Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 14(1): 20326, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223268

RESUMEN

With the development of industry and agriculture, eutrophication caused by increasing amounts of phosphorus in the environment has attracted people's attention. On the other hand, copper tailings (CT) is a kind of solid waste with large quantity, large area, and easy to cause groundwater and soil pollution. CT is also a potential resource because of its large specific surface area. CT is intended to be used as an adsorbent for removal phosphate in water, but trace heavy metals and a small amount of phosphate in CT may bring negative effects. Calcium hydroxide (Ca(OH)2) was used to modify CT (CCT), hoping to fix the heavy metals and phosphate in CT at the same time. It was found that the removal capacity of CCT was significantly higher than that of CT. The process of phosphate removal by CCT involves electrostatic sorption and surface precipitation, and there is a synergistic effect between CT and Ca(OH)2. The phosphate removal rate of CCT-0.4 increased with the increase of pH value under alkaline conditions. The XRD patterns of phosphate sorption by CCT mean that Ca3(PO4)2, Ca5(PO4)3(OH) and AlPO4 exist in CCT after phosphate removal, indicating that surface precipitation occurs during the removal process. In summary, the removal mechanism of phosphate by CCT is mainly electrostatic attraction and surface precipitation.

2.
Sci Total Environ ; 946: 174458, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38964404

RESUMEN

Biogas residues (i.e., digestate) are rich in NH4+ that has great agricultural value but environmental risk if not recycled. Biochar can be an effective adsorbent retaining NH4+ from digestate. However, it remains unclear how the unique composition of digestate affects the capacity and mechanisms of NH4+ adsorption on biochar. This study examined the mechanisms and driving factors of NH4+ recovery from digestate containing different molecular-weight organic particles by using wood-derived biochar with or without H2O2 modification. Four solutions were prepared, including pure NH4+, synthetic NH4+ with multiple cations mimicking digestate solution, supernatant of digestate with small organic particles and dissolved organic matter, and digestate mixture containing supernatant and large organic particles. The results showed that compared with pure NH4+ solution, the adsorbed NH4+ was 42% lower in the synthetic NH4+ solution with multiple cations but was 2.2 time higher in the supernatant of digestate on two biochars following 48-h adsorption. Modified biochar did not change NH4+ adsorption in pure NH4+ solution despite higher specific surface area than raw biochar, but it increased the adsorption of NH4+ in digestate solutions with high pH (e.g., 4.03 vs. 3.37 mg N g-1 for modified and raw biochar, respectively, in the supernatant of digestate). Compared with the supernatant, the large organic particles in digestate mixture significantly but slightly decreased NH4+ adsorption on modified but not raw biochar. The desorption rate of NH4+ on the biochar was up to 74%-100%, and it was not supressed by the adsorption of organic particles in digestate. The findings here demonstrate the dominant role of electrostatic attraction in NH4+ adsorption, the important role of high pH and organic particles in digestate in facilitating NH4+ adsorption on biochar, and the suitability of the wood-derived biochar in recovering NH4+ from digestate and releasing N for agricultural application.


Asunto(s)
Compuestos de Amonio , Carbón Orgánico , Madera , Carbón Orgánico/química , Madera/química , Adsorción , Concentración de Iones de Hidrógeno , Anaerobiosis , Alimento Perdido y Desperdiciado
3.
Food Chem ; 460(Pt 1): 140581, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39067384

RESUMEN

Zein nanoparticle (ZNP) is at the forefront of research on Pickering emulsions, valued for its self-assembling and surfactant-free nature. Nevertheless, its emulsion stability is undermined by inadequate amphiphilicity. Colloidal lignin particle (CLP), characterized by its antithetical charge and amphiphilic nature, appears the promising for augmenting the stability of ZNP-based emulsion. This study meticulously investigated the impact of CLP on the colloidal properties and emulsifying performance of ZNP. The results revealed that electrostatic interactions between ZNP and CLP significantly mitigated the charge of ZNP and improved its hydrophilic/lipophilic balance. Under optimized conditions (1.0 wt% particle concentration, pH 4.0, 50% oil content), CLP notably reduced droplet sizes (41-225 µm) and enhanced the stability of ZNP-based Pickering emulsion, particularly at ZNP/CLP ratios of 6:4 and 5:5. In nature, CLP improved the stability ZNP-based Pickering emulsions via increased interfacial adsorption, enhanced steric hindrance, and reinforced viscous structure.


Asunto(s)
Coloides , Emulsiones , Lignina , Nanopartículas , Tamaño de la Partícula , Zeína , Zeína/química , Emulsiones/química , Nanopartículas/química , Lignina/química , Coloides/química , Interacciones Hidrofóbicas e Hidrofílicas
4.
ACS Appl Mater Interfaces ; 16(25): 32748-32761, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38861705

RESUMEN

Layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolytes (PEs) is usually performed on a conventional ultrafiltration base substrate (negative zeta potential) by depositing a cationic PE as a first layer. Herein, we report the facile and fast formation of high performance molecular selective membrane by the nonelectrostatic adsorption of anionic PE on the polyvinylidene fluoride (PVDF, zeta potential -17 mV) substrate followed by the electrostatic LbL assembly. Loose nanofiltration membranes have been prepared via both concentration-polarization (CP-LbL, under applied pressure) driven and conventional (C-LbL, dipping) LbL self-assembly. When the first layer is poly(styrene sodium) sulfonic acid, the LbL assembled membrane contains free -SO3- groups and exhibits higher rejection of Na2SO4 and lower rejection of MgCl2. The reversal of salt rejection occurs when the first layer is quaternized polyvinyl imidazole (PVIm-Me). The membrane (five layers) prepared by first depositing PStSO3Na shows higher rejection of several dyes (97.9 to >99.9%), higher NaCl to dye separation factor (52-1800), and higher dye antifouling performance as compared to the membrane prepared by first depositing PVIm-Me (97.5-99.5% dye rejection, separation factor ∼40-200). However, the C-LbL membrane requires a longer time of self-assembly or higher PE concentration to reach a performance close to the CP-LbL membranes. The membranes exhibit excellent pressure, pH (3-12), and salt (60 g L-1) stability. This work provides an insight for the construction of low fouling and high-performance membranes for the fractionation of dye and salt based on the LbL self-assembly sequence.

5.
Sci Total Environ ; 946: 174254, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38925388

RESUMEN

Nanoplastics are difficult to remove from water using conventional flotation processes due to their stability and resistance to biodegradation. Here, polystyrene nanoplastics (PSNPs) were selected as the object of study. In addition, chitosan (CTS), an environmentally friendly natural cationic polymer, was selected to modify the air flotation process to improve the separation of PSNPs using air flotation. Adding chitosan effectively enhanced the removal of PSNPs using air flotation from 3.1 % to 96.7 %. The residual concentration decreased from 9.69 mg/L to 0.33 mg/L. Removal of PSNPs by CTS-modified air flotation was maintained at 92.8 % even when the air flotation time was significantly shortened. The zeta potential alterations demonstrated robust electrostatic attraction within the CTS-modified air flotation process. The contact angle measurements indicated that incorporating CTS could enhance the hydrophobic interaction between bubbles and PSNPs. PSNPs particles around 100 nm agglomerated to form floating flocs with a particle size of more than 4500 nm. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) images confirmed the presence of tight adhesion between PSNPs and CTS, indicating the presence of bridging adsorption during the process. The major PSNPs removal mechanisms included electrostatic attraction, enhancement of hydrophobicity, and bridging adsorption. Increasing the aeration volume could improve the removal rate, but this improvement was finite. Weakly acidic and low ionic strength conditions favored PSNPs removal. The CTS-modified air flotation process showed great potential for PSNPs removal from real water bodies.

6.
Skin Res Technol ; 30(4): e13672, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38591218

RESUMEN

BACKGROUND: Hyaluronic acid (HA) is a widely used active cosmetic ingredient. Its multiple skin care benefits are modulated by its molecular weight. Low molecular weight (LMW) HA can penetrate the skin, but high molecular weight (HMW) HA remains at the surface. Here, we assessed how vectorization of HMW HA with bentonite clay-achieved with an innovative technology-enhances its cosmetic and hydrating properties. MATERIALS AND METHODS: The two HA forms were applied to skin explants; their penetration and smoothing effects were monitored by Raman spectroscopy and scanning electron microscopy. The two forms were biochemically characterised by chromatography, enzyme sensitivity assays, and analysis of Zeta potential. Cosmetics benefits such as, the smoothing effect of vectorised-HA was assessed in ex vivo experiments on skin explants. A placebo-controlled clinical study was finally conducted applying treatments for 28 days to analyse the final benefits in crow's feet area. RESULTS: Raman spectroscopy analysis revealed native HMW HA to accumulate at the surface of skin explants, whereas vectorised HMW HA was detected in deeper skin layers. This innovative vectorisation process changed the zeta potential of vectorised HMW HA, being then more anionic and negative without impacting the biochemical structure of native HA. In terms of cosmetic benefits, following application of vectorised HMW HA ex vivo, the skin's surface was visibly smoother. This smoothing was clinically confirmed, with a significant reduction in fine lines. CONCLUSION: The development of innovative process vectorising HMW HA allowed HMW HA penetration in the skin. This enhanced penetration extends the clinical benefits of this iconic cosmetic ingredient.


Asunto(s)
Ácido Hialurónico , Envejecimiento de la Piel , Humanos , Ácido Hialurónico/farmacología , Ácido Hialurónico/química , Arcilla , Peso Molecular , Piel
7.
Sci Total Environ ; 928: 172429, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38621531

RESUMEN

Adsorbable organic halogen (AOX) represents the total amount of halogenated organics that can be adsorbed on activated carbon (AC) from samples. Measuring AOX is crucial for assessing water quality, and any erroneous estimation of AOX risks misleading decision-makers. This study demonstrated two overlooked factors that may introduce biases to AOX measurement. The first one relates to impurities in the gas transfer tubes of AOX combustion system and in the pressurized gas of AOX separation system, which resulted in significant fluctuations and high blank values (8.5-118.0 µg-Cl/L). The solutions of above issues are to warming up the combustor for several runs and replacing the pressurized air with argon gas in the separator, which could drop the blank AOX values to 9.1-10.0 µg-Cl/L. The second one involves coexisting chloride ion (Cl-) during AOX analysis, which interfered with AOX measurements (T. test, p < 0.05) even at low concentration levels (e.g., 10 mg/L Cl- in samples with 100 µg-Cl/L p-chlorophenol). Results show that AC captured 0.02-0.11 % of Cl-, resulting in 17.7-24.5 µg-Cl/L AOX responses in control samples containing 15-130 mg/L Cl- only. Furthermore, a significant mass imbalance of Cl- (3.58-8.39 %) during analysis process suggests a potential impact of residual Cl- on subsequent samples. By comparing synthetic and actual waters, samples with low dissolved organic carbon (DOC) were more susceptible to interference from Cl- on AOX measurement than those with high DOC. These findings underscore the pressing need to optimize existing AOX methods or develop alternative analytical methods to ensure accurate water quality assessment.

8.
J Hazard Mater ; 467: 133659, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38350314

RESUMEN

Arsenic is a harmful associated element in antimony ore, which might bring out the risk of leakage during complex industrial production of high-purity antimony. Herein, we reported a novel and efficient way to remove the trace arsenic impurity from acidic SbCl3 solution by utilizing copper-system bimetallic particles. Specifically, galvanically coupled Cu2Sb/Cu was in-situ synthesized by introducing precursor copper powder to the specific SbCl3 solution. DFT studies revealed that Sb(III) was easily reduced by Cu to form Cu2Sb due to the strong adsorption of Sb(III) on Cu (111) crystal plane. The Cu2Sb/Cu coupling exhibited excellent activity for As(III) reduction, over 99.4% arsenic were removed under optimal conditions and residual arsenic concentration dropped to only 2.7 mg L-1. Crucially, Sb(III) concentration changes could be neglected. Besides, the dearsenization residues were extensively characterized to analyze the evolvement and cause in the reaction process. The results confirmed that the arsenic removal mechanisms by Cu2Sb/Cu particles were multi-affected, including adsorption, displacement, and precipitation. And the strong electrostatic attraction of AsO+ under high HCl conditions was identified as a key step to achieving dearsenization. This research will provide a theoretical guidance for the green synthesis of high-purity antimony and related products.

9.
Chemosphere ; 349: 140912, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38065259

RESUMEN

Nanoscale hydrated zirconium oxide (HZO) holds great potential in groundwater purification due to its ability to form inner-sphere coordination with arsenate. Despite being frequently used, especially as encapsulations in host materials for practical application in water treatment, the adsorption mechanisms of solutes on HZO are not appropriately explored, in particular for arsenate adsorption. In this study, we investigated the Zr-As coordination configuration and identified the most credible Zr-As configuration using surface complexation modeling (SCM), XPS and FT-IR analysis. The corresponding intrinsic coordination constants (Kintr) values was calculated by SCM, and the nanoconfinement effects were distinguished by comparing bare HZO with the HZO nanoparticles (NPs) encapsulated inside the strongly basic anion exchanger D201. Potentiometric titration suggests that the surface Zirconium hydroxyl groups (≡ZrOH) mainly exist in protonated form (≡ZrOH2+). Batch adsorption experiments demonstrate that the D201 hosts could adsorb As(V) through ion exchange by the quaternary ammonium groups under the low ionic strength (≤0.01 M NaNO3) and at pH > 6. The nanocomposite (HZO@D201) exhibits a higher adsorption capacity in a wide range of pH (3-10) and ionic strength (0.001-0.1 M NaNO3) than bare HZO. SCM simulations reveal that the coordination configuration of diprotonated monodentate mononuclear (MM-H2) dominates at pH 3-6, while deprotonated bidentate binuclear (BB-H0) dominates at pH > 7. For each configuration, the intrinsic coordination constants (Kintr) of HZO@D201 (10-0.66 and 10-16.10, respectively) are significantly higher than those of bare HZO (10-12.24 and 10-44.42, respectively), indicating a superior chemical bonding affinity caused by nanoconfinement. The obtained Kintr values are used to predict arsenate adsorption isotherms in pH 3 and 9, and the results align with the SCM simulation outcomes. This study may offer a feasible method for investigating the nanoconfinement effect of emerging nanocomposite adsorbents from a thermodynamic perspective, and provide reference coordination equilibrium constants of HZO for research and practical application.


Asunto(s)
Arseniatos , Contaminantes Químicos del Agua , Circonio , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis , Adsorción , Óxidos , Concentración de Iones de Hidrógeno
10.
Environ Sci Pollut Res Int ; 31(1): 494-508, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38012482

RESUMEN

Although expensive, rare-earth oxides are well known for being powerful defluoridation agents. Being costlier, cerium is used as a hybrid adsorbent in conjunction with a prudent and environmentally benign substance like biochar. The novel CeO2/BC (surface area 260.05 m2/g) composite was shaped using the facile chemical precipitation technique without any cross-linkers. Surface properties of synthesised CeO2/BC were investigated using powder XRD, FTIR, BET, pH point of zero charge and SEM. According to XRD analysis, immobilized Ce is primarily in form of CeO2, while pristine biochar is in an amorphous state. Batch mode adsorption tests were carried out with different solution pH, F- initial concentration, adsorbent dosage and contact time and counter anions. CeO2/BC can be used in a varied pH range (2-10) but shows maximum removal at pH 4. The Langmuir adsorption isotherm and a pseudo-second-order kinetic model are best fitted to support the adsorption process with a maximum Langmuir adsorption capacity of 16.14 mg/g (F- concentration 5 to 40 mg/L). The removal phenomenon is non-spontaneous in nature. The plausible mechanism of fluoride uptake was explained using XPS and pHPZC, and it was demonstrated that the fluoride was mainly removed by ion exchange and electrostatic attraction. The adsorbent could be successfully used up to fourth cycle after regenerating.


Asunto(s)
Cerio , Carbón Orgánico , Agua Potable , Saccharum , Contaminantes Químicos del Agua , Purificación del Agua , Agua Potable/química , Fluoruros/química , Celulosa , Purificación del Agua/métodos , Termodinámica , Cerio/química , Cinética , Adsorción , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno
11.
Int J Biol Macromol ; 258(Pt 2): 129039, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154704

RESUMEN

Compared with traditional tedious organic solvent-assisted separation process in natural medicinal chemistry, cytomembrane (CM) fishing technique became a more appealing and greener choice for screening bioactive components from natural products. However, its large-scale practical value was greatly weakened by the easy fall-off of CMs from magnetic supports, rooted in the instability of common Fe3O4 particles and their insufficient interaction with CMs. In this research, a new green biostable platform was developed for drug screening through the integration of hyperbranched quaternized hydrothermal magnetic carbon spheres (HQ-HMCSs) and CMs. The positive-charged HQ-HMCSs were constructed by chitosan-based hydrothermal carbonization onto Fe3O4 nanospheres and subsequent aqueous hyperbranching quaternization with 1,4-butanediol diglycidyl ether and methylamine. The strong interaction between HQ-HMCSs and CMs was formed via electrostatic attraction of HQ-HMCSs to negative-charged CMs and covalent linkage derived from the epoxy-amine addition reactions. The chemically stable HMCSs and its integration with CMs contributed to dramatically higher stability and recyclability of bionic nanocomposites. With the fishing of osteoblast CMs integrated HQ-HMCSs, two novel potential anti-osteoporosis compounds, narcissoside and beta-ionone, were discovered from Hippophae rhamnoides L. Enhanced osteoblast proliferation, alkaline phosphatase, and mineralization levels proved their positive osteogenesis effects. Preliminary pharmacological investigation demonstrated their potential action on membrane proteins of estrogen receptor alpha and insulin-like growth factor 1. Furthermore, beta-ionone showed apparent therapeutic effects on osteogenic lesions in zebrafish. These results provide a green, stable, cost-efficient, and reliable access to rapid discovery of drug leads, which verifiably benefits the design of nanocarbon-based biocomposites with increasingly advanced functionality.


Asunto(s)
Productos Biológicos , Quitosano , Nanosferas , Norisoprenoides , Animales , Quitosano/química , Nanosferas/química , Pez Cebra , Carbono/química , Fenómenos Magnéticos
12.
Anal Chim Acta ; 1284: 341997, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37996152

RESUMEN

BACKGROUND: Increasing attention has been paid to sodium dodecylbenzene sulfonate (SDBS) detection because it could cause damage to human body and environmental water. For example, SDBS must not be detected on tableware surface according to national standard of China (GB 14934-2016). However, there is no report heretofore addressing SDBS sensing on surfaces. More importantly, the interferents often affect the sensing performance of analytical approaches. Hence, there is an urgent need to establish a method with good anti-interference ability for SDBS detection both on tableware surfaces and in water. RESULTS: Inspired by a finding that SDBS could cause the generation of white turbidity in (3-aminopropyl)trimethoxysilane (APTMS, an aminosilane) aqueous solution, APTMS modified Mn doped ZnS quantum dots (QDs) and fluorescent (FL) whitening agent (FWA) were constructed as a ratiometric probe for FL and visual sensing of SDBS. The modified QDs aggregated and settled in presence of SDBS, which was likely to be connected to the stimulatory effect of SDBS on the APTMS self-condensation and the electrostatic attraction. The FL emission from the QDs at 605 nm then decreased dramatically, whereas that at 425 nm was virtually constant owing to FWA. SDBS sensing could be achieved by calculating the ratio change of their FL intensities. The detection limits of FL and visual methods were found to be 0.011 and 10 µg/L, respectively, making it one of the most sensitive approaches in literature. Finally, it was successfully utilized for SDBS detection on tableware surfaces and in water. SIGNIFICANCE: Herein, the specific interaction between SDBS and APTMS was reported and the reaction mechanisms were explored for the first time. The proposed probe based on the effect described above provided a promising potential for SDBS analysis owing to high sensitivity, selectivity, anti-interference ability, and stability (in 20 days).

13.
Bioresour Technol ; 390: 129860, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37838019

RESUMEN

Magnetic flocculation which uses magnetic particles is an emerging technology for harvesting microalgae. However, the potential modification and use of cost-effective and sustainable biochar-based composites is still in its infancy. As such, this study aimed to compare the harvesting efficiency of peanut shell biochar (BC), biochar modified with FeCl3 (FeBC), and biochar dual-modified with chitosan and FeCl3 (CTS@FeBC) on microalgae. The results showed CTS@FeBC exhibited significantly higher microalgae harvesting efficiency compared to BC and FeBC. Both acidic and alkaline conditions were favorable for harvesting microalgae by CTS@FeBC. At pH 2 and pH 12, the harvesting efficiency reached 96.9% and 98.8% within 2 min, respectively. The primary adsorption mechanism of CTS@FeBC on microalgae mainly involved electrostatic attraction and sweeping flocculation. Furthermore, CTS@FeBC also showed good biocompatibility and reusability. This study clearly demonstrated a promising technique for microalgae harvesting using biochar-based materials, offering valuable insights and potential applications in sustainable bioresource management.


Asunto(s)
Quitosano , Microalgas , Biomasa , Floculación , Fenómenos Magnéticos
14.
J Colloid Interface Sci ; 649: 547-558, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37356156

RESUMEN

Solar energy-driven photocatalytic decomposition of water to produce H2 is of great significance for promoting the development of clean energy. To improve the efficiency of H2 production, a novel spherical Co2P/Cd0.9Zn0.1S (Co2P/CZS) composite with shell-core structure was successfully synthesized by electrostatic attraction. Under visible light irradiation, the optimal Co2P/CZS achieves an excellent H2 rate of 16.05 mmol h-1 g-1 in benzyl alcohol (PhCH2OH) solution, with a quantum efficiency of 34.3% at 450 nm. The Co2P thin layer coated on the CZS surface not only facilitates the photogenerated charge transfer from Co2P to CZS under visible light illumination, but reduces the energy barrier of PhCH2OH oxidation and H2 evolution. The present results show that shell-core Co2P/CZS composite may be one of promising catalyst to enhance the activity of H2 evolution, which provides an important reference basis for new catalyst design and wide prospects for further application of metal sulfides.

15.
Chem Asian J ; 18(11): e202300202, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37129348

RESUMEN

Eutrophication has posed a threat to aquatic ecosystems, so it's urgent to remove excessive phosphate from water. In this study, we developed an adsorbent material, cerium/terephthalic-acid metal-organic-frameworks (Ce-MOF), to remove phosphate from different water systems. The optimal Ce-MOF presented a maximum phosphate adsorption capacity of 377.2 mg/g, approximately 3.7 times higher than that of the commercial phosphate adsorbent (Phoslock: 101.6 mg/g). Experimental and computational analysis suggested that pH dominated the adsorption process. The main forces driving the adsorption process changed from the synergistic effect of electrostatic attraction and ligand exchange at lower pH to only ligand exchange at the increased pH values. Hence, the Ce-MOF is applicable for phosphate adsorption in a wide pH range. Impressively, the adsorbent remained an excellent phosphate adsorption performance in the real water containing various interfering ions and organic matters, indicating the potential of Ce-MOF for the practical use to solve the water eutrophication issue.

16.
Polymers (Basel) ; 15(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37242846

RESUMEN

This research aimed to develop a simple and cost-effective method for fabricating electropositive membranes for highly efficient water filtration. Electropositive membranes are novel functional membranes with electropositive properties and can filter electronegative viruses and bacteria using electrostatic attraction. Because electropositive membranes do not rely on physical filtration, they exhibit high flux characteristics compared with conventional membranes. This study presents a simple dipping process for fabricating boehmite/SiO2/PVDF electropositive membranes by modifying an electrospun SiO2/PVDF host membrane using electropositive boehmite nanoparticles (NPs). The surface modification enhanced the filtration performance of the membrane, as revealed by electronegatively charged polystyrene (PS) NPs as a bacteria model. The boehmite/SiO2/PVDF electropositive membrane, with an average pore size of 0.30 µm, could successfully filter out 0.20 µm PS particles. The rejection rate was comparable to that of Millipore GSWP, a commercial filter with a pore size of 0.22 µm, which can filter out 0.20 µm particles via physical sieving. In addition, the water flux of the boehmite/SiO2/PVDF electropositive membrane was twice that of Millipore GSWP, demonstrating the potential of the electropositive membrane in water purification and disinfection.

17.
Small ; 19(39): e2302995, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37246258

RESUMEN

Zinc metal has considerable potential as a high-energy anode material for aqueous batteries due to its high theoretical capacity and environmental friendliness. However, dendrite growth and parasitic reactions at the electrode/electrolyte interface remain two serious problems for the Zn metal anode. Here, the heterostructured interface of ZnO rod array and CuZn5 layer is fabricated on the Zn substrate (ZnCu@Zn) to address these two issues. The zincophilic CuZn5 layer with abundant nucleation sites ensures the initial uniform Zn nucleation process during cycling. Meanwhile, the ZnO rod array grown on the surface of the CuZn5 layer can guide the subsequent homogeneous Zn deposition via spatial confinement and electrostatic attraction effects, leading to the dendrite-free Zn electrodeposition process. Consequently, the derived ZnCu@Zn anode exhibits an ultra-long lifespan of up to 2500 h with symmetric cells at the current density and capacity of 0.5 mA cm-2 /0.5 mA h cm-2 . Besides, a remarkable cyclability (75% retention for 2500 cycles at 2 A g-1 ) is achieved in the ZnCu@Zn||MnO2 full cell with a capacity of 139.7 mA h g-1 . This heterostructured interface with specific functional layers provides a feasible strategy for the design of high-performance metal anodes.

18.
Cells ; 12(2)2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36672240

RESUMEN

The electrical characteristic of cancer cells is neglected among tumor biomarkers. The development of nanoprobes with opposing charges for monitoring the unique electrophysiological characteristics of cancer cells. Micro-nano size adsorption binding necessitates consideration of the nanoprobe's specific surface area. On the basis of the electrophysiological characteristics of circulating tumor cells (CTCs), clinical application and performance assessment are determined. To demonstrate that cancer cells have a unique pattern of electrophysiological patterns compared to normal cells, fluorescent nanoprobes with opposing charges were developed and fabricated. Graphene oxide (GO) was used to transform three-dimensional (3D) nanoprobes into two-dimensional (2D) nanoprobes. Compare 2D and 3D electrophysiological magnetic nanoprobes (MNP) in clinical samples and evaluate the adaptability and development of CTCs detection based on cell electrophysiology. Positively charged nanoprobes rapidly bind to negatively charged cancer cells based on electrostatic interactions. Compared to MNPs(+) without GO, the GO/MNPs(+) nanoprobe is more efficient and uses less material to trap cancer cells. CTCs can be distinguished from normal cells that are fully unaffected by nanoprobes by microscopic cytomorphological inspection, enabling the tracking of the number and pathological abnormalities of CTCs in the same patient at various chemotherapy phases to determine the efficacy of treatment. The platform for recognizing CTCs on the basis of electrophysiological characteristics compensates for the absence of epithelial biomarker capture and size difference capture in clinical performance. Under the influence of electrostatic attraction, the binding surface area continues to influence the targeting of cancer cells by nanoprobes. The specific recognition and detection of nanoprobes based on cell electrophysiological patterns has enormous potential in the clinical diagnosis and therapeutic monitoring of cancer.


Asunto(s)
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Biomarcadores de Tumor
19.
Food Chem ; 407: 135052, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36493472

RESUMEN

Herein, a novel ionic fluorescent probe for mercury(II) detection is presented consisting of a functional quinoline-based IL. Interestingly, the probe displayed high sensitivity (0.8 nM) and selectivity through the regulation function of electrostatic attraction, where its performance was significantly superior to that of quinoline probes without negative charge. Furthermore, the probe was found to exhibit two different fluorescent signals and colorimetric signals in the presence of different concentrations of mercury(II), which was consistent with the reaction mechanisms of the generation of large conjugated systems and the formation of anion-mercury(II) complexes. Moreover, this probe could be further loaded on a simple filter paper to serve as a visual paper sensor due to its adequate response time of less than 5 s. This regulation function strategy of electrostatic attraction has excellent potential for use in the precise detection of targeted analytes in real complex samples with improved accuracy and selectivity.


Asunto(s)
Mercurio , Quinolinas , Agua , Colorantes Fluorescentes , Aniones
20.
Chemosphere ; 308(Pt 2): 136379, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36088978

RESUMEN

This research aimed to evaluate the adsorption behaviors and mechanisms of perfluorooctanoic acid (PFOA) onto polyethyleneimine modified graphene oxide (GO-PEI) from aqueous solutions. The adsorption capacity was significantly improved by doping polyethyleneimine (PEI) onto graphene oxide (GO). The Brunauer-Emmett-Teller (BET) isotherm model was considered as the best isotherm model in describing the PFOA adsorption onto GO-PEI3 (wPEI/wGO = 3). GO-PEI3 exhibited high adsorption capacity (qe = 368.2 mg/g, calculated from BET isotherm model) and excellent stability. The maximum monolayer amount of PFOA adsorption onto GO-PEI3 (qm = 231.2 mg/g) was successfully evaluated. The calculated saturated concentration (Cs = 169.9 mg/L) of PFOA on GO-PEI3 closely agrees with its critical micelle concentration (CMC = 157.0 mg/L), suggesting the formation of multilayer hemi-micelles or micelles PFOA structures on the surface of GO-PEI3. PFOA adsorption onto GO-PEI3 was inhibited by several factors including: the presence of humic acid (HA) by competing with the adsorption sites, background salts through the double-layer compression effect, and the competition from soluble ions for the amine or amide functional groups on GO-PEI3. Finally, both the FT-IR and XPS results confirmed that the adsorption of PFOA onto GO-PEI3 was through electrostatic attraction and hydrophobic interaction (physical adsorption), but not chemical adsorption. This work provides fundamental knowledge both in understanding the adsorption behavior through the BET isotherm model and in developing a stable adsorbent for PFOA adsorption. In addition, the findings highlight the potential of PFOA remediation from wastewater systems using GO-PEI in engineering applications.


Asunto(s)
Agua Carbonatada , Polietileneimina , Amidas , Aminas , Caprilatos , Fluorocarburos , Grafito , Sustancias Húmicas , Micelas , Polietileneimina/química , Sales (Química) , Espectroscopía Infrarroja por Transformada de Fourier , Vapor , Aguas Residuales/química , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA