Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Adv Mater ; : e2406905, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39081118

RESUMEN

Lithium carbon dioxide (Li-CO2) batteries, noted for their high discharge voltage of approximately 2.8 V and substantial theoretical specific energy of 1876 Wh kg-1, represent a promising avenue for new energy sources and CO2 emission reduction. However, the practical application of these batteries faces significant hurdles, particularly at high current densities and over extended cycle lives, due to their complex reaction mechanisms and slow kinetics. This paper delves into the recent advancements in cathode catalysts for Li-CO2 batteries, with a specific focus on the designing philosophy from composition, geometry, and homogeneity of the catalysts to the proper test conditions and real-world application. It surveys the possible catalytic mechanisms, giving readers a brief introduction of how the energy is stored and released as well as the critical exploration of the relationship between material properties and performances. Specifically, optimization and standardization of test conditions for Li-CO2 battery research is highlighted to enhance data comparability, which is also critical to facilitate the practical application of Li-CO2 batteries. This review aims to bring up inspiration from previous work to advance the design of more effective and sustainable cathode catalysts, tailored to meet the practical demands of Li-CO2 batteries.

2.
Adv Mater ; 36(28): e2311926, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38703354

RESUMEN

Traditional lithium-ion battery (LIB) anodes, whether intercalation-type like graphite or alloying-type like silicon, employing a single lithium storage mechanism, are often limited by modest capacity or substantial volume changes. Here, the kesterite multi-metal dichalcogenide (CZTSSe) is introduced as an anode material that harnesses a conversion-alloying hybrid lithium storage mechanism. Results unveil that during the charge-discharge processes, the CZTSSe undergoes a comprehensive phase evolution, transitioning from kesterite structure to multiple dominant phases of sulfides, selenides, metals, and alloys. The involvement of multi-components facilitates electron transport and mitigates swelling stress; meanwhile, it results in formation of abundant defects and heterojunctions, allowing for increased lithium storage active sites and reduced lithium diffusion barrier. The CZTSSe delivers a high specific capacity of up to 2266 mA h g-1 at 0.1 A g-1; while, maintaining a stable output of 116 mA h g-1 after 10 000 cycles at 20 A g-1. It also demonstrates remarkable low-temperature performance, retaining 987 mA h g-1 even after 600 cycles at -40 °C. When employed in full cells, a high specific energy of 562 Wh kg-1 is achieved, rivalling many state-of-the-art LIBs. This research offers valuable insights into the design of LIB electrodes leveraging multiple lithium storage mechanisms.

3.
Small ; 20(15): e2306237, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009589

RESUMEN

Manganese-based materials are regarded as the most prospective cathode materials because of their high natural abundance, low toxicity, and high specific capacity. Nevertheless, the low conductivity, poor cycling performance, and controversial energy storage mechanisms hinder their practical application. Here, the MnS0.5Se0.5 microspheres are synthesized by a two-step hydrothermal approach and employed as cathode materials for aqueous zinc-ion batteries (AZIBs) for the first time. Interestingly, in-depth ex situ tests and electrochemical kinetic analyses reveal that MnS0.5Se0.5 is first irreversibly converted into low-crystallinity ZnMnO3 and MnOx by in situ electrooxidation (MnS0.5Se0.5-EOP) during the first charging process, and then a reversible co-insertion/extraction of H+/Zn2+ occurs in the as-obtained MnS0.5Se0.5-EOP electrode during the subsequent discharging and charging processes. Benefiting from the increased surface area, shortened ion transport path, and stable lamellar microsphere structure, the MnS0.5Se0.5-EOP electrodes deliver high reversible capacity (272.8 mAh g-1 at 0.1 A g-1), excellent rate capability (91.8 mAh g-1 at 2 A g-1), and satisfactory cyclic stability (82.1% capacity retention after 500 cycles at 1 A g-1). This study not only provides a powerful impetus for developing new types of manganese-based chalcogenides, but also puts forward a novel perspective for exploring the intrinsic mechanisms of in situ electrooxidation behavior.

4.
Chemistry ; 30(13): e202303917, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38093171

RESUMEN

Aqueous zinc-ion batteries (ZIBs) have emerged as the most promising candidate for large-scale energy storage due to their inherent safety, environmental friendliness, and cost-effectiveness. Simultaneously, the utilization of organic electrode materials with renewable resources, environmental compatibility, and diverse structures has sparked a surge in research and development of aqueous Zn-organic batteries (ZOBs). A comprehensive review is warranted to systematically present recent advancements in design principles, synthesis techniques, energy storage mechanisms, and zinc-ion storage performance of organic cathodes. In this review article, we comprehensively summarize the energy storage mechanisms employed by aqueous ZOBs. Subsequently, we categorize organic cathode materials into small-molecule compounds and high-molecular polymers respectively. Novel polymer materials such as conjugated polymers (CPs), conjugated microporous polymers (CMPs), and covalent organic frameworks (COFs) are highlighted with an overview of molecular design strategies and structural optimization based on organic cathode materials aimed at enhancing the performance of aqueous ZOBs. Finally, we discuss the challenges faced by aqueous ZOBs along with future prospects to offer insights into their practical applications.

5.
Small ; 20(22): e2308851, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38112252

RESUMEN

Vanadium oxides have aroused attention as cathode materials in aqueous zinc-ion batteries (AZIBs) due to their low cost and high safety. However, low ion diffusion and vanadium dissolution often lead to capacity decay and deteriorating stability during cycling. Herein, vanadium dioxides (VO2) nanobelts are coated with a single-atom cobalt dispersed N-doped carbon (Co-N-C) layer via a facile calcination strategy to form Co-N-C layer coated VO2 nanobelts (VO2@Co-N-C NBs) for cathodes in AZIBs. Various in-/ex situ characterizations demonstrate the interfaces between VO2 layers and Co-N-C layers can protect the VO2 NBs from collapsing, increase ion diffusion, and enhance the Zn2+ storage performance. Additional density functional theory (DFT) simulations demonstrate that Co─O─V bonds between VO2 and Co-N-C layers can enhance interfacial Zn2+ storage. Moreover, the VO2@Co-N-C NBs provided an ultrahigh capacity (418.7 mAh g-1 at 1 A g-1), outstanding long-term stability (over 8000 cycles at 20 A g-1), and superior rate performance.

6.
Adv Mater ; 35(40): e2304209, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37401825

RESUMEN

Ammonium-ion batteries, leveraging non-metallic ammonium ions, have arisen as a promising electrochemical energy storage system; however, their advancement has been hindered by the scarcity of high-performance ammonium-ion storage materials. In this study, an electrochemical phase transformation approach is proposed for the in situ synthesis of layered VOPO4 ·2H2 O (E-VOPO) with predominant growth on the (200) plane, corresponding to the tetragonal channels on the (001) layers. The findings reveal that these tetragonal in-layer channels not only furnish NH4 + storage sites but also enhance transfer kinetics by providing rapid cross-layer migration pathways. This crucial aspect has been largely overlooked in previous studies. The E-VOPO electrode exhibits exceptional ammonium-ion storage performance, including significantly increased specific capacity, enhanced rate capability, and robust cycling stability. The resulting full cell can be stably operated for 12 500 charge-discharge cycles at 2 A g-1 for over 70 days. The proposed approach offers a new strategy for meticulously engineering electrode materials with facilitated ion storage and migration, thereby paving the way for developing more efficient and sustainable energy storage systems.

7.
ChemSusChem ; 16(9): e202202358, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-36732888

RESUMEN

Organic electrode materials (OEMs) have shown enormous potential in ion batteries because of their varied structural components and adaptable construction. As a brand-new energy-storage device, rechargeable aluminum-ion batteries (RAIBs) have also received a lot of attention due to their high safety and low cost. OEMs are expected to stand out among many traditional RAIB cathode materials. However, how to improve the electrochemical performance of OEMs in RAIBs on a laboratory scale is still challenging. This work reviews and discusses the uses of conductive polymers, carbonyl compounds, imine polymers, polycyclic aromatic hydrocarbons, organic frameworks, and other organic materials as the cathodes of RAIBs, as well as energy-storage mechanisms and research progress. It is hoped that this Review can provide the design guidelines for organic cathode materials with high capacity and great stability used in aluminum-organic batteries and develop more efficient organic energy storage cathodes.

8.
Adv Mater ; 35(17): e2211527, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36727407

RESUMEN

Rechargeable aluminum-ion batteries (RAIBs) have emerged as a promising battery storage technology owing to their cost-effectiveness, operational safety, and high energy density. However, their actual capacity is substantially lower than their true capacity and their cycling stability is poor. Therefore, understanding the energy-storage mechanism may contribute to the successful design of a stable electrode material, on which the performance can be optimized. The aim of this study is to investigate AlCl4 - ions in transition metal cathode materials and mechanisms that enable for their high-energy-storage potential and low Coulombic efficiency. Results of theoretical analysis and experimental verification show that a multi-ion transport mechanism is responsible for the electrochemical behavior of the battery. The lattice distortion of CoSe2 caused by AlCl4 - ion intercalation, has a considerable effect on the initial stability of the battery. MXene as a support material reduces the size of CoSe2 growing on its surface, effectively inhibiting the lattice distortion caused by the interaction with the aluminum-anion complex, thus addressing the issues of poor reversibility, cycle instability, and low Coulombic efficiency of the battery. Hence, understanding the impact of MXene on the battery may aid in further improving the design of electrode materials.

