exhibited a wide linear range for monitoring serotonin (10-12 to 10-6 M) and a low detection limit of 0.5 pM. Furthermore, satisfactory recoveries were obtained by using the aptasensor to monitor serotonin levels in serum and urine samples. The broadband absorption feature of Pt@Cu2O CNs, along with the extraordinary amplification effect of catalytic hairpin assembly (CHA)-driven DNA walking machine, provided a new route for the construction of efficient ECL-RET systems.

8.
Biosens Bioelectron ; 267: 116779, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39288706

RESUMEN

In this study, we incorporated nanometal surface energy transfer (NSET) in lateral flow immunoassay (LFIA) and explored the relationship between fluorescence quenching efficiency and detection sensitivity to improve sensitivity of NSET-LFIA system. We developed nine gold nanoparticles (GNPs) with absorption spectrum in the range of 520-605 nm as acceptors and quantum dot microspheres (QDMs) with emission spectrum of 530, 570, and 610 nm as donors. By analyzing the overlap integral area, fluorescence quenching efficiency, and detection sensitivity of 27 donor-acceptor pairs, we observed that the larger overlap integral area led to higher fluorescence quenching efficiency and detection sensitivity. A maximum fluorescence quenching efficiency of 91.0% was obtained from the combination of GNPs at 605 nm and QDMs at 610 nm, achieving the highest detection sensitivity. We developed NSET-LFIA for the detection of T2 toxin with a limit of detection of 0.04 ng/mL, which was 10-times higher than that obtained via conventional GNP-LFIA. NSET-LFIA represents a versatile, ultrasensitive and valuable screening tool for small molecules in real samples.

9.
J Radiat Res ; 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39278665

RESUMEN

The repair of DNA double-strand breaks is a crucial yet delicate process which is affected by a multitude of factors. In this study, our goal is to analyse the influence of the linear energy transfer (LET) on the DNA repair kinetics. By utilizing the database of repair of DNA and aggregating the results of 84 experiments, we conduct various model fits to evaluate and compare different hypothesis regarding the effect of LET on the rejoining of DNA ends. Despite the considerable research efforts dedicated to this topic over the past decades, our findings underscore the complexity of the relationship between LET and DNA repair kinetics. This study leverages big data analysis to capture overall trends that single experimental studies might miss, providing a valuable model for understanding how radiation quality impacts DNA damage and subsequent biological effects. Our results highlight the gaps in our current understanding, emphasizing the pressing need for further investigation into this phenomenon.

10.
Mikrochim Acta ; 191(10): 601, 2024 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283340

RESUMEN

A dual-emission fluorescent biosensing method was developed for simultaneous determination of CaMV35S and NOS in genetically modified (GM) plants. Two designed hairpin DNA (H1, H2) sequences were used as templates to synthesize H1-AgNCs (λex = 570 nm, λem = 625 nm) and H2-AgNCs (λex = 470 nm, λem = 555 nm). By using H1-AgNCs and H2-AgNCs as dual-signal tags, combined with signal amplification strategy of magnetic separation to reduce background signal and an enzyme-free catalytic hairpin assembly (CHA) signal amplification strategy, a novel multi-target fluorescent biosensor was fabricated to detect multiple targets based on FRET between signal tags (donors) and magnetic Fe3O4 modified graphene oxide (Fe3O4@GO, acceptors). In the presence of the target NOS and CaMV35S, the hairpin structures of H1 and H2 can be opened respectively, and the exposed sequences will hybridize with the G-rich hairpin sequences HP1 and HP2 respectively, displacing the target sequences to participate in the next round of CHA cycle. Meanwhile, H1-HP1 and H2-HP2 double-stranded DNA sequences (dsDNA) were formed, resulting in the desorption of dsDNA from the surface of Fe3O4@GO due to weak π-π interaction between dsDNA and Fe3O4@GO and leading to the fluorescence recovery of AgNCs. Under optimal conditions, the linear ranges of this fluorescence sensor were 5 ~ 300 nmol L-1 for NOS and 5 ~ 200 nmol L-1 CaMV35S, and the LODs were 0.14 nmol L-1 and 0.18 nmol L-1, respectively. In addition, the fluorescence sensor has good selectivity for the detection of NOS and CaMV35S in GM soybean samples, showing the potential applications in GM screening.


Asunto(s)
Técnicas Biosensibles , Límite de Detección , Nanopartículas del Metal , Plata , Plata/química , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Grafito/química , Secuencias Invertidas Repetidas , Plantas Modificadas Genéticamente/genética , Catálisis , Colorantes Fluorescentes/química , Caulimovirus/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Proteínas Virales/química , Proteínas Virales/genética , Aminoácido Oxidorreductasas
11.
Adv Mater ; : e2409361, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39267460

RESUMEN

The combination of advanced photoluminescence characteristics to photochromism is highly attractive in preparing high-performance multifunctional photo-responsive materials for optoelectronic applications. However, this is rather challenging in material design owing to the limited mechanism understanding and construction principles. Here, an effective strategy to integrate photochromism and afterglow emission in carbon dots (CDs) is proposed through embedding naphthaleneimide (NI) structure in CDs followed by polyvinylpyrrolidone (PVP) encapsulation. The NI-structured CDs-PVP shows intrinsic photochromism owing to the in situ formation of NI-radical anions and controllable multi-stimuli-responsive afterglow behaviors related to the oxygen-trigged triplet exciton quenching and Förster resonance energy transfer (FRET) from the pristine CDs to the photoactivated CDs radicals. Notably, a wide range of appearance colors from colorless to brown, luminescence color transition from blue to yellow, and much elongated afterglow lifetime up to 253 ms are observed. With the extraordinary stimuli-chromic and stimuli-luminescent CDs-PVP film dynamically responsive to multiple external stimuli, reversible secure snapchat, data encryption/decryption and synaptic imaging recognition are realized. These findings demonstrate a fundamental principle to design multi-stimuli-responsive photochromic CDs with afterglow, providing important understandings on the synergic mechanism of dynamic photochromism and emission behaviors and thereby expanding their applications in advanced information anti-counterfeiting and artificial intelligence.

12.
bioRxiv ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39257774

RESUMEN

SNARE proteins drive membrane fusion as their core domains zipper into a parallel four-helix bundle1,2. After fusion, these bundles are disassembled by the AAA+ protein Sec18/NSF and its adaptor Sec17/ α-SNAP3,4 to make them available for subsequent rounds of membrane fusion. SNARE domains are often flanked by C-terminal transmembrane or N-terminal domains5. Previous structures of the NSF-α-SNAP-SNARE complex revealed SNARE domain threaded through the D1 ATPase ring6, posing a topological constraint as SNARE transmembrane domains would prevent complete substrate threading as suggested for other AAA+ systems7. Here, in vivo mass-spectrometry reveals N-terminal SNARE domain interactions with Sec18, exacerbating this topological issue. Cryo-EM structures of a yeast SNARE complex, Sec18, and Sec17 in a non-hydrolyzing condition shows SNARE Sso1 threaded through the D1 and D2 ATPase rings of Sec18, with its folded, N-terminal Habc domain interacting with the D2 ring. This domain does not unfold during Sec18/NSF activity. Cryo-EM structures under hydrolyzing conditions revealed substrate-released and substrate-free states of Sec18 with a coordinated opening in the side of the ATPase rings. Thus, Sec18/NSF operates by substrate side-loading and unloading topologically constrained SNARE substrates.

13.
J Biol Chem ; : 107778, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270821

RESUMEN

Propofol is a widely used anesthetic and sedative that acts as a positive allosteric modulator (PAM) of gamma-aminobutyric acid type A (GABAA) receptors. Several potential propofol binding sites that may mediate this effect have been identified using propofol-analogue photoaffinity labeling. o-PD labels ß-H267, a pore-lining residue, whereas AziPm labels residues ß-M286, ß-M227 and α-I239 in the two membrane-facing interfaces (ß(+)/α(-) and α(+)/ß(-)) between α and ß subunits. This study used photoaffinity labeling of α1ß3 GABAA receptors to reconcile the apparently conflicting results obtained with AziPm and o-PD labeling, focusing on whether ß3-H267 identifies specific propofol binding site(s). The results show that propofol, but not AziPm protects ß3-H267 from labeling by o-PD, whereas both propofol and o-PD protect against AziPm labeling of ß3-M286, ß3-M227 and α1I239. These data indicate that there are three distinct classes of propofol binding sites, with AziPm binding to two of the classes and o-PD to all three. Analysis of binding stoichiometry using native mass spectrometry in ß3 homomeric receptors, demonstrated a minimum of five AziPm labeled residues and three o-PD labeled residues per pentamer, suggesting that there are two distinct propofol binding sites per ß-subunit. The native MS data, coupled with photolabeling performed in the presence of zinc, indicate that the binding site(s) identified by o-PD are adjacent to, but not within the channel pore, since the pore at the 17' H267 residue can accommodate only one propofol molecule. These data validate the existence of three classes of specific propofol binding sites on α1ß3 GABAA receptors.

14.
J Fluoresc ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276307

RESUMEN

Bi3+(0, 1, 3, 5, 7, 10, 12 and 15 at.%) co-doped YPO4:Eu3+ have been hydrothermally synthesized. Bi3+ (x ≥ 1 at.%) co-doping in YPO4:Eu3+ renders mixed crystalline phase of tetragonal to hexagonal. Pure tetragonal phase of Bi3+ co-doped YPO4:Eu3+ could be achieved upon annealing at 900 °C. The luminescence intensity is improved significantly upon annealing at 900 °C. This is due to the reduction of quenching pathways such as water molecules, dangling bonds, etc. The probability of magnetic dipole and electric dipole transitions is observed to be altered. As-prepared samples show near blue emission, while 900 °C annealed samples exhibit red emission, which could be a potential candidate for display, sensing and biological labelling, etc.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125050, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39222599

RESUMEN

Preparation of Li4ZrF8:Ce3+ and Li4ZrF8:Ce3+,Gd3+ phosphors is described. Data on luminescence characteristics are presented. Hydrothermal route was employed for the synthesis. Li4ZrF8 crystallizes in orthorhombic system with Pnma space group. Li atoms are distributed over two sites, both having same coordination of six. Zr is also similarly distributed over two 8 coordinated sites. Li4ZrF8:Ce3+ emits a broad band UVB light, while the emission of Li4ZrF8:Ce3+,Gd3+ is in form of a narrow line around 311 nm attributed to 6P7/2 â†’ 8S7/2. Both phosphors exhibited a broad excitation spectrum with a peak at 253 nm. The excitation and emission properties are thus adequate enough to obtain UVB light sources using a conventional high pressure mercury vapour lamp or an ultraviolet LED.

16.
Adv Sci (Weinh) ; : e2403934, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225387

RESUMEN

The overactivated immune cells in the infectious lesion may lead to irreversible organ damages under severe infections. However, clinically used immunosuppressive anti-inflammatory drugs will usually disturb immune homeostasis and conversely increase the risk of infections. Regulating the balance between anti-inflammation and anti-infection is thus critical in treating certain infectious diseases. Herein, considering that hydrogen peroxide (H2O2), myeloperoxidase (MPO), and neutrophils are upregulated in the inflammatory microenvironment and closely related to the severity of appendectomy patients, an inflammatory-microenvironment-responsive nanomedicine is designed by using poly(lactic-co-glycolic) acid (PLGA) nanoparticles to load chlorine E6 (Ce6), a photosensitizer, and luminal (Lum), a chemiluminescent agent. The obtained Lum/Ce6@PLGA nanoparticles, being non-toxic within normal physiological environment, can generate cytotoxic single oxygen via bioluminescence resonance energy transfer (BRET) in the inflammatory microenvironment with upregulated H2O2 and MPO, simultaneously killing pathogens and excessive inflammatory immune cells in the lesion, without disturbing immune homeostasis. As evidenced in various clinically relevant bacterial infection models and virus-induced pneumonia, Lum/Ce6@PLGA nanoparticles appeared to be rather effective in controlling both infection and inflammation, resulting in significantly improved animal survival. Therefore, the BRET-based nanoparticles by simultaneously controlling infections and inflammation may be promising nano-therapeutics for treatment of severe infectious diseases.

17.
Talanta ; 281: 126819, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245005

RESUMEN

Multimodal biosensors with independent signaling pathways can self-calibrate and improve the reliability of disease biomarker detection. Herein, a colorimetric-fluorescent dual-mode paper-based biosensor with PAN/Fe(III)-CNOs (FPCs) as core components has been developed, which information is recognized by smartphone and naked eye. Using 1-(2-pyridylazo)-2-naphthol (PAN) as a mediator, Fe(III) is enriched on the surface of carbon nano-onions (CNOs), endowing FPCs with excellent mimetic enzyme activity and photothermal conversion ability, which allows it to output amplified colorimetric signals under laser irradiation. In addition, the complexation of PAN with Fe(III) broadens its absorption spectrum, which makes FPCs more suitable to be energy acceptors to quench fluorescence of polymer dots (Pdots), resulting in the changes of output fluorescent signal. Based on the above design, a portable colorimetric-fluorescent dual-mode biosensor is proposed for trypsin detection with Pdots as fluorescence sources and FPCs as fluorescence quenchers and nanoenzymes. This work provides a convenient way for constructing portable visual multimodal biosensors, which is expected to applied in various disease diagnosis.

18.
Angew Chem Int Ed Engl ; : e202414733, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248766

RESUMEN

Norbornadiene-based photoswitches have emerged as promising candidates for harnessing and storing solar energy, holding great promise as a viable solution to meet the growing energy demands. Despite their potential, the effectiveness of their direct photochemical conversion into the resulting quadricyclanes has room for improvement owing to (i) moderate quantum yields, (ii) poor overlap with the solar spectrum and (iii) photochemical back reactions. Herein, we present an approach to enhance the performance of such molecular solar thermal energy storage (MOST) systems through the triplet-sensitized conversion of aryl-substituted norbornadienes. Our study combines deep spectroscopic analyses, irradiation experiments, and quantum mechanical calculations to elucidate the energy transfer mechanism and inherent advantages of the resulting MOST systems. We demonstrate remarkable quantum yields using readily available sensitizers under both LED and solar light irradiation, significantly surpassing those achieved through direct excitation with photons of higher energy. In contrast to the conventional approach, light-induced back reactions of the high-energy products do not play any role, allowing quantitative switching within minutes. These results not only underscore the potential of triplet-sensitized MOST systems to leverage the high energy storage capabilities of multistate photoswitches but they might also stimulate the broader usage of sensitization strategies in photochemical energy conversion.

19.
Front Optoelectron ; 17(1): 31, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230766

RESUMEN

A series of Bi3+/Eu3+ co-doped Ca2Ta2O7 (CTO:Bi3+/Eu3+) phosphors were prepared by high-temperature solid-state method for dual-emission center optical thermometers and white light-emitting diode (WLED) device. By modulating the doping ratio of Bi3+/Eu3+ and utilizing the energy transfer from Bi3+ to Eu3+, the tunable color emission ranging from green to reddish-orange was realized. The designed CTO:0.04Bi3+/Eu3+ optical thermometers exhibit significant thermochromism, superior stability, and repeatability, with maximum sensitivities of Sa = 0.055 K-1 (at 510 K) and Sr = 1.298% K-1 (at 480 K) within the temperature range of 300-510 K, owing to the different thermal quenching behaviors between Bi3+ and Eu3+ ions. These features indicate the potential application prospects of the prepared samples in visualized thermometer or high-temperature safety marking. Furthermore, leveraging the excellent zero-thermal-quenching performance, outstanding acid/alkali resistance, and color stability of CTO:0.04Bi3+/0.16Eu3+ phosphor, a WLED device with a high Ra value of 95.3 has been realized through its combination with commercially available blue and green phosphors, thereby demonstrating the potential application of CTO:0.04Bi3+/0.16Eu3+ in near-UV pumped WLED devices.

20.
Adv Mater ; : e2408118, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39252676

RESUMEN

Fast and efficient exciton utilization is a crucial solution and highly desirable for achieving high-performance blue organic light-emitting diodes (OLEDs). However, the rate and efficiency of exciton utilization in traditional OLEDs, which employ fully closed-shell materials as emitters, are inevitably limited by spin statistical limitations and transition prohibition. Herein, a new sensitization strategy, namely doublet-sensitized fluorescence (DSF), is proposed to realize high-performance deep-blue electroluminescence. In the DSF-OLED, a doublet-emitting cerium(III) complex, Ce-2, is utilized as sensitizer for multi-resonance thermally activated delayed fluorescence emitter ν-DABNA. Experimental results reveal that holes and electrons predominantly recombine on Ce-2 to form doublet excitons, which subsequently transfer energy to the singlet state of ν-DABNA via exceptionally fast (over 108 s-1) and efficient (≈100%) Förster resonance energy transfer for deep-blue emission. Due to the circumvention of spin-flip in the DSF mechanism, near-unit exciton utilization efficiency and remarkably short exciton residence time of 1.36 µs are achieved in the proof-of-concept deep-blue DSF-OLED, which achieves a Commission Internationale de l'Eclairage coordinate of (0.13, 0.14), a high external quantum efficiency of 30.0%, and small efficiency roll-off of 14.7% at a luminance of 1000 cd m-2. The DSF device exhibits significantly improved operational stability compared with unsensitized reference device.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA