RESUMEN
We report herein an enantioselective palladium-catalyzed Heck-Matsuda reaction for the desymmetrization of N-protected 2,5-dihydro-1H-pyrroles with aryldiazonium salts, using the chiral N,N-ligand (S)-PyraBox. This strategy has allowed straightforward access to a diversity of 4-aryl-γ-lactams via Heck arylation followed by a sequential Jones oxidation. The overall method displays a broad scope and good enantioselectivity, favoring the (R) enantiomer. The applicability of the protocol is highlighted by the efficient enantioselective syntheses of the selective phosphodiesterase-4-inhibitor rolipram and the commercial drug baclofen as hydrochloride.
RESUMEN
The males-produced pheromone blend of the Mormidea v-luteum (Hemiptera, Pentatomidae) consists in two isomers of zingiberenol (1) and three of murgantiol (2). While the absolute configuration of the zingiberenol isomers has been described, the configurations of the murgantiol isomers remained unexplored. So, our objective was to identify the absolute configuration of the murgantiol isomers (2 a-c) in the pheromone blend. To achieve this, we initially performed dehydration of the natural extract followed by enantiomeric resolution and, as a result, the three isomers was identified as (4R,1'S)-murgantiol. By leveraging the fixed cis and trans relationships among all pheromone components, we established the configuration at C-1 for isomers 2 a and 2 b is S, while that of 2 c is R. Finally, employing microchemical Sharples asymmetric dihydroxylation and epoxide ring closure, we determined the absolute configuration of the epoxide ring. Consequently, the natural isomers 2 a, 2 b, and 2 c were identified as (1S,4R,1'S,4'R)-, (1S,4R,1'S,4'S)-, and (1R,4R,1'S,4'S)-murgantiol, respectively.
Asunto(s)
Hemípteros , Heterópteros , Oryza , Sesquiterpenos , Masculino , Animales , Feromonas , Estereoisomerismo , Compuestos EpoxiRESUMEN
Alzheimer's disease is a global health problem due to the scarcity of acetylcholinesterase inhibitors, the basis for symptomatic treatment of this disease; this requires new approaches to drug discovery. In this study, we investigated the chemical composition and anticholinesterase activity of Eugenia valvata McVaugt (Myrtaceae) collected in southern Ecuador, which was obtained as an essential oil (EO) with a yield of 0.124 ± 0.03% (w/w); as a result of the chemical composition analysis, a total of 58 organic compounds were identified-representing 95.91% of the total volatile compounds-using a stationary phase based on 5% phenyl-methylpolysiloxane, as analyzed via gas chromatography coupled to mass spectrometry (GC-MS) and flame ionization detection (GC-FID). The main groups were hydrocarbon sesquiterpenes (37.43%), oxygenated sesquiterpenes (31.08%), hydrocarbon monoterpenes (24.14%), oxygenated monoterpenes (0.20%), and other compounds (3.058%). Samples were characterized by the following compounds: α-pinene (22.70%), α-humulene (17.20%), (E)-caryophyllene (6.02%), citronellyl pentanoate (5.76%), 7-epi-α-eudesmol (4.34%) and 5-iso-cedranol (3.64%); this research was complemented with an enantioselective analysis carried out using 2,3-diethyl-6-tert-butyldimethylsilyl-ß-cyclodextrin as a stationary phase chiral selector. As a result, α-pinene, limonene, and α-cadinene enantiomers were identified; finally, in the search for new active principles, the EO reported strong anticholinesterase activity with an IC50 of 53.08 ± 1.13 µg/mL, making it a promising candidate for future studies of Alzheimer's disease.
Asunto(s)
Enfermedad de Alzheimer , Eugenia , Aceites Volátiles , Sesquiterpenos , Aceites Volátiles/química , Ecuador , Acetilcolinesterasa , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/análisis , Cromatografía de Gases y Espectrometría de Masas , Monoterpenos Bicíclicos/análisis , Sesquiterpenos/química , Monoterpenos/químicaRESUMEN
The present study describes the chemical and enantiomeric composition of a new essential oil, distilled from the dry leaves of Gynoxys buxifolia (Kunth) Cass. The chemical analysis was conducted by GC-MS and GC-FID, on two orthogonal capillary columns. A total of 72 compounds were detected and quantified with at least one column, corresponding to about 85% by weight of the whole oil mass. Of the 72 components, 70 were identified by comparing the respective linear retention indices and mass spectra with data from the literature, whereas the two main constituents were identified by preparative purification and NMR experiments. The quantitative analysis was carried out calculating the relative response factor of each compound according to their combustion enthalpy. The major constituents of the EO (≥3%) were: furanoeremophilane (31.3-28.3%), bakkenolide A (17.6-16.3%), caryophyllene oxide (6.0-5.8%), and (E)-ß-caryophyllene (4.4%). Additionally, the hydrolate was also analyzed with respect to the dissolved organic phase. About 40.7-43.4 mg/100 mL of organic compounds was detected in solution, of which p-vinylguaiacol was the main component (25.4-29.9 mg/100 mL). Finally, the enantioselective analysis of some chiral terpenes was carried out, with a capillary column based on ß-cyclodextrin chiral stationary phase. In this analysis, (1S,5S)-(-)-α-pinene, (1S,5S)-(-)-ß-pinene, (S)-(+)-α-phellandrene, (S)-(+)-ß-phellandrene, and (S)-(-)-terpinen-4-ol were detected as enantiomerically pure, whereas (S)-(-)-sabinene showed an enantiomeric excess of 69.2%. The essential oil described in the present study is a good source of two uncommon volatile compounds: furanoeremophilane and bakkenolide A. The former lacks bioactivity information and deserves further investigation, whereas the latter is a promising selective anticancer product.
RESUMEN
A series of amino acid-derived 1,2,3-triazoles presenting the amino acid residue and the benzazole fluorophore connected by a triazole-4-carboxylate spacer was studied for enantioselective recognition using only steady-state fluorescence spectroscopy in solution. In this investigation, the optical sensing was performed with D-(-) and L-(+)-Arabinose and (R)-(-) and (S)-(+)-Mandelic acid as chiral analytes. The optical sensors showed specific interactions with each pair of enantiomers, allowing photophysical responses, which were used for their enantioselective recognition. DFT calculations confirm the specific interaction between the fluorophores and the analytes corroborating the observed high enantioselectivity of these compounds with the studied enantiomers. Finally, this study investigated nontrivial sensors for chiral molecules by a mechanism different than turn-on fluorescence and has the potential to broad chiral compounds with fluorophoric units as optical sensors for enantioselective sensing.
RESUMEN
Clenbuterol (Clb) (4-amino-α-[(tert-butylamine) methyl]-3,5-dichlorobenzyl alcohol) is a sympathomimetic agent that exhibits ß2-agonist activity. It is applied as a bronchodilatory, tocolytic, and mucolytic agent and is authorized for clinical management in both human and veterinary therapeutics as a racemic mixture. However, its use is strictly prohibited in animals destined for food production in countries in the European Union and in the United States and Mexico, among many others. The R-(-) enantiomer in clenbuterol stimulates ß2-receptors, whereas the S-(+) enantiomer blocks the effect of ß1-receptors. The aims of this study were to develop a method for detecting and quantifying Clb and its enantiomeric distribution in several bovine tissues. The UHPLC-MS/MS method developed to quantify the target compound at trace levels in these tissues combines high sensitivity with good selectivity and short chromatographic run time. The tissue samples tested were found to contain racemic Clb in concentrations of 5-447 pg g-1 . The enantiomeric analysis of Clb showed that R-(-)-Clb is present at higher concentrations in some tissues, whereas S-(+)-Clb was detected in a ratio of 55/45 in the liver and heart tissues.
Asunto(s)
Clenbuterol , Humanos , Animales , Bovinos , Clenbuterol/análisis , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Contaminación de Alimentos/análisis , Carne/análisis , Factores de RiesgoRESUMEN
The physical properties, chemical composition, enantiomer distribution, and cholinesterase (ChE) inhibitory activity were determined for a steam-distilled essential oil (EO), with a yield of 0.15 ± 0.05 % (w/w), from H. laricifolium aerial parts, collected in southern Ecuador. The oil qualitative and quantitative analyses were performed by GC-EIMS and GC-FID techniques, using two capillary columns containing a non-polar 5%-phenyl-methylpolysiloxane and a polar polyethylene glycol stationary phase, respectively. The main constituents (>10%) detected on the two columns were, respectively, limonene (24.29, 23.16%), (E)-ß-ocimene (21.89, 27.15%), and (Z)-ß-ocimene (12.88, 16.03%). The EO enantioselective analysis was carried out using a column based on 2,3-diethyl-6-tert-butyldimethylsilyl-ß-cyclodextrin. Two mixtures of chiral monoterpenes were detected containing (1R,5R)-(+)-α-pinene (ee = 83.68%), and (S)-(-)-limonene (ee = 88.30%) as the major enantiomers. This finding led to some hypotheses about the existence in the plant of two enantioselective biosynthetic pathways. Finally, the EO exhibited selective inhibitory effects in vitro against butyrylcholinesterase (BuChE) (IC50 = 36.80 ± 2.40 µg/mL), which were about three times greater than against acetylcholinesterase (IC50 = 106.10 ± 20.20). Thus, the EO from Ecuadorian H. laricifolium is an interesting candidate for investigating the mechanism of the selective inhibition of BuChE and for discovering novel drugs to manage the progression of Alzheimer's disease.
RESUMEN
Kaunia longipetiolata (Sch.Bip. ex Rusby) R. M. King and H. Rob. (Asteraceae) is a plant native to southern Ecuador. The dry leaves afforded, by steam distillation, an essential oil that was qualitatively and quantitatively analyzed by GC-MS and GC-FID, respectively, on two orthogonal columns of different polarity. Sesquiterpenes predominated in the volatile fraction, among which α-zingiberene (19.7-19.1%), ar-curcumene (17.3-18.1%), caryophyllene oxide (5.1-5.3%), (Z)-ß-caryophyllene (3.0-3.1%), (2Z,6Z)-farnesal (2.6-3.6%), and spathulenol (2.0-2.1%) were the major components. In addition to the identified compounds, two main unidentified constituents (possibly oxygenated sesquiterpenes) with probable molecular masses of 292 and 230, respectively, were detected. They constituted about 5% and 8% (w/w), respectively, of the whole essential oil. The oil chemical composition was complemented with the enantioselective analysis of ten chiral components. Four scalemic mixtures and six enantiomerically pure terpenes were identified. An enantiomeric excess (ee) was determined for (1R,5R)-(+)-ß-pinene (65.0%), (R)-(-)-α-phellandrene (94.6%), (S)-(+)-linalool (15.0%), and (R)-(-)-terpinen-4-ol (33.8%). On the other hand, (1R,5R)-(+)-α-pinene, (1R,5R)-(+)-sabinene, (S)-(-)-limonene, (S)-(+)-ß-phellandrene, (1R,2S,6S,7S,8S)-(-)-α-copaene, and (R)-(+)-germacrene D were enantiomerically pure. Finally, the non-volatile fraction obtained by extraction of the leaves with MeOH was investigated. Eight known compounds were isolated by liquid column chromatographic separations. Their structures were determined by NMR spectroscopy as dehydroleucodine, kauniolide, (3S,3aR,4aR,6aS,9aS,9bR)-3-hydroxy-1,4a-dimethyl-7-methylene-5,6,6a,7,9a,9b-hexahydro-3H-oxireno[2',3':8,8a]azuleno[4,5-b]furan-8(4aH)-one, novanin, bisabola-1,10-diene-3,4-trans-diol, (R)-2-(2-(acetoxymethyl)oxiran-2-yl)-5-methylphenyl isobutyrate, eupalitin-3-O-glucoside, and 3,5-di-O-caffeoylquinic acid. Literature data about the identified metabolites indicate that K. longipetiolata is a rich source of biologically active natural products.
RESUMEN
The purpose of this study was to determine the chemical composition, physical properties, enantiomeric composition and cholinesterase inhibitory activity of the essential oil (EO) steam-distilled from the leaves of the plant Araucaria brasiliensis Loud. collected in Ecuador. The chemical composition was determined by gas chromatography coupled to mass spectrometry (GC-MS) analysis on two capillary GC columns (DB5-ms and HP-INNOWax). Thirty-three compounds were identified in the EO; the main compounds were beyerene (26.08%), kaurene (24.86%), myrcene (11.02%), α-pinene (9.99%) and 5,15-rosadiene (5.87%). Diterpene hydrocarbons (65.41%), followed by monoterpene hydrocarbons (21.11%), were the most representative components of the EO. Enantioselective analysis of the EO showed four pairs of enantiomeric compounds, α-pinene, camphene, γ-muurolene and δ-cadinene. In an in vitro assay, the EO showed moderate inhibitory activity towards the enzyme butyrylcholinesterase (BuChE) (95.7 µg/mL), while it was inactive towards acetylcholinesterase (AChE) (225.3 µg/mL). Further in vivo studies are needed to confirm the anticholinesterase potential of the EO.
Asunto(s)
Araucaria , Aceites Volátiles , Acetilcolinesterasa , Butirilcolinesterasa , Ecuador , Aceites Volátiles/química , Aceites Volátiles/farmacologíaRESUMEN
To explore abiotic theories related to the origin of biomolecular homochirality, we analyze two entirely reversible kinetic models composed of an enantioselective autocatalysis with limited stereoselectivity that is coupled to an enantiomeric mutual inhibition (Frank-like models). The two models differ in their autocatalytic steps in respect to the formation of monomer species in one model and of dimer species in the other. While fully reversible and running in a closed system, spontaneous mirror symmetry breaking (SMSB) gives rise to transient chiral excursions, even when starting from a strictly achiral situation. Before the SMSB, the two models differ in the main dissipative processes. At the SMSB, the entropy production rate reaches its maximum in both models. Here it is the enantioselective autocatalysis with retention of the winner enantiomer that dominates. During the terminal phase, the enantioselective autocatalysis with inversion prevails, while the entropy production rate vanishes, thus fulfilling the conditions of microscopic reversibility. SMSB does not occur if the autocatalytic rate constant is too strong or too weak. However, when the autocatalysis is relatively weak, the temporary chiral excursions last for long periods of time and could be the starting point of a cascade of asymmetric reactions. The realism of such Frank-like models is discussed from the viewpoint of their relevance to prebiotic chemistry.
Asunto(s)
Termodinámica , Catálisis , Cinética , EstereoisomerismoRESUMEN
Growing human demand for food has culminated in increased use of pesticides worldwide. Prothioconazole (PTC), a profungicide, is bioactivated by metabolic PTC oxidation to prothioconazole-desthio (D-PTC). Here, the in vitro phase I metabolism of PTC to D-PTC in human liver microsomes and human CYP450 forms was studied. The kinetic parameters for the formation of (+)-D-PTC (KM = 1.2 µmol L-1, VMAX = 1.7 pmol min-1 mg-1), (-)-D-PTC (KM = 7 µmol L-1, VMAX = 5.1 pmol min-1 mg-1), and both D-PTC enantiomers (KM = 9 µmol L-1, VMAX = 7 pmol min-1 mg-1) from rac-PTC indicated an enantioselective behavior. Formation of the enantiomer (+)-D-PTC was twice more extensive than the formation of the enantiomer (-)-D-PTC. Furthermore, CLH prediction revealed the same enantioselective behavior. The phenotyping study indicated that CYP2C19 was the sole CYP450 form accounting for the metabolism of PTC. The estimated apparent distribution volume of PTC was predicted as 2 L kg-1. This study showed that D-PTC may be formed in the human organism due to hepatic metabolism of PTC, mediated by CYP2C19 and that the enantiomer (+)-D-PTC is preferentially formed. However, it was not extensively formed (~1%). Considering a risk assessment point of view, this study provided positive evidence of PTC safety.
Asunto(s)
Plaguicidas , Citocromo P-450 CYP2C19/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Microsomas Hepáticos/metabolismo , Plaguicidas/metabolismo , Plaguicidas/toxicidad , Estereoisomerismo , TriazolesRESUMEN
We report herein the synthesis and application of enantiopure C2 -symmetric primary amine-1,3-bis-thiourea organocatalysts in enantioselective conjugate 1,4-Michael addition of carbonyl containing nucleophiles, to nitroalkenes and N-phenylmaleimide, leading to final products in good enantioselectivities (up to 99%) and yields (up to 99%). We propose supramolecular noncovalent interactions within the organocatalyst's cleft between the substrate and the catalyst, via hydrogen bonding. Supramolecular interaction thus lowers the transition state energy mimicking an enzyme. Mechanism underlying our experimental results is supported by theorical calculations.
Asunto(s)
Alquenos , Tiourea , Alquenos/química , Catálisis , Nitrocompuestos/química , Estereoisomerismo , Tiourea/químicaRESUMEN
Annona cherimola Mill. is a native species of Ecuador cultivated worldwide for the flavor and properties of its fruit. In this study, hydrodistillation was used to isolate essential oil (EO) of fresh Annona cherimola leaves collected in Ecuadorian Sierra. The EO chemical composition was determined using a non-polar and a polar chromatographic column and enantiomeric distribution with an enantioselective column. The qualitative analysis was carried out by gas chromatography coupled to a mass spectrometer and quantitative analysis using gas chromatography equipped with a flame ionization detector. The antibacterial potency was assessed against seven Gram-negative bacteria and one Gram-positive bacterium. ABTS and DPPH assays were used to evaluate the radical scavenging properties of the EO. Spectrophotometric method was used to measure acetylcholinesterase inhibitory activity. GC-MS analysis allowed us to identify more than 99% of the EO chemical composition. Out of the fifty-three compounds identified, the main were germacrene D (28.77 ± 3.80%), sabinene (3, 9.05 ± 1.69%), ß-pinene (4, 7.93 ± 0.685), (E)-caryophyllene (10.52 ± 1.64%) and bicyclogermacrene (11.12 ± 1.39%). Enantioselective analysis showed the existence of four pairs of enantiomers, the (-)-ß-Pinene (1S, 5S) was found pure (100%). Chirimoya essential oil exhibited a strong antioxidant activity and a very strong anticholinesterase potential with an IC50 value of 41.51 ± 1.02 µg/mL. Additionally, EO presented a moderate activity against Campylobacter jejuni and Klebsiella pneumoniae with a MIC value of 500 µg/mL.
RESUMEN
A previously uninvestigated essential oil (EO) was distilled from Gynoxys miniphylla Cuatrec. (Asteraceae) and submitted to chemical and enantioselective analyses. The qualitative and quantitative analyses were conducted by GC-MS and GC-FID, over two orthogonal columns (5%-phenyl-methylpolysiloxane and polyethylene glycol stationary phases). Major constituents (≥2%) were, on both columns, respectively, as follows: α-phellandrene (16.1-17.2%), α-pinene (14.0-15.0%), germacrene D (13.3-14.8%), trans-myrtanol acetate (8.80%), δ-cadinene (4.2-4.6%), ß-phellandrene (3.3-2.8%), (E)-ß-caryophyllene (3.1-2.0%), o-cymene (2.4%), α-cadinol (2.3-2.6%), and α-humulene (1.7-2.0%). All the quantified compounds corresponded to 93.5-97.3% by weight of the whole essential oil, with monoterpenes counting for 53.8-55.6% of the total, and sesquiterpenes for 38.5-41.4%. For what concerns the enantioselective analyses, the chiral components were investigated through a ß-cyclodextrin-based enantioselective column (2,3-diethyl-6-tert-butyldimethylsilyl-ß-cyclodextrin). A total of six chiral metabolites were analysed and the respective enantiomeric excess calculated as follows: (1S,5S)-(-)-α-pinene (98.2%), (1S,5S)-(-)-ß-pinene (11.9%), (1R,5R)-(+)-sabinene (14.0%), (R)-(-)-α-phellandrene (100.0%), (R)-(-)-ß-phellandrene (100.0%), and (S)-(-)-germacrene D (95.5%). According to the chemical composition and enantiomeric distribution of major compounds, this EO can be considered promising as a cholinergic, antiviral and, probably, analgesic product.
RESUMEN
BINOL derivatives have shown relevant biological activities and are important chiral ligands and catalysts. Due to these properties, their asymmetric synthesis has attracted the interest of the scientific community. In this work, we present an overview of the most efficient methods to obtain chiral BINOLs, highlighting the use of metal complexes and organocatalysts as well as kinetic resolution. Further derivatizations of BINOLs are also discussed.
Asunto(s)
Naftoles , Estereoisomerismo , Catálisis , LigandosRESUMEN
Tebuconazole (TEB) is a chiral triazole fungicide worldwide employed to control plant pathogens and preserve wood. People can be exposed to TEB either through diet and occupational contamination. This work investigates the in vitro inhibitory potential of rac-TEB, S-(+)-TEB, and R-(-)-TEB over the main cytochrome P450 enzymes (CYP450) using human liver microsomes to predict TEB in vivo inhibition potential. The IC50 values showed that in vitro inhibition was enantioselective for CYP2C9, CYP2C19, and CYP2D6, but not for CYP3A4/5. Despite enantioselectivity, rac-TEB and its single enantiomers were always classified in the same category. The inhibition mechanisms and constants were determined for rac-TEB and it has shown to be a mixed inhibitor of CYP3A4/5 (Ki = 1.3 ± 0.3 µM, αKi = 3.2 ± 0.5 µM; Ki = 0.6 ± 0.3 µM, αKi = 1.3 ± 0.3 µM) and CYP2C9 (Ki = 0.7 ± 0.1 µM, αKi = 2.7 ± 0.5 µM), and a competitive inhibitor of CYP2D6 (Ki = 11.9 ± 0.7 µM) and CYP2C19 (Ki = 0.23 ± 0.02 µM), respectively, suggesting that in some cases, rac-TEB has a higher or comparable inhibitory potential than well-known strong inhibitors of CYP450 enzymes, especially for CYP2C9 and CYP2C19. In vitro-in vivo extrapolations (IVIVE) were conducted based on the results and data available in the literature about TEB absorption and metabolism. R1 values were estimated based on the Food and Drug Administration guideline and suggested that in a chronic oral exposure scenario considering the acceptable daily intake dose proposed by the European Food and Safety Authority, the hypothesis of rac-TEB to inhibit the activities of CYP3A4/5, CYP2C9, and CYP2C19 in vivo and cause pesticide-drug interactions cannot be disregarded.
Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Plaguicidas/farmacología , Triazoles/química , Triazoles/farmacología , Inhibidores Enzimáticos del Citocromo P-450/química , Humanos , Estructura Molecular , Plaguicidas/química , Relación Estructura-ActividadRESUMEN
The essential oil and the major non-volatile secondary metabolites from the leaves of Piper subscutatum (Miq.) C. DC. (Family Piperaceae), collected in the Ecuadorian Amazon, were analyzed for the first time in the present study. The essential oil was submitted to chemical and enantioselective analyses by GC-MS and GC-FID. (E)-ß-caryophyllene (25.3-25.2%), ß-chamigrene (10.3-7.8%), (E)-nerolidol (8.1-7.7%), ß-selinene (7.2-7.7%), δ-cadinene (2.7-3.9%), bicyclogermacrene (3.7-2.4%), and ß-pinene (2.6-3.4%) were the major components. The enantioselective analysis, carried out on a ß-cyclodextrin-based column, showed four scalemic mixtures in which (1R,5R)-(+)-α-pinene, (1S,5S)-(-)-ß-pinene, (S)-(-)-limonene, and (1R,2S,6S,7S,8S)-(-)-α-copaene were the major enantiomers, with enantiomeric excesses of 28.8%, 77.8%, 18.4%, and 6.0%, respectively. The study was complemented with the chemical analysis of the organic fraction dissolved in the hydrolate, whose major components were 6-methyl-5-hepten-2-one (63.7-64.4%) and linalool (6.5-6.0%). Concerning the non-volatile fraction, five lignans were the major components. (-)-Beilshminol B, (-)-grandisin, (-)-3',4'-methylenedioxy-3,4,5-trimethoxy-7,7'-epoxylignan, (-)-3',4'-methylenedioxy-3,4,5,5'-tetramethoxy-7,7'-epoxylignan, and (-)-3,4,3',4'-dimethylenedioxy-5,5'-dimethoxy-7,7'-epoxylignan were identified by means of NMR spectroscopy, mass spectrometry and X-ray crystallography. The absolute configuration 7S,8S,7'S,8'S was tentatively assigned to all of them.
RESUMEN
The enantioselective palladium-catalyzed Heck arylation of olefins using arenediazonium salts is one of the last features in the evolution of a synthetic method known as the Heck-Matsuda reaction. This personal account highlights the development of the enantioselective Heck-Matsuda reaction in its initial stages, the challenges faced along the way, and the interesting findings that opened new synthetic opportunities, mainly from our laboratory, featuring the Heck-Matsuda reaction as a central player in the synthesis of bioactive and functional molecules.
RESUMEN
Ethofumesate is a chiral herbicide that may display enantioselective behavior in humans. For this reason, the enantioselective potential of ethofumesate and its main metabolite ethofumesate-2-hydroxy to cause pesticide-drug interactions on cytochrome P450 forms (CYPs) has been evaluated by using human liver microsomes. Among the evaluated CYPs, CYP2C19 had its activity decreased by the ethofumesate racemic mixture (rac-ETO), (+)-ethofumesate ((+)-ETO), and (-)-ethofumesate ((-)-ETO). CYP2C19 inhibition was not time-dependent, but a strong inhibition potential was observed for rac-ETO (IC50 = 5 ± 1 µmol L-1), (+)-ETO (IC50 = 1.6 ± 0.4 µmol L-1), and (-)-ETO (IC50 = 1.8 ± 0.4 µmol L-1). The reversible inhibition mechanism was competitive, and the inhibition constant (Ki) values for rac-ETO (2.6 ± 0.4 µmol L-1), (+)-ETO (1.5 ± 0.2 µmol L-1), and (-)-ETO (0.7 ± 0.1 µmol L-1) were comparable to the Ki values of strong CYP2C19 inhibitors. Inhibition of CYP2C19 by ethofumesate was enantioselective, being almost twice higher for (-)-ETO than for (+)-ETO, which indicates that this enantiomer may be a more potent inhibitor of this CYP form. For an in vitro-in vivo correlation, the Food and Drug Administration's (FDA) guideline on the assessment of drug-drug interactions used in the early stages of drug development was used. The FDA's R1 values were estimated on the basis of the obtained ethofumesate Ki and distribution volume, metabolism, unbound plasma fraction, gastrointestinal and dermal absorption data available in the literature. The correlation revealed that ethofumesate probably inhibits CYP2C19 in vivo for both chronic (oral) and occupational (dermal) exposure scenarios.
Asunto(s)
Benzofuranos/química , Benzofuranos/farmacología , Inhibidores del Citocromo P-450 CYP2C19/química , Inhibidores del Citocromo P-450 CYP2C19/farmacología , Citocromo P-450 CYP2C19/metabolismo , Mesilatos/química , Mesilatos/farmacología , Plaguicidas/química , Plaguicidas/farmacología , Citocromo P-450 CYP2C19/química , Inhibidores del Citocromo P-450 CYP2C19/metabolismo , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , EstereoisomerismoRESUMEN
The preparation of a new non-natural gabosine is reported, in which the chirality is transferred from the toluene's biotransformed metabolite (1R,2S)-3-methylcyclohexa-3.5-diene-1,2-diol. Further chemical transformations to introduce additional functionality and chirality to the molecule were also accomplished.