9.
Small ; 18(44): e2204045, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36047969

RESUMEN

Bismuth (Bi)-based materials have attracted great attention as anodes in potassium ion batteries (PIBs) for their high theoretical capacity and suitable voltage range. Herein, the authors report a unique spindle-like structured Bi@N-doped carbon composite (SPB@NC) consisting of interconnected nano-Bi coated heteroatom-doped hard carbon layer via an interesting in situ carbon thermal reduction method. The special interconnected Bi nanoparticles gradually form porous structure with ample inner voids for accommodating volume variations while the N-doped carbon layer not only keeps the electrode stable, but also contributes to rapid electron/ion transfer. As a result, such a robust framework endows SPB@NC fast potassium storage with outstanding capacity of 276.5 mAh g-1  at 30 A g-1 (i.e., 1 min for discharge/charge) and durable cycling performance of 299.3 mAh g-1  at 5 A g-1  after 2000 cycles. Notably, a full cell assembled with potassium vanadate cathode is promising for practical applications. A series of ex situ techniques reveals the in-depth potassium storage mechanism and kinetics reactions. This work illuminates helpful insights into Bi-based anodes for PIBs.

10.
Small Methods ; 6(9): e2200597, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35853247

RESUMEN

Zinc ion batteries (ZIBs) have been gradually developed in recent years due to their abundant resources, low cost, and environmental friendliness. Therefore, ZIBs have received a great deal of attention from researchers, which are considered as the next generation of portable energy storage systems. However, poor overall performance of ZIBs restricts their development, which is attributed to zinc dendrites and a series of side reactions. Constructing 3D zinc anodes has proven to be an effective way to significantly improve their electrochemical performance. In this review, the challenges of zinc anodes in ZIBs, including zinc dendrites, hydrogen evolution and corrosion, as well as passivation, are comprehensively summarized and the energy storage mechanisms of the zinc anodes and 3D zinc anodes are discussed. 3D zinc anodes with different structures including fiberous, porous, ridge-like structures, plated zinc anodes on different substrates and other 3D zinc anodes, are subsequently discussed in detail. Finally, emerging opportunities and perspectives on the material design of 3D zinc anodes are highlighted and challenges that need to be solved in future practical applications are discussed, hopefully illuminating the way forward for the development of ZIBs.

11.
Materials (Basel) ; 15(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35744314

RESUMEN

To investigate the alternatives to lithium-ion batteries, potassium-ion batteries have attracted considerable interest due to the cost-efficiency of potassium resources and the relatively lower standard redox potential of K+/K. Among various alternative anode materials, hard carbon has the advantages of extensive resources, low cost, and environmental protection. In the present study, we synthesize a nitrogen-doping hard-carbon-microsphere (N-SHC) material as an anode for potassium-ion batteries. N-SHC delivers a high reversible capacity of 248 mAh g-1 and a promoted rate performance (93 mAh g-1 at 2 A g-1). Additionally, the nitrogen-doping N-SHC material also exhibits superior cycling long-term stability, where the N-SHC electrode maintains a high reversible capacity at 200 mAh g-1 with a capacity retention of 81% after 600 cycles. DFT calculations assess the change in K ions' absorption energy and diffusion barriers at different N-doping effects. Compared with an original hard-carbon material, pyridinic-N and pyrrolic-N defects introduced by N-doping display a positive effect on both K ions' absorption and diffusion.

12.
Small ; 18(28): e2201011, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35710875

RESUMEN

By virtue of low cost, eco-friendliness, competitive gravimetric energy density, and intrinsic safety, more and more attention has increasingly focused on aqueous zinc ion batteries (AZIBs) as a promising alternative for scalable energy storage. However, plagued by a complex interfacial process, sluggish dynamics, lability of electrodes and electrolytes, insufficient energy density, and poor cycle life heavily restrict practical applications of AZIBs, indicating that profound understandings on cathode storage chemistry are necessarily needed. Hence, this paper comprehensively summarizes recent advance in cathodes with critical insight on the energy storage mechanism. Furthermore, the issues and challenges for high-performance cathodes are meticulously explored, presenting inspiring structural engineering and modification strategies. Finally, rational evaluations on representative cathodes are rendered, suggesting the potential development direction of AZIBs.


Asunto(s)
Zinc , Electrodos
13.
Small ; 18(43): e2107368, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35315576

RESUMEN

Metal-sulfur batteries exhibit great potential as next-generation rechargeable batteries due to the low sulfur cost and high theoretical energy density. Sodium-sulfur (Na-S) batteries present higher feasibility of long-term development than lithium-sulfur (Li-S) batteries in technoeconomic and geopolitical terms. Both lithium and sodium are alkali metal elements with body-centered cubic structures, leading to similar physical and chemical properties and exposing similar issues when employed as the anode in metal-sulfur batteries. Indeed, some inspiration for mechanism researches and strategies in Na-S systems comes from the more mature Li-S systems. However, the dissimilarities in microscopic characteristics determine that Na-S is not a direct Li-S analogue. Herein, the daunting challenges derived by the differences of fundamental characteristics in Na-S and Li-S systems are discussed. And the corresponding strategies in Na-S batteries are reviewed. Finally, general conclusions and perspectives toward the research direction are presented based on the dissimilarities between both systems. This review attempts to provide important insights to facilitate the assimilation of the available knowledge on Li-S systems for accelerating the development of Na-S batteries on the basis of their dissimilarities.

14.
Adv Mater ; 34(52): e2200999, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35358341

RESUMEN

As a class of porous materials with crystal lattices, metal-organic frameworks (MOFs), featuring outstanding specific surface area, tunable functionality, and versatile structures, have attracted huge attention in the past two decades. Since the first conductive MOF is successfully synthesized in 2009, considerable progress has been achieved for the development of conductive MOFs, allowing their use in diverse applications for electrochemical energy storage. Among those applications, supercapacitors have received great interest because of their high power density, fast charging ability, and excellent cycling stability. Here, the efforts hitherto devoted to the synthesis and design of conductive MOFs and their auspicious capacitive performance are summarized. Using conductive MOFs as a unique platform medium, the electronic and molecular aspects of the energy storage mechanism in supercapacitors with MOF electrodes are discussed, highlighting the advantages and limitations to inspire new ideas for the development of conductive MOFs for supercapacitors.

15.
Small Methods ; 5(12): e2101130, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34928006

RESUMEN

The advancement of potassium ion batteries (PIBs) stimulated by the dearth of lithium resources is accelerating. Major progresses on the electrochemical properties are based on the optimization of electrode materials, electrolytes, and other components. More significantly, the prerequisites for optimizing these key compositions are in-depth and comprehensive exploration of electrochemical reaction processes, including the evolution of morphology and structure, phase transition, interface behaviors, and K+ movement, etc. As a result, the obtained K+ storage mechanism via analyzing aforementioned reaction processes sheds light on furthering practical application of PIBs. Typical electrochemical analysis methods are capable of obtaining physical and chemical characteristics. The advent of in situ electrochemical measurements enables dynamic observation and monitoring, thereby gaining extensive insights into the intricate mechanism of capacity degradation and interface kinetics. By coupling with these powerful electrochemical characterization techniques, inspiring works in PIBs will burgeon into wide realms of energy storage fields. In this review, some typical electroanalytical tests and in situ hyphenated measurements are described with the main concentration on how these techniques play a role in investigating the potassium storage mechanism for PIBs and achieving encouraging results.

16.
Nanomaterials (Basel) ; 10(12)2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33297598

RESUMEN

Electrolyte composition is a crucial factor determining the capacitive properties of a supercapacitor device. However, its complex influence on the energy storage mechanisms has not yet been fully elucidated. For this purpose, in this study, the role of three different types of electrolytes based on a propylene carbonate (PC) solution containing tetrabutylammonium perchlorate (TBAClO4), lithium perchlorate (LiClO4) and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide (N1114TFSI) ionic liquid on vertically-oriented graphene nanosheet electrodes has been investigated. Herein, in situ electrochemical quartz crystal microbalance (EQCM) and its coupling with electrochemical impedance spectroscopy (EIS), known as ac-electrogravimetry, have allowed the dynamic aspects of the (co)electroadsorption processes at the electrode-electrolyte interface to be examined. A major contribution of ClO4- anions (TBAClO4) was evidenced, whereas in the PC/N1114TFSI mixture (50:50 wt%) both anions (TFSI-) and cations (N1114+) were symmetrically exchanged during cycling. In the particular case of LiClO4, solvation of Li+ cations in PC was involved, affecting the kinetics of electroadsorption. These results demonstrate the suitability of dynamic electrogravimetric methods to unveil the interfacial exchange properties of mobile species for the conception of new high performance energy storage devices.

17.
Adv Sci (Weinh) ; 7(20): 2001681, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33101869

RESUMEN

Potassium-ion hybrid capacitors (PIHCs) have attracted tremendous attention because their energy density is comparable to that of lithium-ion batteries, whose power density and cyclability are similar to those of supercapacitors. Herein, a pomegranate-like graphene-confined cucurbit[6]uril-derived nitrogen-doped carbon (CBC@G) with ultra-high nitrogen-doping level (15.5 at%) and unique supermesopore-macropores interconnected graphene network is synthesized. The carbonization mechanism of cucurbit[6]uril is verified by an in situ TG-IR technology. In a K half-cell configuration, CBC@G anode demonstrates a superior reversible capacity (349.1 mA h g-1 at 0.1 C) as well as outstanding rate capability and cyclability. Moreover, systematic in situ/ex situ characterizations, and theory calculations are carried out to reveal the origin of the superior electrochemical performances of CBC@G. Consequently, PIHCs constructed with CBC@G anode and KOH-activated cucurbit[6]uril-derived nitrogen-doped carbon cathode demonstrate ultra-high energy/power density (172 Wh kg-1/22 kW kg-1) and extraordinary cyclability (81.5% capacity retention for 5000 cycles at 5 A g-1). This work opens up a new application field for cucurbit[6]uril and provides an alternative avenue for the exploitation of high-performance PIHCs.

18.
Adv Sci (Weinh) ; 7(13): 2000083, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32670757

RESUMEN

Rechargeable aqueous zinc-ion batteries (ZIBs) show promise for use in energy storage. However, the development of ZIBs has been plagued by the limited cathode candidates, which usually show low capacity or poor cycling performance. Here, a reversible Zn//(Na,Mn)V8O20·nH2O system is reported, the introduction of manganese (Mn) ions in NaV8O20 to form (Na,Mn)V8O20 exhibits an outstanding electrochemical performance with a capacity of 377 mA h g-1 at a current density of 0.1 A g-1. Through experimental and theoretical results, it is discovered that the outstanding performance of (Na,Mn)V8O20·nH2O is ascribed to the Mn2+/Mn3+-induced high electrical conductivity and Na+-induced fast migration of Zn2+. Other cathode materials derived from (Na,Mn)V8O20·nH2O by substituting Mn with Fe, Co, Ni, Ca, and K are explored to confirm the unique advantages of transition metal ions. With an increase in Mn content in NaV8O20, (Na0.33,Mn0.65)V8O20 ·nH2O can deliver a reversible capacity of 150 mA h g-1 and a capacity retention of 99% after 1000 cycles, which may open new opportunities for the development of high-performance aqueous ZIBs.

19.
Angew Chem Int Ed Engl ; 59(48): 21293-21303, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-32692428

RESUMEN

Organic electroactive compounds are attractive to serve as the cathode materials of aqueous zinc-ion batteries (ZIBs) because of their resource renewability, environmentally friendliness and structural diversity. Up to now, various organic electrode materials have been developed and different redox mechanisms are observed in aqueous Zn/organic battery systems. In this Minireview, we present the recent developments in the energy storage mechanisms and design of the organic electrode materials of aqueous ZIBs, including carbonyl compounds, imine compounds, conductive polymers, nitronyl nitroxides, organosulfur polymers and triphenylamine derivatives. Furthermore, we highlight the design strategies to improve their electrochemical performance in the aspects of specific capacity, output voltage, cycle life and rate capability. Finally, we discuss the challenges and future perspectives of aqueous Zn/organic batteries.

20.
Angew Chem Int Ed Engl ; 58(46): 16358-16367, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31050086

RESUMEN

Aqueous zinc-ion batteries (ZIBs) are considered promising energy storage devices for large-scale energy storage systems as a consequence of their safety benefits and low cost. In recent years, various vanadium-based compounds have been widely developed to serve as the cathodes of aqueous ZIBs because of their low cost and high theoretical capacity. Furthermore, different energy storage mechanisms are observed in ZIBs based on vanadium-based cathodes. In this Minireview, we present a comprehensive overview of the energy storage mechanisms and structural features of various vanadium-based cathodes in ZIBs. Furthermore, we discuss strategies for improving the electrochemical performance of vanadium-based cathodes; including, insertion of metal ions, adjustment of structural water, selection of conductive additives, and optimization of electrolytes. Finally, this Minireview offers insight into potential future directions in the design of innovative vanadium-based electrode materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA