Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Foods ; 13(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39272472

RESUMEN

Removal of polar impurities, such as phospholipids, free fatty acids (FFA), and peroxides, can be challenging during the refining of crude canola oil. Current conventional refining methods are energy-intensive (e.g., hot water washes) and can generate significant waste (e.g., wastewater effluent) and neutral oil loss. This study investigated the joint use of nano-adsorbents and electrostatic field (E-field) treatment as a potential and sustainable alternative in removing these impurities during the oil refining process. Specifically, aluminum oxide (Al2O3) nanoparticles were employed to neutralize FFAs, achieving a 62.4% reduction in acid value while preserving the fatty acid profile of the oil. After refining, E-field treatment was successful in removing the spent nano-adsorbent from solution (up to 72.3% by weight), demonstrating enhanced efficiency compared to conventional methods (e.g., gravitational settling, filtration, and centrifugation). The neutral oil loss using Al2O3 nano-adsorbents was also comparable to conventional refining methods, with a 4.38% (by weight) loss. After E-field treatment, the Al2O3 nano-adsorbent was then calcined to assess reusability. The Al2O3 nano-adsorbent was effectively recycled for three refining cycles. the methods do not use of large amounts of water and generate minimal waste byproducts (e.g., effluent). Nonetheless, while the nano-adsorbents demonstrated promising results in FFA removal, they were less effective in eliminating peroxides and pigments. E-field techniques were also effective in removing spent nano-adsorbent; although, optimization of E-field parameters could further improve its binding capacity. Finally, future studies could potentially focus on the physicochemical modifications of the nano-adsorbent material to enhance their refining capacity and reusability. Overall, this study presents a sustainable alternative or addition to conventional refining methods and lays the groundwork for future research.

2.
Foods ; 13(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39272588

RESUMEN

This study evaluated the ability of a high-voltage electrostatic field (HVEF) treatment to extend the shelf life of tomatoes. Tomatoes were exposed to HVEF treatment for different lengths of time, and the physicochemical properties of tomatoes and bioactive compounds were monitored during 28 days of storage at 4 °C. The results indicated that the quality parameters of tomatoes were better maintained during storage by the HVEF treatment relative to the control treatment, extending their shelf life by 14-28 days. The HVEF treatment mitigated losses in firmness, weight, color changes, and bioactive substances, such as total phenolic content, total flavonoid content, ascorbic acid, and lycopene. The activity of pectin-degrading enzymes was also inhibited. The best exposure times for the HVEF treatment were 90 and 120 min. While the measured parameters decreased in both the control and HVEF treatment groups, the decrease in all of these measured parameters was significantly less (p < 0.05) in the optimum HVEF treatment groups than in the control. While the physicochemical properties may vary between different tomato varieties, the HVEF treatment of harvested tomatoes for 90 or 120 min can mitigate the degradation of quality parameters and loss of bioactive compounds incurred during the postharvest storage of tomatoes, thus maintaining their commercial value.

3.
Food Chem X ; 23: 101612, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39113737

RESUMEN

This study investigated the effect of low-voltage electrostatic field on the flavor quality changes and generation pathways of refrigerated sturgeon caviar. Research has found that after storage for 3-6 weeks, the physicochemical properties of caviar in the LVEF treatment group are better than those in the control group. The results of two-dimensional gas chromatography-time-of-flight mass spectrometry showed that the contents of hexanal, nonanal, (E,Z)-2,6-nonadienal, (E)-2-octenal and 1-octene-3-one related to the characteristic flavor of caviar (sweet, fruity and green) increased significantly. The lipidomics results indicated that the effects of LVEF on caviar mainly involve glycerophospholipid metabolism, linoleic acid metabolism, and α-Linolenic acid metabolism. Methanophosphatidylcholine (15:0/18:1), phosphatidylcholine (18:0/20:5), and phosphatidylcholine (18,1e/22:6) were significantly correlated with odor formation. Therefore, low-voltage electrostatic field treatment preserved the quality and enhanced the flavor of sturgeon caviar. This study provided a new theoretical basis for the preservation of sturgeon caviar.

4.
Se Pu ; 42(8): 758-765, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39086244

RESUMEN

Milk is an important consumer product with high nutritional value. The presence of veterinary drug residues in milk owing to the indiscriminate use of veterinary drugs may affect consumer health. In the mass spectrometric analysis of trace compounds, chromatographic co-eluting components easily interfere with the mass spectral signals obtained, affecting the accuracy of qualitative and quantitative analyses. Matrix purification is a promising method to reduce the matrix effect. Chitosan is a natural biopolymer with numerous active functional groups such as amino, acetyl, and hydroxyl groups; these groups can adsorb lipids through hydrophobic and electrostatic interactions. Chitosan also has the advantages of low production cost, stable chemical properties, and convenient modification. Novel chitosan-based materials are promising candidates for lipid purification. In this study, a chitosan membrane was modified with trimethoxyoctadecylsilane (C18-CSM). C18-CSM was prepared through one-step hydrolysis and used as a dispersive solid phase extraction (DSPE) adsorbent to purify the matrix during milk pretreatment. We combined C18-CSM with ultra-high performance liquid chromatography-quadrupole/electrostatic field orbitrap mass spectrometry (UHPLC-Q/Exactive Orbitrap MS) to develop an effective method for the extraction and determination of ofloxacin, enrofloxacin, ciprofloxacin, diazepam, and metronidazole in milk. C18-CSM was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and water contact angle testing. The results indicated that the material has a rough surface and uniformly dense cross-section. The water contact angle of C18-CSM was 104°, indicating its good hydrophobicity. The pretreatment conditions (extraction solvent, dosage of NaCl, extraction frequency, and dosage of C18-CSM) that influenced the recoveries of the five veterinary drugs were investigated in detail. The optimal conditions were established as follows: 5% formic acid in acetonitrile, 1 g NaCl, extraction 1 time, 20 mg C18-CSM. Separation was performed on a Hypersil GOLD VANQUISH column (100 mm×2.1 mm, 1.9 µm). The mobile phase consisted of 0.1% formic acid aqueous solution and 0.1% formic acid in acetonitrile, and was flowed at a rate of 0.3 mL/min. The sample injection volume was 1 µL, and the column temperature was maintained at 25 ℃. Mass spectrometric analysis was performed in positive electrospray ionization mode. To verify the necessity of the purification material, the matrix effect was investigated using the matrix-matched standard curve method. The use of C18-CSM reduced the matrix effects of the five necessity drugs from the range of -22%-8.8% to the range of -13%-3.6%, indicating that C18-CSM is a highly efficient DSPE material. Under optimal conditions, the developed method showed good linearities within the range of 0.5-100 µg/L, with correlation coefficients (r2)≥0.9970. The limits of detection(LODs) and quantification (LOQs) were 0.2 µg/L and 0.5 µg/L, respectively. To assess the accuracy and precision of the method, we prepared milk samples with three spiked levels (low, medium, and high). The recoveries of the five veterinary drugs were ranged from 79.5% to 115%, and the intra-day and inter-day relative standard deviations were 7.0%-13% (n=6) and 1.3%-11% (n=3), respectively. This study provides a simple, accurate, and reliable method for the rapid and simultaneous determination of the five veterinary drug residues in milk.


Asunto(s)
Quitosano , Residuos de Medicamentos , Contaminación de Alimentos , Espectrometría de Masas , Leche , Drogas Veterinarias , Animales , Leche/química , Residuos de Medicamentos/análisis , Cromatografía Líquida de Alta Presión , Quitosano/química , Drogas Veterinarias/análisis , Contaminación de Alimentos/análisis
5.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3526-3539, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39041124

RESUMEN

The method of ultra-high performance liquid chromatography-quadrupole-electrostatic field orbitrap high-resolution mass spectrometry(UHPLC-Q/Orbitrap HRMS)combined with molecular network was developed in this study for rapidly analyzing the chemical components of the Qinggu San reference sample of classical prescription. Firstly, an ACQUITY UPLC BEH Shield RP_(18) column(2.1 mm×100 mm, 1.7 µm)was used, and acetonitrile and 0.1% formic acid were taken as the mobile phases for gradient elution. The flow rate was 0.4 mL·min~(-1), and the column temperature was 30 ℃. Under these conditions, the mass spectrum data were collected in both positive and negative ion modes of the heated electrospray ionization source. Subsequently, the mass spectrum data of the Qinggu San reference sample were uploaded to the Global Natural Products Social Molecular Network(GNPS)platform for calculation and analysis, and a visual molecular network was built with Cytoscape 3.8.2 software. On this basis, the chemical components of the Qinggu San reference sample were identified by fragmentation regularity of standard compounds, retention time, accurate relative molecular weight of HR-MS, characteristic fragment ions information, literature, and databases. Finally, a total of 105 chemical components were identified and speculated in the Qinggu San reference sample, including 19 iridoid glycosides, 23 flavonoids, 15 phenylpropanoids, 11 triterpene saponins, and 37 other components. Meanwhile, two of these components are potential new compounds. The method used in this study not only achieved rapid and accurate identification of chemical components in the Qinggu San reference sample and provided a scie-ntific basis for the study of pharmacological substances and quality control of Qinggu San compound preparations but also provided a refe-rence for the rapid identification of chemical components in traditional Chinese medicine compound preparations.


Asunto(s)
Medicamentos Herbarios Chinos , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Espectrometría de Masas/métodos
6.
Food Chem ; 456: 140001, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38852449

RESUMEN

The effects of refrigerator tempering, two-stage low-temperature tempering (TLT), and a combination of TLT with electrostatic field tempering (TLT-1500/2000/2500/3000) on the physicochemical and structural properties of the myofibrillar protein (MPs) in Longissimus dorsi of Tan mutton were investigated. The results from differential scanning calorimetry and dynamic rheology indicated that TLT-2000/2500 had the least impact on the thermal stability of MPs. While the carbonyl and dityrosine contents of MPs in TLT-2000/2500 were the lowest, the total sulfhydryl content and Ca2+-ATPase activity were the highest, suggesting that TLT-2000/2500 preserved the properties of MPs more effectively. The smaller and uniformly distributed particle size, highest zeta potential, and SDS-PAGE analysis confirmed that TLT-2000/2500 had minimal impact on the aggregation and degradation of MPs. Additionally, results from surface hydrophobicity, Fourier transform infrared spectroscopy, intrinsic fluorescence, and UV second-derivative absorption spectra suggested that TLT-2000/2500 was more conducive to stabilizing the primary, secondary, and tertiary structures of MPs.


Asunto(s)
Frío , Proteínas Musculares , Electricidad Estática , Proteínas Musculares/química , Animales , Miofibrillas/química , Congelación , Conservación de Alimentos , Músculo Esquelético/química , Estabilidad Proteica
7.
Food Res Int ; 188: 114479, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823840

RESUMEN

Freezing is a commonly used method for long-term storage of chicken wing products, of which disadvantages are mainly the product damage caused in the process. The aim of this study was to improve the freezing quality of chicken wings with a combination of phosphorus-free water retaining agent (WRA) and high-voltage electrostatic field (HVEF). The effect of WRA acting at different HVEF intensities (0, 1, 3, and 5 kV/cm) on the quality attributes of frozen chicken wings was investigated in 0, 7, 14, 21, 28 and 35 days of frozen storage. The results showed that WRA had functional properties of significantly improving the water holding capacity (WHC), color and texture properties, and fat stability of frozen chicken wing samples. The application of HVEF on this basis helped to promote the absorption of WRA and inhibit oxidative deterioration of chicken wing samples during frozen storage. Meanwhile, the combination of HVEF at 3 kV/cm was more prominent in terms of improvement in WHC, moisture content, color, protein secondary structure and microstructure integrity. This advantage had been consistently maintained with the extension of storage time. Overall, WRA combined with HVEF of 3 kV/cm can be used as an effective strategy to improve the freezing quality of chicken wing samples and has the potential to maintain the frozen chicken wing samples quality for a long time.


Asunto(s)
Pollos , Congelación , Electricidad Estática , Agua , Alas de Animales , Animales , Alas de Animales/química , Agua/química , Conservación de Alimentos/métodos , Almacenamiento de Alimentos/métodos , Fósforo/análisis
8.
Heliyon ; 10(11): e32191, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38933942

RESUMEN

In this research, the behavior of an electric field caused by the mechanism of electrostatic painting has been investigated using the finite element method and FLEXPDE software. The aim of this study is to optimize the electrostatic spraying performance of the paint sprayer by investigating the potential field in the paint nozzle. The results show that the potential and the electric field can be solved at any given point and displayed graphically. Additionally, changing the 2D rectangular covering surface to a circular one increased the potential value reached on the covering surface by 10 percent. The amount of electric potential and electrostatic field in the direction perpendicular to the x-axis is shown to be symmetrical and equal for y > 0 and y < 0. The size of the spray opening/hole is a significant factor in reaching paint particles to the coating surface. Doubling the size of the spray opening increased the potential value on the coating surface by 54.3 percent, while halving it decreased the potential value by 75 percent.

9.
Plant Foods Hum Nutr ; 79(2): 260-269, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38761282

RESUMEN

High voltage electrostatic field processing (HVEF) is a food preservation procedure frequently used to produce healthy minimally processed fruits and vegetables (F&V) as it reduces the growth of microorganisms and activates or inhibits various enzymes, thus retarding their natural ripening while preserving and even enhancing native nutritional quality and sensory characteristics. HVEF is one of the various nonthermal processing technology (NTPT) regarded as abiotic stress that can activate the antioxidant system of F&V and can also inhibith spoilage enzymes as, polyphenol oxidase (PPO), lipoxygenase (LOX), pectin methylesterase (PME), polygalacturonase (PG), cellulase (Cel), ß-xylosidase, xyloglucan and endotransglycosylase/hydrolase, bringing positive effect on hardness, firmness, colour attributes, electric conductivity, antioxidant compounds, microstructure and decreasing electrolyte leakage (EL), malondialdehyde (MDA) contents and browning degree. This technique can also increase the contents of fructose, glucose, and sucrose and decrease the production of CO2 and H2O2. Additionally, it has been reported that HVEF could be used with other treatments, such as modified atmosphere packaging (MAP) and acidic electrolyzed water (AEW) treatment, to enhance its effects. Future works should deepen on elucidating the activation of the antioxidant systems by applying HVEF of critical enzymes related to the synthesis pathways of phenolic compounds (PC) and carotenoids (Car). Holistic approaches to the effects of HVEF on metabolism based on systems biology also need to be studied by considering the overall biochemical, physical, and process engineering related aspects of this technique.


Asunto(s)
Antioxidantes , Manipulación de Alimentos , Frutas , Verduras , Frutas/química , Antioxidantes/metabolismo , Antioxidantes/análisis , Manipulación de Alimentos/métodos , Conservación de Alimentos/métodos , Electricidad Estática , Valor Nutritivo , Humanos
10.
Food Chem ; 449: 139306, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38615635

RESUMEN

Cinnamaldehyde nanoemulsion (CNE) was obtained through ultrasonication, using Tween 80 as an emulsifier. The CNE was then applied to chilled pork in conjunction with a high-voltage electrostatic field (HVEF) to mitigate quality deterioration during refrigerated storage. The particle size of CNE ranged from 60 to 150 nm and was positively correlated with the amount of added cinnamaldehyde. The polydispersity index and zeta potential of CNE ranged from 0.25 to 0.30 and - 12 to -11 mV, respectively, indicating a narrow size distribution and stability. The CNE released the odor specific to cinnamaldehyde to pork in the first 4 days of chilling; however, it had little effect on the taste. HVEF pretreatment reduced the initial total viable count (TVC) in pork by 1.14 log cycle. The combination of CNE with HVEF successfully slowed down the loss of moisture, decrease in pH, and accumulation of total volatile basic nitrogen in pork during refrigeration. Furthermore, it mitigated the increase in TVC of pork. Therefore, this integrated method appears to be suitable for extending the shelf life of chilled pork.


Asunto(s)
Acroleína , Acroleína/análogos & derivados , Emulsiones , Conservación de Alimentos , Electricidad Estática , Acroleína/química , Animales , Porcinos , Emulsiones/química , Conservación de Alimentos/métodos , Conservación de Alimentos/instrumentación , Almacenamiento de Alimentos , Gusto , Tamaño de la Partícula , Humanos , Nanopartículas/química , Refrigeración
11.
Angew Chem Int Ed Engl ; 63(19): e202402440, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38426574

RESUMEN

Perfluoroalkyl substances (PFASs) are persistent and toxic to human health. It is demanding for high-efficient and green technologies to remove PFASs from water. In this study, a novel PFAS treatment technology was developed, utilizing polytetrafluoroethylene (PTFE) particles (1-5 µm) as the catalyst and a low frequency ultrasound (US, 40 kHz, 0.3 W/cm2) for activation. Remarkably, this system can induce near-complete defluorination for different structured PFASs. The underlying mechanism relies on contact electrification between PTFE and water, which induces cumulative electrons on PTFE surface, and creates a high surface voltage (tens of volts). Such high surface voltage can generate abundant reactive oxygen species (ROS, i.e., O2⋅-, HO⋅, etc.) and a strong interfacial electrostatic field (IEF of 109~1010 V/m). Consequently, the strong IEF significantly activates PFAS molecules and reduces the energy barrier of O2⋅- nucleophilic reaction. Simultaneously, the co-existence of surface electrons (PTFE*(e-)) and HO⋅ enables synergetic reduction and oxidation of PFAS and its intermediates, leading to enhanced and thorough defluorination. The US/PTFE method shows compelling advantages of low energy consumption, zero chemical input, and few harmful intermediates. It offers a new and promising solution for effectively treating the PFAS-contaminated drinking water.

12.
3D Print Addit Manuf ; 11(1): 251-260, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38389683

RESUMEN

In this study, a fused deposition modeling 3D printer is modified into a motionless printer, which has the potential to print patterns in a noiseless manner possibly with improved resolution and in less delay time by eliminating the movement of nozzle or collector. In this motionless 3D printer, both nozzle and collector are fixed, whereas the extruded polymer melt is driven by high-voltage switching points on the collector. By this approach, simple 3D patterns such as multilayer circles, squares, and walls have been printed using two polymer melts with different rheological properties, high-temperature polylactic acid and acrylonitrile butadiene styrene. Furthermore, a discretized, nonisothermal bead and spring model is developed to probe printing patterns. The effect of parameters, such as number of conducting points, switching time, voltage and material properties on the accuracy of the printed simple 3D patterns, are thoroughly studied, and we demonstrated that various fiber collection patterns obtained from the experiments are favorably compared with the simulation results.

13.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256154

RESUMEN

Three-dimensional (3D) hepatocyte models have become a research hotspot for evaluating drug metabolism and hepatotoxicity. Compared to two-dimensional (2D) cultures, 3D cultures are better at mimicking the morphology and microenvironment of hepatocytes in vivo. However, commonly used 3D culture techniques are not suitable for high-throughput drug screening (HTS) due to their high cost, complex handling, and inability to simulate cell-extracellular matrix (ECM) interactions. This article describes a method for rapid and reproducible 3D cell cultures with ECM-cell interactions based on 3D culture instrumentation to provide more efficient HTS. We developed a microsphere preparation based on a high-voltage electrostatic (HVE) field and used sodium alginate- and collagen-based hydrogels as scaffolds for 3D cultures of HepG2 cells. The microsphere-generating device enables the rapid and reproducible preparation of bioactive hydrogel microspheres. This 3D culture system exhibited better cell viability, heterogeneity, and drug-metabolizing activity than 2D and other 3D culture models, and the long-term culture characteristics of this system make it suitable for predicting long-term liver toxicity. This system improves the overall applicability of HepG2 spheroids in safety assessment studies, and this simple and controllable high-throughput-compatible method shows potential for use in drug toxicity screening assays and mechanistic studies.


Asunto(s)
Hidrogeles , Hígado , Humanos , Microesferas , Células Hep G2 , Hidrogeles/farmacología , Electricidad Estática
14.
J Sci Food Agric ; 104(4): 2359-2371, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37985177

RESUMEN

BACKGROUND: Large yellow croaker is highly perishable during storage because of high protein and moisture content. The degradation of the fish is mainly attributed to microbial growth and enzyme activity, so it is important to find an efficient storage method to extend its shelf life. METHODOLOGY: This study investigated the effect of a low-voltage electrostatic field combined with partial freezing treatment on the physicochemical properties of myofibrillar protein (MP) and metabolomic analysis of large yellow croaker during preservation. The samples in chilled storage (C), partial freezing storage (PF) and 6 kV/m low-voltage electrostatic field partial freezing storage (LVEF-PF) were analyzed during an 18 day storage period. RESULTS: In comparison with the C and PF groups, LVEF-PF delayed the oxidation of MP by inhibiting the formation of carbonyl groups (2.25 nmol/mg pro), and maintaining higher sulfhydryl content (29.73 nmol/mg pro). Fourier transform infrared (FTIR) spectroscopy and fluorescence spectroscopy analysis also demonstrated that the LVEF-PF treatment maintained the stability of the protein structure by increasing the a-helix ratio (19.88%) and reducing the random coil ratio (17.83%). Scanning electron microscopy showed that, compared with the LVEF-PF group, there was more degeneration and aggregation of MP in the C and PF groups after 18 days' storage. The results of untargeted metabolomic analysis showed that 415 kinds of differential metabolites were identified after storage, and the difference levels of differential metabolites were least between the samples treated with LVEF-PF stored on the ninth day and the fresh samples. The main differential metabolic pathways during storage were amino acid metabolism and lipid metabolism. CONCLUSION: The LVEF-PF treatment could maintain the stability of myofibrillar protein in large yellow croaker during storage. These results showed a potential application of the LVEF-PF method for aquatic product preservation. © 2023 Society of Chemical Industry.


Asunto(s)
Almacenamiento de Alimentos , Perciformes , Animales , Congelación , Almacenamiento de Alimentos/métodos , Electricidad Estática , Proteínas
15.
Food Chem ; 439: 138096, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039609

RESUMEN

In this study, the effect of different intensity electrostatic fields on the water holding capacity (WHC) of fresh meat during the early postmortem period in controlled freezing point storage (CFPS) were investigated. Significantly lower cooking loss were found in low voltage electrostatic field (LVEF) and high voltage electrostatic field (HVEF) compared to the control group (CK) (p < 0.05). The myofibril fragmentation index and microstructure results suggested that the sample under HVEF treatment remained relatively intact. It has been revealed that the changes in actomyosin properties under electrostatic field treatment groups were due to the combination and dissociation of actomyosin binding into myofilament concentration, which consequently affects the muscle WHC. The study further demonstrated that the electrostatic field, especially HVEF, might increase the WHC of fresh meat by affecting the distribution of water molecules and physiochemical properties of actomyosin during the early postmortem period.


Asunto(s)
Actomiosina , Agua , Congelación , Electricidad Estática , Carne/análisis , Miofibrillas
16.
Food Chem ; 438: 138055, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38011792

RESUMEN

The effect of low-voltage electrostatic field (LVEF) assisted -9 °C (LVEF-9) and -12 °C (LVEF-12) frozen, non-LVEF-assisted -9 °C (NLVEF-9) and -12 °C (NLVEF-12) frozen, and conventional frozen (CF-18, -18 °C) storage on the muscle microstructure and the oxidative denaturation of the lamb protein during the subsequent frozen storage process after finishing initial freezing was investigated. Compared with NLVEF-9, LVEF-9, and NLVEF-12, LVEF-12 maintained the better integrity of muscle microstructure, demonstrated by smaller holes, more complete Z-line and M-line, and no significant difference with CF-18 (P > 0.05). Furthermore, LVEF-12 effectively inhibited protein oxidative denaturation as shown by the lower carbonyl content, surface hydrophobicity, and higher total/active sulfhydryl groups and Ca2+-ATPase activity. Moreover, LVEF-12 effectively maintained the integrity of the secondary and tertiary structure of proteins, reduced cross-linking aggregation of proteins, and sustained better functional properties, as shown by higher α-helix content, fluorescence intensity, protein solubility, and lower R-value, disulfide bonds.


Asunto(s)
Proteínas Musculares , Estrés Oxidativo , Carne Roja , Animales , Congelación , Proteínas Musculares/química , Oxidación-Reducción , Ovinos , Electricidad Estática
17.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1030932

RESUMEN

ObjectiveTo investigate the potential active ingredients and targets of Baihu Jia Renshentang(BHJRST) for the treatment of obesity combined with type 2 diabetes mellitus(T2DM) by network pharmacology and in vivo experiments. MethodUltra performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap MS) was used to analyze and identify the material basis of BHJRST. Subsequently, potential targets for the action of the active ingredients were queried in databases such as ChEMBL, Therapeutic Target Database(TTD), YaTCM, DisGeNET and Traditional Chinese Medicine on Immuno-Oncology(TCMIO), and the shared targets were identified by taking the intersection of these targets with disease targets. The shared targets were imported into the STRING database to construct a protein-protein interaction(PPI) network, the hub genes were identified by cytoHubba plug-in, and molecular docking was used to validate the binding energy of the hub genes to the bioactive ingredients in BHJRST. Meanwhile, the shared targets were imported into the DAVID platform for gene ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis. The predicted results were subsequently verified by animal experiments. Eighteen 8-week-old male skeletal muscle insulin-like growth factor-1 receptor dysfunction(MKR) mice were induced by a high-fat diet for 12 weeks in order to prepare a mouse model of obesity combined with T2DM. The mice were randomly divided into the model group, metformin group(0.2 g·kg-1) and BHJRST group(27 g·kg-1 in raw material), and another 6 male FVB mice of the same age as the normal group. The mice in each group were were given the corresponding drugs by gavage, and the normal and model groups were given the same amount of distilled water by gavage, 1 time/d for 6 consecutive weeks. At the end of administration, the body mass, Lee's index, fasting blood glucose(FBG), oral glucose tolerance test(OGTT) of mice in each group were examined, and the pathological morphology of the white adipose tissue of the epididymis was observed, and the expression of the mRNA of the hub genes in the white adipose tissue of the epididymis was detected by real-time fluorescence quantitative polymerase chain reaction(Real-time PCR). ResultA total of 200 bioactive components of BHJRST were identified, of which 64 bioactive components were reverse-matched to 384 targets, and a total of 308 targets were associated with obesity combined with T2DM. Hub genes included mitogen-activated protein kinase 1(MAPK1), signal transducer and activator of transcription 3(STAT3), MAPK3, interleukin(IL)-2, Janus kinase 1(JAK1), nuclear transcription factor-κB p65(RELA), estrogen receptor 1(ESR1), transcription factor AP-1(JUN), MAPK14 and lymphocyte-specific protein tyrosine kinase(LCK). GO functional annotation showed that it was mainly enriched in cytoplasm, cell membrane and nucleus, and was closely related to important biological processes such as peptide serine phosphorylation, protein phosphorylation and inflammation. In KEGG enrichment analysis, metabolic pathway, lipid and atherosclerosis, phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) and MAPK signal pathways were significantly enriched. The molecular docking results showed that the hub genes had a stable binding relationship with 10 bioactive components, including quercetin, isoliquiritigenin, and morin, in BHJRST. The results of animal experiments showed that BHJRST could significantly reduce body mass, Lee's index and FBG levels(P<0.01) in mice with obesity combined with T2DM, improve the pathological changes of white adipose tissue, and down-regulate the the mRNA expression of the hub genes in white adipose tissue of the epididymis(P<0.01). ConclusionIn this study, 10 potentially active components such as quercetin, isoliquiritigenin, and morin in BHJRST are identified through network pharmacology and animal experiments, and it is possible to treat obesity combined with T2DM by regulating lipid and atherosclerosis, phosphatidylinositol PI3K/Akt and MAPK signal pathways, which provides important clues and theoretical basis for the study of its mechanism and clinical application.

18.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1032333

RESUMEN

Objective To investigate the effects and possible mechanism of electret and 5-fluorouracil(5-FU)on the growth of scar fibroblasts. Methods The effect of +5000 V electret combined with different concentrations of 5-FU on the proliferation of scar fibroblasts was detected by automatic enzyme labeling instrument. The apoptosis of scar fibroblasts and the mRNA expression of p53 and other apoptotic genes were studied by fluorescence microscopy and RT-PCR technology under the action of electrostatic field. Results ① After the treatment of positive electret and different concentrations of 5-FU for 72 h, the cell proliferation rate decreased, and the inhibition rate of scar cells in the +5000 V electret+160 μg/ml 5-FU group was (0.15±0.051)%. ②+5000 V electret group could promote the apoptosis of scar fibroblasts; The number of apoptotic cells in +5000 V electret and 5-FU group was higher than that in 5-FU group. ③The mRNA expression levels of four apoptotic genes in the +5000 V electret group were increased, and the expression levels of four signature genes in the +5000 V electret and 5-FU group were increased compared with those in the 5-FU group. Conclusion The combination of positive electret and 5-FU had a synergistic effect on inhibiting cell growth. The mechanism of positive electret inhibiting scar cell growth may be through promoting the expression of apoptosis gene, and then affecting the growth state of cells to inhibit cell growth.

19.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1036242

RESUMEN

ObjectiveTo explore the potential mechanism of different processed products of Baiyaojian and its compound Xiangmei pills in rats with ulcerative colitis(UC) by comparing the pharmacodynamic and metabolomic differences. MethodEighty SD rats were acclimatized and kept for 3 d, and randomly divided into 8 groups[blank group, model group, mesalazine group(0.4 g·kg-1), Baiyaojian group(1.89 g·kg-1), stir-fried Baiyaojian group(1.89 g·kg-1), carbonized Baiyaojian group(1.89 g·kg-1), and Xiangmei pills low and high dose groups(1.89, 5.67 g·kg-1)], with 10 rats in each group. Rats in the blank group were administered physiological saline by gavage, and rats in the remaining 7 groups were orally administered 5% dextran sodium sulfate(DSS) solution daily for 8 consecutive days to induce UC model. After successful modeling, each dosing group was given the corresponding dose of drug solution by gavage, and the blank and model groups were given equal amounts of saline by gavage, and the drug was administered continuously for 8 d. Then serum levels of tumor necrosis factor-α(TNF-α), interleukin(IL)-6, IL-10 and IL-1β were measured by enzyme-linked immunosorbent assay(ELISA), hematoxylin-eosin(HE) staining was used to observe the histopathological changes of colon tissue, the proportion of T helper 17 cells(Th17) and regulatory T cells(Treg) in the peripheral blood of rats in each group was detected by flow cytometry. The endogenous metabolites in serum of rats were detected by ultra performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap MS), and the differential metabolites were characterized by combining principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA), and were analyzed according to the variable importance in the projection(VIP) value>1.0 and P<0.05, and potential metabolic pathways were analyzed according to Human Metabolome Database(HMDB). ResultCompared with the blank group, the colon tissue of the model group was congested and the mucosa was ulcerated, the colon length was significantly reduced(P<0.01) and the quality was significantly increased(P<0.05), the proportion of Th17/Treg in the peripheral blood and the serum levels of TNF-α, IL-6 and IL-1β were significantly increased, while the IL-10 expression wassignificantly reduced(P<0.05, P<0.01). Compared with the model group, the colon tissue of UC rats in each treatment group was improved with scattered ulcers, reduced inflammatory cell infiltration, significantly increased colon length, and significantly decreased mass(P<0.05), the proportion of Th17/Treg in the peripheral blood decreased, the expression of TNF-α,IL-6 and IL-1β was significantly reduced(P<0.05, P<0.01), while the IL-10 expression was significantly increased(P<0.01). The therapeutic effect of different administration groups on UC was in the order of high dose group of Xiangmei pills>low dose group of Xiangmei pills>carbonized Baiyaojian group>stir-fried Baiyaojian group>Baiyaojian group. And a total of 26 differential metabolites were screened in the metabolomics results. Compared with the blank group, 14 differential metabolites were up-regulated and 5 metabolites were down-regulated in the model group, and 14, 9, 14, 12 and 17 metabolites could be recalled in the Baiyaojian group, stir-fried Baiyaojian group, carbonized Baiyaojian group, Xiangmei pills low and high dose groups. The main metabolic pathways involved were citrate cycle pathway, pantothenic acid and coenzyme A biosynthesis pathway, aromatic hydrocarbon receptor(AhR) signaling pathway, glycolysis/gluconeogenesis pathway. ConclusionThe therapeutic effect of Baiyaojian on UC is significantly improved after charcoal stir-frying, and the efficacy is more prominent when combined with Angelicae Dahuricae Radix and Mume Fructus Carbonisata, which can provide a basis for the development of Baiyaojian compound preparations.

20.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1003773

RESUMEN

ObjectiveTo identify the prototypical components and metabolites absorbed into blood and cerebrospinal fluid of Schisandrae Chinensis Fructus(SCF) based on sequential metabolism combined with liquid chromatography-mass spectrometry. MethodBlood and cerebrospinal fluid samples of integrated metabolism, intestinal metabolism and hepatic metabolism were collected from male SD rats after gavage and in situ intestinal perfusion administration, and ultra-performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry(UPLC Q-Exactive Orbitrap MS) was used to analyze and compare the differences in the spectra of SCF extract, blank plasma, administered plasma, blank cerebrospinal fluid and administered cerebrospinal fluid with ACQUITY UPLC BEH Shield RP18 column(2.1 mm×100 mm, 1.7 µm), the mobile phase was acetonitrile(A)-0.1% formic acid aqueous solution(B) for gradient elution(0-7 min, 95%B; 7-12 min, 95%-35%B; 12-17 min, 35%-15%B; 17-20 min, 15%-12%B; 20-22 min, 12%-5%B; 22-23 min, 5%B; 23-25 min, 5%-95%B; 25-28 min, 95%B). And heated electrospray ionization(HESI) was used with positive and negative ion modes, the scanning range was m/z 100-1 500. The prototypical constituents and their metabolites absorbed into blood and cerebrospinal fluid of SCF were identified according to the retention time, characteristic fragments, molecular formulae and the information of reference substances. ResultA total of 42 chemical components were identified in the extract of SCF, including lignans, flavonoids, amino acids, tannins, and others, of which lignans were the main ones. A total of 27 prototypical components and 14 metabolites were identified in plasma samples from different sites. A total of 15 prototypical components and 9 metabolites were identified in cerebrospinal fluid. The main metabolic reactions involved in the formation of metabolites were mainly demethylation, methylation, demethoxylation and hydroxylation. ConclusionThrough the systematic identification of the prototypical components and metabolites of SCF in rats, it provides data support for further better exploring the material basis of SCF in the treatment of central nervous system diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA