Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 148: 665-682, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095198

RESUMEN

Emission characteristics of biogenic volatile organic compounds (BVOCs) from dominant tree species in the subtropical pristine forests of China are extremely limited. Here we conducted in situ field measurements of BVOCs emissions from representative mature evergreen trees by using dynamic branch enclosures at four altitude gradients (600-1690 m a.s.l.) in the Nanling Mountains of southern China. Composition characteristics as well as seasonal and altitudinal variations were analyzed. Standardized emission rates and canopy-scale emission factors were then calculated. Results showed that BVOCs emission intensities in the wet season were generally higher than those in the dry season. Monoterpenes were the dominant BVOCs emitted from most broad-leaved trees, accounting for over 70% of the total. Schima superba, Yushania basihirsuta and Altingia chinensis had relatively high emission intensities and secondary pollutant formation potentials. The localized emission factors of isoprene were comparable to the defaults in the Model of Emissions of Gases and Aerosols from Nature (MEGAN), while emission factors of monoterpenes and sesquiterpenes were 2 to 58 times of those in the model. Our results can be used to update the current BVOCs emission inventory in MEGAN, thereby reducing the uncertainties of BVOCs emission estimations in forested regions of southern China.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Bosques , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , China , Contaminantes Atmosféricos/análisis , Árboles , Estaciones del Año
2.
Environ Pollut ; 357: 124425, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38914196

RESUMEN

This study analyzed pollutant emissions from laser cutters used in modeling in a laboratory, which can have harmful effects on indoor air quality and health. Four conditions were tested: material thickness, laser cutter strength, minimum strength per thickness, and air purifier level. Four pollutants were analyzed: PM2.5, HCHO, VOCs, and CO2. The study found that the emissions of PM2.5, HCHO, and VOCs increased with paperboard thickness, while CO2 emissions were not significant. PM2.5 was more affected by laser cutting strength, while HCHO and VOCs were more affected by paperboard thickness. Additionally, we analyzed the PM2.5 emission rates based on the thickness of the paperboard and the laser cutting strength. Therefore, emission rates based on thickness and laser cutting strength ranged from 7275 to 18,783 µg/min. The air purifier significantly reduced PM2.5 but not HCHO and VOCs. To reduce these gaseous pollutants, combining mechanical ventilation or using an air purifier with a filter that adsorbs HCHO and VOCs is effective. This study highlights the importance of considering laser cutters as a potential source of indoor air pollutants and implementing measures to mitigate their harmful effects.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Monitoreo del Ambiente , Rayos Láser , Material Particulado , Compuestos Orgánicos Volátiles , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Compuestos Orgánicos Volátiles/análisis , Dióxido de Carbono/análisis
3.
Environ Sci Technol ; 58(5): 2434-2445, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38265760

RESUMEN

Source characteristics and health risks of indoor organophosphate esters (OPEs) are limited by the lack of knowledge on emission processes. This study attempted to integrate the contents and emissions of OPEs from indoor building materials to assess human health effects. Thirteen OPEs were investigated in 80 pieces of six categories of building materials. OPEs are ubiquitous in the building materials and ∑13OPE contents varied significantly (p < 0.05) from 72.8 ng/g (seam agent) to 109,900 ng/g (wallpaper). Emission characteristics of OPEs from the building materials were examined based on a microchamber method. Depending on the sample category, the observed initial area-specific emission rates of ∑13OPEs varied from 154 ng/m2/h (carpet) to 2760 ng/m2/h (wooden floorboard). Moreover, the emission rate model was developed to predict the release levels of individual OPEs, quantify source contributions, and assess associated exposure risks. Source apportionments of indoor OPEs exhibited heterogeneities in multiple environmental media. The joint OPE contribution of wallpaper and wooden floorboard to indoor dust was up to 94.8%, while latex paint and wooden floorboard were the main OPE contributors to indoor air (54.2%) and surface (76.1%), respectively. Risk assessment showed that the carcinogenic risks of tris(2-chloroethyl) phosphate (3.35 × 10-7) were close to the acceptable level (1 × 10-6) and deserved special attention.


Asunto(s)
Monitoreo del Ambiente , Retardadores de Llama , Humanos , Ésteres/análisis , Retardadores de Llama/análisis , China , Organofosfatos/análisis , Polvo/análisis , Materiales de Construcción
4.
Ann Work Expo Health ; 68(1): 78-85, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-37935627

RESUMEN

In the near field/far field (NF/FF) dispersion construct, the analytical solutions for the NF and FF concentration equations, respectively denoted CNF(t) and CFF(t) in mg/m3, are coupled in their mathematical derivation. Depending on the form of the contaminant emission rate function G(t) (mg/min), deriving CNF(t) and CFF(t) can range from being relatively easy to impossible. A method is presented to more easily approximate these concentration functions. The method decouples the NF and FF equations by treating the NF as an isolated well-mixed space with volume VNF (m3) and supply/exhaust airflow rate ß(m3) and treating the FF as an isolated well mixed-space with volume V (m3) and supply/exhaust airflow rate Q (m3). Assuming that each space contains a source with the same contaminant emission rate function G(t), a contaminant concentration function is derived for the FF zone, denoted CWMR1(t), and an independent contaminant concentration function is derived for the NF zone, denoted CWMR2(t). Deriving a concentration function for a single zone is far easier than deriving coupled concentration functions. It is shown that the sum CWMR1(t) + CWMR2(t) provides an excellent approximation of CNF(t) and that CWMR1(t) provides an excellent approximation of CFF(t). A discrete-time numerical solution for the CNF(t) and CFF(t) system based on a Markov matrix is also presented.


Asunto(s)
Contaminación del Aire Interior , Exposición Profesional , Humanos , Exposición Profesional/análisis , Monitoreo del Ambiente , Modelos Teóricos , Emisiones de Vehículos
5.
Water Res ; 247: 120780, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37950949

RESUMEN

Considering the reciprocating processes of nitrogen gas (N2) fixation to ammonia (NH4-N) and NH4-N removal to N2 through nitrification and denitrification during wastewater treatment, a microaerobic activated sludge process (MAS) is proposed in this study as a pretreatment to retain NH4-N from high-strength nitrogenous wastewater for further NH4-N recovery through membrane technology, that is, inhibit nitrification, with sufficient removal of total organic carbon (TOC). With DO and pH control, the 3-reactor bench-scale MAS systems successfully realized an NH4-N retention rate of over 80 %, with TOC removal rates of over 90 %. In addition, the emissions of carbon dioxide (CO2) and nitrous oxide (N2O) during MAS were evaluated. The total N2O emissions were 407 and 475 mg-N/day when pH was controlled at 6.2 (S1) and 6.8 (S2), respectively, with average emission factors to total nitrogen load over 2 % in both systems. Also, the global warming potential of N2O is one order of magnitude larger than that of CO2, indicating the significance of N2O in the MAS process. Therefore, the mechanisms of N2O emission from each reactor were investigated. The first reactor, where most of the TOC was adsorbed, emitted only 1.98 % (S1) and 2.43 % (S2) of the total N2O emissions through the denitrification of nitrite and nitrate (NOx) from the return sludge. The second reactor emitted 79.9 % (S1) and 69.0 % (S2) of the total N2O with the emission rates the same order of magnitude as the NOx production rates. Multiple pathways were considered to contribute to the high N2O emissions, and biotic NH2OH oxidation was one potential pathway at pH 6.2. Finally, the third reactor emitted 9.98 % (S1) and 16.8 % (S2) of the total N2O by nitrifier denitrification. Overall, this study showed that the large N2O emissions under nitrification-inhibiting conditions of the MAS process owed to the incomplete nitrification under acidic conditions and large abundances of denitrifiers. On the other hand, the lower N2O emissions at pH 6.2 evidenced the potential N2O mitigation under slightly more acidic conditions, underlining the necessity of further study on N2O mitigation when adapting to the trend of NH4-N recovery.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Amoníaco , Óxido Nitroso/metabolismo , Dióxido de Carbono , Desnitrificación , Reactores Biológicos , Nitrificación , Nitrógeno
6.
Environ Sci Technol ; 57(41): 15392-15400, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37796739

RESUMEN

Humans emit large salivary particles when talking, singing, and playing musical instruments, which have implications for respiratory disease transmission. Yet little work has been done to characterize the emission rates and size distributions of such particles. This work characterized large particle (dp > 35 µm in aerodynamic diameter) emissions from 70 volunteers of varying age and sex while vocalizing and playing wind instruments. Mitigation efficacies for face masks (while singing) and bell covers (while playing instruments) were also examined. Geometric mean particle count emission rates varied from 3.8 min-1 (geometric standard deviation [GSD] = 3.1) for brass instruments playing to 95.1 min-1 (GSD = 3.8) for talking. On average, talking produced the highest emission rates for large particles, in terms of both number and mass, followed by singing and then instrument playing. Neither age, sex, CO2 emissions, nor loudness (average dBA) were significant predictors of large particle emissions, contrary to previous findings for smaller particle sizes (i.e., for dp < 35 µm). Size distributions were similar between talking and singing (count median diameter = 53.0 µm, GSD = 1.69). Bell covers did not affect large particle emissions from most wind instruments, but face masks reduced large particle count emissions for singing by 92.5% (95% CI: 97.9%, 73.7%).


Asunto(s)
Música , Tamaño de la Partícula , Aerosoles y Gotitas Respiratorias , Humanos
7.
Sci Total Environ ; 905: 167158, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730040

RESUMEN

Biobased insulation materials offer opportunities to use vapor-open building constructions. Such constructions allow direct interaction between the biobased material and the indoor environment. This interaction raises questions about indoor air quality concerning volatile organic compounds (VOCs). This study presents results for the VOC emissions from biobased materials. It consists of two parts: 1) qualification of VOC emissions (compounds) from several biobased and non-biobased building materials, and 2) quantification of VOC emissions (emission rate) from expanded cork (biobased), particle board (semi-biobased), and EPS insulation. By quantifying the emission rate, the exposure to the released VOC emissions at room temperature in a standardized room can be compared to health limit requirements. Gas chromatography and mass spectroscopy (GC-MS) is used to derive the individual VOC emissions and the Total Volatile Organic Compounds (TVOC) from these materials. For qualification, two different sampling techniques are used in which temperature is introduced as a variable to investigate its effect on the type of compounds emitted. For quantification, the toluene equivalent approach is compared to the group equivalent approach. From the analyses it is concluded that temperature has an effect on the type of VOC compounds emitted from (biobased) materials. Results from the quantification indicate that expanded cork and particle board emit no harmful substances at a level that can affect human health. For EPS insulation, elevated levels of benzene were found to exceed healthy limits. The toluene equivalent approach for quantifying the emission, generally, underestimates the rate as compared to the more accurate group equivalent approach.

8.
Sci Total Environ ; 879: 163207, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37011674

RESUMEN

Waterpipe is a common form of tobacco smoking, and recently, its use has been increasing globally. Therefore, concern arises regarding the large quantity of post-consumption waterpipe tobacco waste produced and released into the environment and which can contain high levels of dangerous pollutants such as toxic meta(loid)s. This study reports the concentrations of meta(loid)s in waste from fruit-flavoured and traditional tobacco smoking as well as the release rate of these pollutants from waterpipe tobacco waste into three types of water. These include distilled water, tap water, and seawater and contact times ranging from 15 min to 70 days. The mean concentration levels of Æ©metal(loid)s in waste samples of Al-mahmoud, Al-Fakher, Mazaya, Al-Ayan brands and traditional tobacco brands were 212 ± 92.8, 198 ± 94.4, 197 ± 75.7, 214 ± 85.8 and 40.6 ± 16.1 µg/g, respectively. The concentration levels of Æ©metal(loid)s in fruit-flavoured tobacco samples were significantly higher than for traditional tobacco samples (p < 0.05). It was found that waterpipe tobacco wastes leached toxic metal(loid)s into different water samples with similar trends. In addition distribution coefficients showed that most metal(loid)s are highly likely to enter the liquid phase. The concentration levels of these pollutants (except Ni and As) in deionized water and tap water exceeded the surface fresh water standards for sustaining aquatic life during long contact time (up to 70 days). In seawater, concentration levels of Cu and Zn exceeded the recommended standards for maintaining aquatic life in the sea. Therefore, due to the possibility of contamination by soluble metal(loid)s through disposal of waterpipe tobacco waste in wastewater, there is concern that these toxic chemicals might enter the human food chain. Appropriate regulatory measures for disposal of waterpipe tobacco waste are necessary to prevent environmental pollution due to discarded wastes into aquatic ecosystems.


Asunto(s)
Contaminantes Ambientales , Metaloides , Metales Pesados , Contaminantes del Suelo , Tabaco para Pipas de Agua , Humanos , Ecosistema , Metales/análisis , Intoxicación por Metales Pesados , Agua , Metales Pesados/análisis , Monitoreo del Ambiente , Medición de Riesgo , Metaloides/análisis
9.
Environ Res ; 216(Pt 1): 114139, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36084678

RESUMEN

Hexachlorobutadiene (HCBD) was listed as a new persistent organic pollutant for global regulation under Stockholm Convention in 2015, and there has been scarce information on its atmospheric concentrations, distributions, and emission sources. HCBD air samples were collected and analyzed to characterize concentrations and distributions at high elevation and urban sites as well as emission source locations in Northern China. We found ambient concentrations of HCBD in Northern China averaged at 34 ± 16 and 36 ± 28 pptv at urban sites in Jinan and Tai'an, respectively, and 31 ± 21 pptv at a high-elevation site Mount Tai. HCBD concentrations at the high elevation and urban sites were found to be affected by long-range transport under the influence of the East Asian monsoon climate. Over potential sources areas, we found concentrations of 76 ± 33 pptv in a mixed factory park, 59 ± 21 pptv in a rubber plant and 74 ± 8 pptv in a municipal solid waste (MSW) landfill area, which were all several times higher than in urban sites. The large concentration gradient across the various environments revealed strong emission sources of HCBD, especially over MSW landfill and Cl-compound production and application areas. An emission rate of 9.2 × 104 kg/yr and an oxidation rate of 32.9 kg/yr for HCBD were estimated for the mixed factory park. OH and Cl are much more active in reaction with HCBD than other oxidants in the atmosphere. Dry deposition and oxidation removed about 5.3% and 0.04%, respectively, of the emitted, suggesting that ∼95% of the emitted HCBD remaining in the atmosphere and could be transported for redistribution. Our findings revealed significant emission sources of HCBD in northern China, which was in turn affected by major sources in East-central China. The regional influence of HCBD pollution warrants serious concerns and points to the need to develop mitigation strategies.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Orgánicos Persistentes , Monitoreo del Ambiente , Butadienos , Atmósfera , Residuos Sólidos , China , Contaminantes Atmosféricos/análisis
10.
Sci Total Environ ; 857(Pt 3): 159622, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36280062

RESUMEN

The US Environmental Protection Agency developed the MOtor Vehicle Emission Simulator (MOVES) operating modes, which defines modal emission rates according to vehicle speed and vehicle-specific power using binning method. However, as MOVES was based on emissions data for vehicle fleets in the US, it is used primarily to estimate US emissions. To adopt this approach in other regions, here, we take into account regional conditions, such as vehicle fleet composition, emissions regulations, and driving environments. Real-world emissions test data for 17 light-duty gasoline and diesel vehicles mainly sold in Korea were used to develop CO2, NOx, and CO emission rates. Typically, the vehicle experiment and data acquisition are costly and time consuming, the amount of data needed to develop robust emission rates were considered. In addition, we studied how a re-binning of vehicle-specific power and velocity could lead to better emission rates estimates from on-road vehicles. To compare the estimates by different binning methods and real-world emissions, root mean square error (RMSE) and R-squared (R2) values were adopted. The comparison result shows that the re-binning method-based emission predictions were more accurate than MOVES prediction results under the real-world condition. The R2 of CO2 and NOx predictions were increased from 075 to 0.78 and from 0.17 to 0.2, respectively. The CO prediction accuracy was slightly increased. These findings provide the re-binning method is advantageous for developing modal-based emission rates using real-world emissions test data.


Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , Emisiones de Vehículos/análisis , Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis , Gasolina/análisis , Vehículos a Motor , Monitoreo del Ambiente/métodos
11.
Environ Sci Technol ; 56(22): 15377-15388, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36279129

RESUMEN

The primarily emitted compounds by human presence, e.g., skin and volatile organic compounds (VOCs) in breath, can react with typical indoor air oxidants, ozone (O3), and hydroxyl radicals (OH), leading to secondary organic compounds. Nevertheless, our understanding about the formation processes of the compounds through reactions of indoor air oxidants with primary emitted pollutants is still incomplete. In this study we performed real-time measurements of nitrous acid (HONO), nitrogen oxides (NOx = NO + NO2), O3, and VOCs to investigate the contribution of human presence and human activity, e.g., mopping the floor, to secondary organic compounds. During human occupancy a significant increase was observed of 1-butene, isoprene, and d-limonene exhaled by the four adults in the room and an increase of methyl vinyl ketone/methacrolein, methylglyoxal, and 3-methylfuran, formed as secondary compounds through reactions of OH radicals with isoprene. Intriguingly, the level of some compounds (e.g., m/z 126, 6-methyl-5-hepten-2-one, m/z 152, dihydrocarvone, and m/z 194, geranyl acetone) formed through reactions of O3 with the primary compounds was higher in the presence of four adults than during the period of mopping the floor with commercial detergent. These results indicate that human presence can additionally degrade the indoor air quality.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Ambientales , Ozono , Compuestos Orgánicos Volátiles , Humanos , Contaminación del Aire Interior/análisis , Ozono/análisis , Contaminantes Atmosféricos/análisis , Oxidantes
12.
Indoor Air ; 32(6): e13039, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35762234

RESUMEN

The IPCC 2021 report predicts rising global temperatures and more frequent extreme weather events in the future, which will have different effects on the regional climate and concentrations of ambient air pollutants. Consequently, changes in heat and mass transfer between the inside and outside of buildings will also have an increasing impact on indoor air quality. It is therefore surprising that indoor spaces and occupant well-being still play a subordinate role in the studies of climate change. To increase awareness for this topic, the Indoor Air Quality Climate Change (IAQCC) model system was developed, which allows short and long-term predictions of the indoor climate with respect to outdoor conditions. The IAQCC is a holistic model that combines different scenarios in the form of submodels: building physics, indoor emissions, chemical-physical reaction and transformation, mold growth, and indoor exposure. IAQCC allows simulation of indoor gas and particle concentrations with outdoor influences, indoor materials and activity emissions, particle deposition and coagulation, gas reactions, and SVOC partitioning. These key processes are fundamentally linked to temperature and relative humidity. With the aid of the building physics model, the indoor temperature and humidity, and pollutant transport in building zones can be simulated. The exposure model refers to the calculated concentrations and provides evaluations of indoor thermal comfort and exposure to gaseous, particulate, and microbial pollutants.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Cambio Climático , Humedad , Temperatura
13.
Environ Sci Technol ; 55(19): 12831-12840, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34524801

RESUMEN

Tailings ponds in the oil sands (OS) region in Alberta, Canada, have been associated with fugitive emissions of volatile organic compounds (VOCs) and other pollutants to the atmosphere. However, the contribution of tailings ponds to the total fugitive emissions of VOCs from OS operations remains uncertain. To address this knowledge gap, a field study was conducted in the summer of 2017 at Suncor's Pond 2/3 to estimate emissions of a suite of pollutants including 68 VOCs using a combination of micrometeorological methods and measurements from a flux tower. The results indicate that in 2017, Pond 2/3 was an emission source of 3322 ± 727 tons of VOCs including alkanes, aromatics, and oxygenated and sulfur-containing organics. While the total VOC emissions were approximately a factor of 2 higher than those reported by Suncor, the individual VOC species emissions varied by up to a factor of 12. A chemical mass balance (CMB) receptor model was used to estimate the contribution of the tailings pond to VOC pollution events in a nearby First Nations and Metis community in Fort McKay. CMB results indicate that Suncor Pond 2/3 contributed up to 57% to the total mass of VOCs measured at Fort McKay, reinforcing the importance of accurate VOC emission estimation methods for tailings ponds.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Alberta , Monitoreo del Ambiente , Yacimiento de Petróleo y Gas , Estanques , Compuestos Orgánicos Volátiles/análisis
14.
Indoor Air ; 31(6): 2142-2157, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34337798

RESUMEN

Humans emit carbon dioxide (CO2 ) as a product of their metabolism. Its concentration in buildings is used as a marker of ventilation rate (VR) and degree of mixing of supply air, and indoor air quality (IAQ). The CO2 emission rate (CER) may be used to estimate the ventilation rate. Many studies have measured CERs from subjects who were awake but little data are available from sleeping subjects and the present publication was intended to reduce this gap in knowledge. Seven females (29 ± 5 years old; BMI: 22.2 ± 0.8 kg/m2 ) and four males (27 ± 1 years old; BMI: 20.5 ± 1.5 kg/m2 ) slept for four consecutive nights in a specially constructed capsule at two temperatures (24 and 28°C) and two VRs that maintained CO2  levels at ca. 800 ppm and 1700 ppm simulating sleeping conditions reported in the literature. The order of exposure was balanced, and the first night was for adaptation. Their physiological responses, including heart rate, pNN50, core body temperature, and skin temperature, were measured as well as sleep quality, and subjective responses were collected each evening and morning. Measured steady-state CO2 concentrations during sleep were used to estimate CERs with a mass-balance equation. The average CER was 11.0 ± 1.4 L/h per person and was 8% higher for males than for females (P < 0.05). Increasing the temperature or decreasing IAQ by decreasing VR had no effects on measured CERs and caused no observable differences in physiological responses. We also calculated CERs for sleeping subjects using the published data on sleep energy expenditure (SEE) and Respiratory Quotient (RQ), and our measured CERs confirmed both these calculations and the CERs predicted using the equations provided by ASHRAE Standard 62.1, ASHRAE Handbook, and ASTM D6245-18. The present results provide a valuable and helpful reference for the design and control of bedroom ventilation but require confirmation and extension to other age groups and populations.


Asunto(s)
Contaminación del Aire Interior , Dióxido de Carbono , Adulto , Contaminación del Aire Interior/análisis , Dióxido de Carbono/análisis , Femenino , Humanos , Masculino , Sueño , Temperatura , Ventilación , Adulto Joven
15.
Environ Res ; 202: 111706, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34284015

RESUMEN

Trillions of cigarette butts (CBs) are released into the environment and the leached potentially toxic elements (PTEs) from CBs may contaminate the environments. In this study, the leaching of PTEs including both heavy metals and metalloids (metal(loid)s) from CBs into deionized water (DW), tap water (TW), and seawater (SW) was checked during the different contact times (from 60 min to 60 days). According to the results, PTEs were leached from CBs into different water samples. However, there were no significant differences between leachates in DW and TW samples (p > 0.05). The results of the distribution coefficient indicated the high tendency of most PTEs to enter the liquid phase. The levels of leached PTEs into DW and TW exceeded the standards of surface freshwater to maintain aquatic life. Although the maximum level of leached metal(loid)s into DW, TW, and SW occurred at different times, for each type of water sample no significant differences were found among the levels of most PTEs at various contact times. Based on the results, the levels of leached metal(loid)s from CBs in seawater peak soon after being released into the water, while for the freshwater, they occur after some days. This phenomenon could possibly have short-term and long-term effects on marine and freshwater organisms, respectively. Due to the ability of the dissolved PTEs to integrate into the aquatic/terrestrial food web and threaten human health, some control measures regarding the disposal of CBs are necessary.


Asunto(s)
Metales Pesados , Productos de Tabaco , Ecosistema , Monitoreo del Ambiente , Agua Dulce , Humanos , Metales Pesados/análisis , Agua
16.
Environ Sci Technol ; 55(15): 10255-10267, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34270218

RESUMEN

Detailed offline speciation of gas- and particle-phase organic compounds was conducted using gas/liquid chromatography with traditional and high-resolution mass spectrometers in a hybrid targeted/nontargeted analysis. Observations were focused on an unoccupied home and were compared to two other indoor sites. Observed gas-phase organic compounds span the volatile to semivolatile range, while functionalized organic aerosols extend from intermediate volatility to ultra-low volatility, including a mix of oxygen, nitrogen, and sulfur-containing species. Total gas-phase abundances of hydrocarbon and oxygenated gas-phase complex mixtures were elevated indoors and strongly correlated in the unoccupied home. While gas-phase concentrations of individual compounds generally decreased slightly with greater ventilation, their elevated ratios relative to controlled emissions of tracer species suggest that the dilution of gas-phase concentrations increases off-gassing from surfaces and other indoor reservoirs, with volatility-dependent responses to dynamically changing environmental factors. Indoor-outdoor emissions of gas-phase intermediate-volatility/semivolatile organic hydrocarbons from the unoccupied home averaged 6-11 mg h-1, doubling with ventilation. While the largest single-compound emissions observed were furfural (61-275 mg h-1) and acetic acid, observations spanned a wide range of individual volatile chemical products (e.g., terpenoids, glycol ethers, phthalates, other oxygenates), highlighting the abundance of long-lived reservoirs resulting from prior indoor use or materials, and their gradual transport outdoors.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas , Compuestos Orgánicos Volátiles/análisis
17.
Sci Total Environ ; 778: 146090, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34030360

RESUMEN

The aim of this study was a detailed chemical characterisation of the particles released during the preparation of popular Portuguese dishes. PM2.5 samples were collected from the exhaust stacks on the roofs of a university canteen, a charcoal-grilled chicken restaurant and a wood-oven roasted piglet restaurant. The speciation of organic compounds was carried out by gas chromatography-mass spectrometry. The canteen was responsible for the lowest emissions of PM2.5, while emissions from the roasted piglet restaurant were the highest. Naphthalene was quantified as the most abundant aromatic compound in particle emissions from the canteen, while phenanthrene, fluoranthene, pyrene and chrysene were the dominant polycyclic aromatic hydrocarbons in samples from the other establishments. Benzo[a]pyrene equivalent concentrations obtained for the charcoal-grilled chicken and piglet restaurant indicate a dangerous carcinogenic potential to human health. Cholesterol was the prevalent sterol. Its highest values were obtained in particles from the charcoal-grilled chicken restaurant (621 ± 233 µg g-1 PM2.5). Oleic and palmitoleic were the unsaturated fatty acids identified at highest concentrations (from trace levels to 34.4 and to 6.89 mg g-1 PM2.5, respectively). Resin acids, such as dehydroabietic and abietic, were detected in all samples from the wood-oven roasted piglet restaurant. Nicotinamide was the amide detected at highest amount in emissions from the university canteen during the preparation of stews (7.67 mg g-1 PM2.5). Levoglucosan and its isomers were identified in all samples from the roasted piglet restaurant, but only the first monosaccharide anhydride was present in emissions from the university canteen and the charcoal-grilled chicken restaurant. Additionally, emission rates were estimated for the most representative compounds, taking into account the specific activity of each restaurant.

18.
Artículo en Inglés | MEDLINE | ID: mdl-33917119

RESUMEN

Vehicle loads have significant impacts on the emissions of heavy-duty trucks, even in the same traffic conditions. Few studies exist covering the differences in emissions of diesel semi-trailer towing trucks (DSTTTs) with different loads, although these vehicles have a wide load range. In this context, the operating modes and emission rates of DSTTTs were analyzed under varying loads scenarios to understand the effect of vehicle loads on emission factors. First, second-by-second field speed data and emission data of DSTTTs with different loads were collected. Then, the methods for calculating the scaled tractive power (STP) and the emissions model for DSTTTs were proposed to evaluate the effect of different loading scenarios. The STP distributions, emission rate distributions, and emission factor characteristics of different loaded trucks were analyzed and compared. The results indicated that the STP distributions of DSTTTs that under the unloaded state were more narrow than those under fully loaded or overloaded conditions. The emission rates of carbon dioxide (CO2), carbon monoxide (CO) and total hydrocarbon (THC) for DSTTTs under a fully loaded state were significantly higher than those under an unloaded state. However, due to the influence of exhaust temperature, the emission rates of nitrogen oxides (NOx) among fully loaded trucks were lower than those under the unloaded state when STP bin was above 4 kW/ton. The emission factors of CO2, CO, THC, and NOx for fully loaded trucks demonstrated the largest increases at low-speed intervals (0-30 km/h), which rose by 96.2%, 47.9%, 27.8%, and 65.2%, respectively.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Vehículos a Motor , Óxidos de Nitrógeno/análisis , Emisiones de Vehículos/análisis
19.
Sci Total Environ ; 772: 145412, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-33581534

RESUMEN

To obtain emission factors and cooking-related chemical signatures, a monitoring campaign was carried out in a modern kitchen where different dishes of the Latin cuisine were prepared. Particulate matter (PM10, PM2.5 and PM1) and total volatile organic compounds (TVOCs) were continuously measured. Passive tubes for carbonyls and a high volume PM10 sampler were simultaneously used. PM10 filters were analysed for organic and elemental carbon and for multiple organic compounds, including polyaromatic hydrocarbons (PAHs). The toxic potential of PM10 was evaluated using a bioluminescence inhibition bioassay. Acrolein was never detected, while formaldehyde and acetaldehyde levels were comparable to those in the background air. The protection limit for TVOCs was always exceeded. Fine particles comprised more than 86% of the PM10 mass concentrations. PM10 emission rates ranged from 124 to 369 µg min-1. Relatively low PAH concentrations were obtained. PM10 encompassed alcohols, acids, plasticisers, alkyl esters, sterols, sugars, polyols, glyceridic compounds, phenolics, among others. Total concentrations were 1.9-5.3 times higher during cooking than in the background air but, for some compounds, differences of tens or hundreds of times were registered. PM10 from grilled pork was found to contribute to non-negligible cancer risks and to be very toxic, while samples from other dishes were categorised as toxic.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire Interior/análisis , Culinaria , Monitoreo del Ambiente , Material Particulado/análisis , Material Particulado/toxicidad
20.
Urban Clim ; 36: 100803, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33614404

RESUMEN

The implementation of confinement and physical distancing measures to restrict people's activities and transit in the midst of the COVID-19 pandemic allowed us to study how these measures affect the air quality in urban areas with high pollution rates, such as Santiago, Chile. A comparative study between the concentrations of PM10, PM2.5, NOx, CO, and O3 during the months of March to May 2020 and the corresponding concentrations during the same period in 2017-2019 is presented. A combination of surface measurements from the air quality monitoring network of the city, remote satellite measurements, and simulations of traffic activity and road transport emissions allowed us to quantify the change in the average concentrations of each pollutant. Average relative changes of traffic emissions (between 61% and 68%) implied statistically significant concentrations reductions of 54%, 13%, and 11% for NOx, CO, and PM2.5, respectively, during the pandemic period compared to historical period. In contrast, the average concentration of O3 increased by 63% during 2020 compared to 2017-2019. The nonlinear response observed in the pollution levels can be attributed to the changes in the vehicular emission patterns during the pandemic and to the role of other sources such as residential emissions or secondary PM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA