Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2403197, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946671

RESUMEN

Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.

2.
Molecules ; 29(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38893580

RESUMEN

In the present work, we investigate the potential of modified barium titanate (BaTiO3), an inexpensive perovskite oxide derived from earth-abundant precursors, for developing efficient water oxidation electrocatalysts using first-principles calculations. Based on our calculations, Rh doping is a way of making BaTiO3 absorb more light and have less overpotential needed for water to oxidize. It has been shown that a TiO2-terminated BaTiO3 (001) surface is more promising from the point of view of its use as a catalyst. Rh doping expands the spectrum of absorbed light to the entire visible range. The aqueous environment significantly affects the ability of Rh-doped BaTiO3 to absorb solar radiation. After Ti→Rh replacement, the doping ion can take over part of the electron density from neighboring oxygen ions. As a result, during the water oxidation reaction, rhodium ions can be in an intermediate oxidation state between 3+ and 4+. This affects the adsorption energy of reaction intermediates on the catalyst's surface, reducing the overpotential value.

3.
Materials (Basel) ; 17(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38591436

RESUMEN

Owing to their rich structural chemistry and unique electrochemical properties, vanadium-based materials, especially the low-dimensional ones, are showing promising applications in energy storage and conversion. In this invited review, low-dimensional vanadium-based materials (including 0D, 1D, and 2D nanostructures of vanadium-containing oxides, polyanions, and mixed-polyanions) and their emerging applications in advanced alkali-metal-ion batteries (e.g., Li-ion, Na-ion, and K-ion batteries) are systematically summarized. Future development trends, challenges, solutions, and perspectives are discussed and proposed. Mechanisms and new insights are also given for the development of advanced vanadium-based materials in high-performance energy storage and conversion.

4.
Adv Mater ; 36(21): e2312685, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38618925

RESUMEN

Mn-based mullite oxides AMn2O5 (A = lanthanide, Y, Bi) is a novel type of ternary catalyst in terms of their electronic and geometric structures. The coexistence of pyramid Mn3+-O and octahedral Mn4+-O makes the d-orbital selectively active toward various catalytic reactions. The alternative edge- and corner-sharing stacking configuration constructs the confined active sites and abundant active oxygen species. As a result, they tend to show superior catalytic behaviors and thus gain great attention in environmental treatment and energy conversion and storage. In environmental applications, Mn-based mullites have been demonstrated to be highly active toward low-temperature oxidization of CO, NO, volatile organic compounds (VOCs), etc. Recent research further shows that mullites decompose O3 and ozonize VOCs from -20 °C to room temperature. Moreover, mullites enhance oxygen reduction reactions (ORR) and sulfur reduction reactions (SRR), critical kinetic steps in air-battery and Li-S batteries, respectively. Their distinctive structures also facilitate applications in gas-sensitive sensing, ionic conduction, high mobility dielectrics, oxygen storage, piezoelectricity, dehydration, H2O2 decomposition, and beyond. A comprehensive review from basic physicochemical properties to application certainly not only gains a full picture of mullite oxides but also provides new insights into designing heterogeneous catalysts.

5.
Adv Sci (Weinh) ; 11(22): e2308040, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581142

RESUMEN

The shortage and unevenness of fossil energy sources are affecting the development and progress of human civilization. The technology of efficiently converting material resources into energy for utilization and storage is attracting the attention of researchers. Environmentally friendly biomass materials are a treasure to drive the development of new-generation energy sources. Electrochemical theory is used to efficiently convert the chemical energy of chemical substances into electrical energy. In recent years, significant progress has been made in the development of green and economical electrocatalysts for oxygen reduction reaction (ORR). Although many reviews have been reported around the application of biomass-derived catalytically active carbon (CAC) catalysts in ORR, these reviews have only selected a single/partial topic (including synthesis and preparation of catalysts from different sources, structural optimization, or performance enhancement methods based on CAC catalysts, and application of biomass-derived CACs) for discussion. There is no review that systematically addresses the latest progress in the synthesis, performance enhancement, and applications related to biomass-derived CAC-based oxygen reduction electrocatalysts synchronously. This review fills the gap by providing a timely and comprehensive review and summary from the following sections: the exposition of the basic catalytic principles of ORR, the summary of the chemical composition and structural properties of various types of biomass, the analysis of traditional and the latest popular biomass-derived CAC synthesis methods and optimization strategies, and the summary of the practical applications of biomass-derived CAC-based oxidative reduction electrocatalysts. This review provides a comprehensive summary of the latest advances to provide research directions and design ideas for the development of catalyst synthesis/optimization and contributes to the industrialization of biomass-derived CAC electrocatalysis and electric energy storage.

6.
Adv Colloid Interface Sci ; 327: 103144, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581720

RESUMEN

As the world strives to achieve a sustainable future, the exploration of alternative and renewable raw materials for energy storage and energy conversion has gained significant attention. A growing trend on "Waste to Energy" approach has attained prominence. Accordingly, chicken eggshells, a residual from poultry industry, have emerged as a promising candidate due to their abundant availability, low cost, and unique physical and chemical properties. This review article presents an overview of recent advancements in utilizing eggshell waste for energy storage and energy conversion applications. It discusses the transformation of eggshells usage into functional materials, along with their performance in various energy-related applications. The potential of eggshell-based materials in improving energy efficiency and reducing environmental impact is highlighted, providing insights into the future prospects of this sustainable resource.

7.
Heliyon ; 10(5): e27127, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38439833

RESUMEN

The recycling of key components in waste lithium-ion batteries (LIBs) is an important route to make up for the shortage of battery materials. Metal separation and purification is an important step. It is of great significance to propose an efficient and green separation technology. In this paper, an electrochemical precipitation method was applied to metal separation from spent LiNi0.5Mn1.5O4 cathode material. The Li and metal elements were effective separated and the precipitates were then used as precursor to synthesize high-performance R-O3-NaNFM cathode material for sodium-ion batteries. The R-O3-NaNFM exhibits excellent electrochemical cycling stability. The capacity retains 71.3 mAh g-1 after a long-term cycling of 200 times at 1 C. This method offers a referable strategy of the recycling for the waste cathode material in spent LIBs.

8.
Adv Mater ; 36(24): e2313152, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38491731

RESUMEN

Zinc-based batteries (ZBBs) have demonstrated considerable potential among secondary batteries, attributing to their advantages including good safety, environmental friendliness, and high energy density. However, ZBBs still suffer from issues such as the formation of zinc dendrites, occurrence of side reactions, retardation of reaction kinetics, and shuttle effects, posing a great challenge for practical applications. As promising porous materials, covalent organic frameworks (COFs) and their derivatives have rigid skeletons, ordered structures, and permanent porosity, which endow them with great potential for application in ZBBs. This review, therefore, provides a systematic overview detailing on COFs structure pertaining to electrochemical performance of ZBBs, following an in depth discussion of the challenges faced by ZBBs, which includes dendrites and side reactions at the anode, as well as dissolution, structural change, slow kinetics, and shuttle effect at the cathode. Then, the structural advantages of COF-correlated materials and their roles in various ZBBs are highlighted. Finally, the challenges of COF-correlated materials in ZBBs are outlined and an outlook on the future development of COF-correlated materials for ZBBs is provided. The review would serve as a valuable reference for further research into the utilization of COF-correlated materials in ZBBs.

9.
ChemSusChem ; 17(14): e202301779, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38416074

RESUMEN

Given the growing environmental and energy problems, developing clean, renewable electrochemical energy storage devices is of great interest. Zn-air batteries (ZABs) have broad prospects in energy storage because of their high specific capacity and environmental friendliness. The unavailability of cheap air electrode materials and effective and stable oxygen electrocatalysts to catalyze air electrodes are main barriers to large-scale implementation of ZABs. Due to the abundant biomass resources, self-doped heteroatoms, and unique pore structure, biomass-derived catalytically active carbon materials (CACs) have great potential to prepare carbon-based catalysts and porous electrodes with excellent performance for ZABs. This paper reviews the research progress of biomass-derived CACs applied to ZABs air electrodes. Specifically, the principle of ZABs and the source and preparation method of biomass-derived CACs are introduced. To prepare efficient biomass-based oxygen electrocatalysts, heteroatom doping and metal modification were introduced to improve the efficiency and stability of carbon materials. Finally, the effects of electron transfer number and H2O2 yield in ORR on the performance of ZABs were evaluated. This review aims to deepen the understanding of the advantages and challenges of biomass-derived CACs in the air electrodes of ZABs, promote more comprehensive research on biomass resources, and accelerate the commercial application of ZABs.

10.
Nanomaterials (Basel) ; 13(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37764640

RESUMEN

Zinc-air batteries (ZABs) have garnered significant interest as a viable substitute for lithium-ion batteries (LIBs), primarily due to their impressive energy density and low cost. However, the efficacy of zinc-air batteries is heavily dependent on electrocatalysts, which play a vital role in enhancing reaction efficiency and stability. This scholarly review article highlights the crucial significance of electrocatalysts in zinc-air batteries and explores the rationale behind employing Fe-Co-Ni-Zn-based metal-organic framework (MOF)-derived hybrid materials as potential electrocatalysts. These MOF-derived electrocatalysts offer advantages such as abundancy, high catalytic activity, tunability, and structural stability. Various synthesis methods and characterization techniques are employed to optimize the properties of MOF-derived electrocatalysts. Such electrocatalysts exhibit excellent catalytic activity, stability, and selectivity, making them suitable for applications in ZABs. Furthermore, they demonstrate notable capabilities in the realm of ZABs, encompassing elevated energy density, efficacy, and prolonged longevity. It is imperative to continue extensively researching and developing this area to propel the advancement of ZAB technology forward and pave the way for its practical implementation across diverse fields.

11.
Angew Chem Int Ed Engl ; 62(52): e202312656, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37702372

RESUMEN

Advanced electrocatalysts can enable the widespread implementation of clean energy technologies. This paper reviews an emerging class of electrocatalytic materials comprising holey two-dimensional free-standing Pt-group metal (h-2D-PGM) nanosheets, which are categorically challenging to synthesize but inherently rich in all the qualities necessary to counter the kinetic and thermodynamic challenges of an electrochemical conversion process with high catalytic efficiency and stability. Although the 2D anisotropic growth of typical nonlayered metal crystals has succeeded and partly improved their atom-utilization efficiency, regularly distributed in-planar porosity can further optimize three critical factors that govern efficient electrocatalysis process: mass diffusion, electron transfer, and surface reactivity. However, producing such advanced morphological features within h-2D-PGMs is difficult unless they are specially engineered using approaches such as templating or kinetic ramification during 2D growth or controlled etching of preformed 2D-PGM solids. Therefore, this review highlighting the successful fabrication of various porous PGM nanosheets and their electrocatalytic benefits involving smart nanoscale features could inspire next-generation scientific and technological innovations toward securing a sustainable energy future.

12.
Adv Colloid Interface Sci ; 318: 102958, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37453344

RESUMEN

Complex structures and morphologies in nature endow materials with unexpected properties and extraordinary functions. Biotemplating is an emerging strategy for replicating nature structures to obtain materials with unique morphologies and improved properties. Recently, efforts have been made to use bio-inspired species as a template for producing morphology-controllable catalysts. Fundamental information, along with recent advances in biotemplate metal-based catalysts are presented in this review through discussions of various structures and biotemplates employed for catalyst preparation. This review also outlines the recent progress on preparation routes of biotemplate catalysts and discusses how the properties and structures of these templates play a crucial role in the final performance of metal-based catalysts. Additionally, the application of bio-based metal and metal oxide catalysts is highlighted for various key energy and environmental technologies, including photocatalysis, fuel cells, and lithium batteries. Biotemplate metal-based catalysts display high efficiency in several energy and environmental systems. Note that this review provides guidance for further research in this direction.

13.
Materials (Basel) ; 16(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36676449

RESUMEN

The leakage behavior of ferroelectric film has an important effect on energy storage characteristics. Understanding and controlling the leakage mechanism of ferroelectric film at different temperatures can effectively improve its wide-temperature storage performance. Here, the structures of a 1 mol% SiO2-doped BaZr0.35Ti0.65O3 (BZTS) layer sandwiched between two undoped BaZr0.35Ti0.65O3 (BZT35) layers was demonstrated, and the leakage mechanism was analyzed compared with BZT35 and BZTS single-layer film. It was found that interface-limited conduction of Schottky (S) emission and the Fowler-Nordheim (F-N) tunneling existing in BZT35 and BZTS films under high temperature and a high electric field are the main source of the increase of leakage current and the decrease of energy storage efficiency at high temperature. Only an ohmic conductive mechanism exists in the whole temperature range of BZT35/BZTS/BZT35(1:1:1) sandwich structure films, indicating that sandwich multilayer films can effectively simulate the occurrence of interface-limited conductive mechanisms and mention the energy storage characteristics under high temperature.

14.
Small ; 19(17): e2207181, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36693792

RESUMEN

Carbon-based quantum dots (QDs) have emerged as a fascinating class of advanced materials with a unique combination of optoelectronic, biocompatible, and catalytic characteristics, apt for a plethora of applications ranging from electronic to photoelectrochemical devices. Recent research works have established carbon-based QDs for those frontline applications through improvements in materials design, processing, and device stability. This review broadly presents the recent progress in the synthesis of carbon-based QDs, including carbon QDs, graphene QDs, graphitic carbon nitride QDs and their heterostructures, as well as their salient applications. The synthesis methods of carbon-based QDs are first introduced, followed by an extensive discussion of the dependence of the device performance on the intrinsic properties and nanostructures of carbon-based QDs, aiming to present the general strategies for device designing with optimal performance. Furthermore, diverse applications of carbon-based QDs are presented, with an emphasis on the relationship between band alignment, charge transfer, and performance improvement. Among the applications discussed in this review, much focus is given to photo and electrocatalytic, energy storage and conversion, and bioapplications, which pose a grand challenge for rational materials and device designs. Finally, a summary is presented, and existing challenges and future directions are elaborated.

15.
Adv Sci (Weinh) ; 10(5): e2205726, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36538733

RESUMEN

A process accumulated record solar to hydrogen (STH) conversion efficiency of 8% is achieved on the Cu2 ZnSnS4 -BiVO4 tandem cell by the synergistic coupling effect of solar thermal and photoelectrochemical (PEC) water splitting with the dynamic balance of solar energy storage and conversion of the greenhouse system. This is the first report of a Cu2 ZnSnS4 -BiVO4 tandem cell with a high unbiased STH efficiency of over 8% for solar water splitting due to the greenhouse device system. The greenhouse acts as a solar thermal energy storage cell, which absorbs infrared solar light and storage as thermal energy with the solar light illumination time, while thermoelectric device (TD) converts thermal energy into electric power, electric power is also recycled and added onto Cu2 ZnSnS4 -BiVO4 tandem cell for enhanced overall water splitting. Finally, the solar water splitting properties of the TD-Cu2 ZnSnS4 -BiVO4 integrated tandem cell in pure natural seawater are demonstrated, and a champion STH efficiency of 2.46% is presented, while a large area (25 cm2 ) TD-Cu2 ZnSnS4 -BiVO4 integrated tandem device with superior long-term stability is investigated for 1 week, which provides new insight into photoelectrochemical solar water splitting devices.

16.
Front Chem ; 10: 1089708, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569964

RESUMEN

Cerium dioxide (CeO2, ceria) has long been regarded as one of the key materials in modern catalysis, both as a support and as a catalyst itself. Apart from its well-established use (three-way catalysts and diesel engines), CeO2 has been widely used as a cocatalyst/catalyst in energy conversion and storage applications. The importance stems from the oxygen storage capacity of ceria, which allows it to release oxygen under reducing conditions and to store oxygen by filling oxygen vacancies under oxidizing conditions. However, the nature of the Ce active site remains not well understood because the degree of participation of f electrons in catalytic reactions is not clear in the case of the heavy dependence of catalysis theory on localized d orbitals at the Fermi energy E F . This review focuses on the catalytic applications in energy conversion and storage of CeO2-based nanostructures and discusses the mechanisms for several typical catalytic reactions from the perspectives of electronic properties of CeO2-based nanostructures. Defect engineering is also summarized to better understand the relationship between catalytic performance and electronic properties. Finally, the challenges and prospects of designing high efficiency CeO2-based catalysts in energy storage and conversion have been emphasized.

17.
Heliyon ; 8(12): e12145, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36561664

RESUMEN

Spinel LiMn2O4 cathode material was obtained by a recalcination treatment, which exhibits excellent crystallization and electrochemical performance. A series of test and analysis results revealed that the performance enhancement of as-prepared sample is related to the crystal structure, morphology and electrochemical properties. Owing to the recalcination treatment, the spinel LiMn2O4 presents a truncated-octahedral morphology with selective growth of the (110) and (100) crystal planes, which would effectively inhibit manganese dissolution. Moreover, the optimized sample exhibits a better crystallinity and electrochemical reversibility than that of pristine sample, which can provide a faster Li ion de-intercalation/intercalation kinetics. Hence, the spinel LiMn2O4 cathode material delivers a high initial discharge capacity of 112.3 mAh·g-1 with a good capacity retention of 90.3% after 500 cycles and an excellent rate performance. This study constructed a facile and meaningful method to prepare spinel LiMn2O4 cathode material, which may facilitate the development of lithium-ion batteries.

18.
Nanomicro Lett ; 15(1): 6, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36472760

RESUMEN

As a flourishing member of the two-dimensional (2D) nanomaterial family, MXenes have shown great potential in various research areas. In recent years, the continued growth of interest in MXene derivatives, 2D transition metal borides (MBenes), has contributed to the emergence of this 2D material as a latecomer. Due to the excellent electrical conductivity, mechanical properties and electrical properties, thus MBenes attract more researchers' interest. Extensive experimental and theoretical studies have shown that they have exciting energy conversion and electrochemical storage potential. However, a comprehensive and systematic review of MBenes applications has not been available so far. For this reason, we present a comprehensive summary of recent advances in MBenes research. We started by summarizing the latest fabrication routes and excellent properties of MBenes. The focus will then turn to their exciting potential for energy storage and conversion. Finally, a brief summary of the challenges and opportunities for MBenes in future practical applications is presented.

19.
Front Chem ; 10: 1018461, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247659

RESUMEN

Rechargeable Zn-based batteries (RZBs) have garnered a great interest and are thought to be among the most promising options for next-generation energy storage technologies due to their low price, high levels of safety, adequate energy density and environmental friendliness. However, dendrite formation during stripping/plating prevents rechargeable zinc-based batteries from being used in real-world applications. Dendrite formation is still a concern, despite the fact that inhibitory strategies have been put up recently to eliminate the harmful effects of zinc dendrites. Thus, in order to direct the strategies for inhibiting zinc dendrite growth, it is vital to understand the formation mechanism of zinc dendrites. Hence, for the practical application of zinc-based batteries, is essential to use techniques that effectively prevent the creation and growth of zinc dendrites. The development and growth principles of zinc dendrites are first made clear in this review. The recent advances of solutions to the zinc dendrite problem are then discussed, including strategies to prevent dendrite growth and subsequent creation as much as possible, reduce the negative impacts of dendrites, and create dendrite-free deposition processes. Finally, the challenges and perspective for the development of zinc-based batteries are discussed.

20.
Molecules ; 27(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36080165

RESUMEN

Layered vanadium-based materials are considered to be great potential electrode materials for aqueous Zn-ion batteries (AZIBs). The improvement of the electrochemical properties of vanadium-based materials is a hot research topic but still a challenge. Herein, a composite of Zn-ion pre-intercalated V2O5·nH2O combined with reduced graphene oxide (ZnVOH/rGO) is synthesized by a facile hydrothermal method and it shows improved Zn-ion storage. ZnVOH/rGO delivers a capacity of 325 mAh·g-1 at 0.1 A·g-1, and this value can still reach 210 mAh·g-1 after 100 cycles. Additionally, it exhibits 196 mAh·g-1 and keeps 161 mAh·g-1 after 1200 cycles at 4 A·g-1. The achieved performances are much higher than that of ZnVOH and VOH. All results reveal that Zn2+ as "pillars" expands the interlayer distance of VOH and facilitates the fast kinetics, and rGO improves the electron flow. They both stabilize the structure and enhance efficient Zn2+ migration. All findings demonstrate ZnVOH/rGO's potential as a perspective cathode material for AZIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA