Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.805
Filtrar
1.
Sci Rep ; 14(1): 20715, 2024 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237556

RESUMEN

Chronic wounds represent a significant global health concern, statistically impacting 1-2% of the population in developed countries throughout their lifetimes. These wounds cause considerable discomfort for patients and necessitate substantial expenditures of time and resources for treatment. Among the emerging therapeutic approaches, medicated dressings incorporating bioactive molecules, including natural compounds, are particularly promising. Hence, the objective of this study was to develop novel antimicrobial dressings for wound treatment. Specifically, polycaprolactone membranes were manufactured using the electrospinning technique and subsequently coated with natural polyelectrolytes (chitosan as a polycation and a mixture of manuka honey with essential oils nanoemulsions as a polyanion) employing the Layer-by-Layer assembly technique. Physico-chemical and morphological characterization was conducted through QCM-D, FTIR-ATR, XPS, and SEM analyses. The results from SEM and QCM-D demonstrated successful layer deposition and coating formation. Furthermore, FTIR-ATR and XPS analyses distinguished among different coating compositions. The coated membranes were tested in the presence of fibroblast cells, demonstrating biocompatibility and expression of genes coding for VEGF, COL1, and TGF-ß1, which are associated with the healing process (assessed through RT-qPCR analysis). Finally, the membranes exhibited excellent antibacterial activity against both Staphylococcus aureus and Pseudomonas aeruginosa, with higher bacterial strain inhibition observed when cinnamon essential oil nanoemulsion was incorporated. Taken together, these results demonstrate the potential application of nanocoated membranes for biomedical applications, such as wound healing.


Asunto(s)
Miel , Aceites Volátiles , Poliésteres , Cicatrización de Heridas , Aceites Volátiles/farmacología , Aceites Volátiles/química , Cicatrización de Heridas/efectos de los fármacos , Poliésteres/química , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Membranas Artificiales , Leptospermum/química , Vendajes , Staphylococcus aureus/efectos de los fármacos , Quitosano/química , Quitosano/farmacología , Fibroblastos/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Polielectrolitos/química
2.
Compr Rev Food Sci Food Saf ; 23(5): e13415, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39267152

RESUMEN

The article explores the science and practice of electrospinning, tracing its history and examining the factors that influence fiber morphology, including the solution composition, processing conditions, and environmental conditions. It offers a thorough examination of electrospinning fundamentals geared toward generating an appropriate platform for creating tailored nanofibers for sensing applications in the food industry. These nanofibers play a critical role in food analysis, sensing, and traceability, and we highlight their effectiveness in identifying pesticide residues, food components, antibiotics, heavy metals, and foodborne pathogens as well as in monitoring the freshness and spoilage of food. The use of electrospinning technology is poised to make sensing platforms more accessible, affordable, and widespread, thereby significantly contributing to the improvement of food quality and safety monitoring practices.


Asunto(s)
Nanofibras , Nanofibras/química , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Análisis de los Alimentos/métodos
3.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39273557

RESUMEN

The electrospinning process is an effective technique for creating micro- and nanofibers from synthetic and natural polymers, with significant potential for biomedical applications and drug delivery systems due to their high drug-loading capacity, large surface area, and tunable release times. Poly(L-lactic acid) (PLLA) stands out for its excellent thermo-mechanical properties, biodegradability, and bioabsorbability. Electrospun PLLA nanofibrous structures have been extensively investigated as wound dressings, sutures, drug delivery carriers, and tissue engineering scaffolds. This study aims to create and characterize electrospun PLLA membranes loaded with spironolactone (SP), mimicking active compounds of Ganoderma lucidum (GL), to develop a biodegradable patch for topical wound-healing applications. GL, a medicinal mushroom, enhances dermal wound healing with its bioactive compounds, such as polysaccharides and ganoderic acids. Focusing on GL extracts-obtained through green extraction methods-and innovative drug delivery, we created new fibers for wound-healing potential applications. To integrate complex mixtures of bioactive compounds into the fibers, we developed a prototype using a single pure substance representing the extract mixture. This painstaking work presents the results of the fabricating, wetting, moisture properties, material resilience, and full characterization of the product, providing a robust rationale for the fabrication of fibers imbued with more complex extracts.


Asunto(s)
Vendajes , Poliésteres , Espironolactona , Cicatrización de Heridas , Espironolactona/química , Cicatrización de Heridas/efectos de los fármacos , Poliésteres/química , Nanofibras/química , Reishi/química , Sistemas de Liberación de Medicamentos/métodos , Humanos
4.
Polymers (Basel) ; 16(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39274108

RESUMEN

This study presents the feasibility of improving some selected mechanical strengths and the inner-structural analyses of cement matrix by electrospun nanofibers containing nylon 66, nanosilica, and carbon nanotube. The hybrid electrospun nanofibers were fabricated and mixed into ordinary Portland cement. From the mechanical strength test results, the hybrid nanofibers have shown their role in improving the tensile, compressive, and toughness behavior of the mixed cement material. The improvements of 62%, 38%, and 69%, respectively, were observed compared to those of the control paste. The novelty of the surface and inner structure of the hybrid fibers, as well as the modified cement matrix, were observed by the scanned images from electron microscopes. Besides, the additional pozzolanic reaction between the generated calcium hydroxide and the attached silica was clarified thanks to the results of energy dispersive spectroscopy, X-ray diffraction, and thermal gravimetric analysis. Finally, the consistency between mechanical strength results and inner-structure analyses showed the potential of the proposed fiber to improve cement-based materials.

5.
Polymers (Basel) ; 16(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39274146

RESUMEN

The production of nanofibers has become a significant area of research due to their unique properties and diverse applications in various fields, such as biomedicine, textiles, energy, and environmental science. Electrospinning, a versatile and scalable technique, has gained considerable attention for its ability to fabricate nanofibers with tailored properties. Among the wide array of conductive polymers, poly(3,4-ethylenedioxythiophene) (PEDOT) has emerged as a promising material due to its exceptional conductivity, environmental stability, and ease of synthesis. The electrospinning of PEDOT-based nanofibers offers tunable electrical and optical properties, making them suitable for applications in organic electronics, energy storage, biomedicine, and wearable technology. This review, with its comprehensive exploration of the fabrication, properties, and applications of PEDOT nanofibers produced via electrospinning, provides a wealth of knowledge and insights into leveraging the full potential of PEDOT nanofibers in next-generation electronic and functional devices by examining recent advancements in the synthesis, functionalization, and post-treatment methods of PEDOT nanofibers. Furthermore, the review identifies current challenges, future directions, and potential strategies to address scalability, reproducibility, stability, and integration into practical devices, offering a comprehensive resource on conductive nanofibers.

6.
Molecules ; 29(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39274994

RESUMEN

The excessive utilization of antimicrobials in humans and animals has resulted in considerable environmental contamination, necessitating the development of high-performance antibiotic adsorption media. A significant challenge is the development of composite nanofibrous materials that are both beneficial and easy to fabricate, with the aim of improving adsorption capacity. Herein, a new kind of zeolitic imidazolate framework-8 (ZIF-8)-modified regenerated cellulose nanofibrous membrane (ZIF-8@RC NFM) was designed and fabricated by combining electrospinning and in situ surface modification technologies. Benefiting from its favorable surface wettability, enhanced tensile strength, interconnected porous structure, and relatively large specific surface area, the resulting ZIF-8@RC NFMs exhibit a relatively high adsorption capacity for tetracycline hydrochloride (TCH) of 105 mg g-1 within 3 h. Moreover, a Langmuir isotherm model and a pseudo-second-order model have been demonstrated to be more appropriate for the description of the TCH adsorption process of ZIF-8@RC-3 NFMs. Additionally, this composite fibrous material could keep a relatively stable adsorption capability under various ionic strengths. The successful fabrication of the novel ZIF-8@RC NFMs may shed light on the further development of wastewater adsorption treatment materials.


Asunto(s)
Celulosa , Nanofibras , Tetraciclina , Zeolitas , Tetraciclina/química , Nanofibras/química , Adsorción , Celulosa/química , Zeolitas/química , Imidazoles/química , Contaminantes Químicos del Agua/química , Estructuras Metalorgánicas/química , Membranas Artificiales , Purificación del Agua/métodos
7.
J Hazard Mater ; 480: 135713, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39278035

RESUMEN

Radioactive nuclides and highly toxic organophosphates are typical deadly threats. Materials with the function of radioactive substances adsorption and organophosphates degradation provide double protection. Herein, dual-functional polyamide (PA)/polyethyleneimine (PEI)@Zr-MOF fiber composite membranes, fabricated by in-situ solvothermal growth of Zr-MOF on PA/PEI electrospun fiber membranes, are designed for protection against two typical model compounds of iodine and dimethyl 4-nitrophenyl phosphate (DMNP). Benefiting from the unique core-sheath structure composed of inner nitrogen-rich fibers and outer porous Zr-MOF, the composite membranes rapidly enrich iodine through abundant active sites of the outer sheath and form complexes with the amine of inner PEI, exhibiting a highly competitive adsorption capacity of 609 mg g-1. Moreover, it can adsorb and degrade DMNP with the synergy of PEI component and Zr-MOF, achieving an 80 % removal of DMNP within 7 min without any additional co-catalyst. This work provides a feasible strategy to fabricate dual-functional materials that protect against radioactive and organophosphorus contaminants.

8.
J Sep Sci ; 47(18): e2400296, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39276082

RESUMEN

A simple and quick fiber-in-tube solid-phase microextraction (FIT-SPME) was introduced for the extraction and determination of nine polycyclic aromatic hydrocarbons followed by a high-performance liquid chromatography-ultraviolet detector in refinery water samples. For this purpose, a water-resistant metal-organic framework with a high surface area called UiO-66 has been applied in the form of an electrospun coating on stainless steel wires. After that, all the fibers were packed in the lumen of a stainless-steel tube to make the extraction phase. Both one variable at a time and experimental design methods have been used to optimize effective parameters on FIT-SPME. Under optimum conditions, the method demonstrated good linearity between 0.5 and 1000.0 µg/L with a coefficient of determination greater than 0.9906. Furthermore, the limits of detection values ranged from 0.2 to 1.5 µg/L. The intra-day and inter-day relative standard deviations were < 8.4% and < 9.7%, respectively. Lastly, the proposed method was applied to extract and determine analytes in four refinery water samples as well as surface water containing high total dissolved solids, and well waters where satisfactory results have been obtained.

9.
J Colloid Interface Sci ; 678(Pt C): 120-133, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39288573

RESUMEN

In this paper, a 2 dimensional (2D) metal-organic frameworks (MOFs) nanosheets grown on 1D ZIF-67 modified carbon nanofibers (CNFs) was designed and fabricated with a hierarchical heterostructure. The hierarchical 2D/1D MOFs/CCNF offers rich electrochemical active sites and favorable ion/electron diffusion pathways. The synergistic effect of Co, CNFs and MOFs from heterostructures contributes to superb electrochemical activities. Benefiting from the hierarchical heterostructures optimized by the mass ratio of ZIF-67/PAN and CCNF/NiMOF as well as the type of substrates, CCNF-20@MOF showed a specific capacity of 361.50 C g-1 at 0.5 A g-1, whose charge storage mechanism is dominated by diffusion control. Meanwhile, a bamboo-derived carbon material (BBC) was designed in the solid-state asymmetric supercapacitor (CCNF-20@MOF//BBC). The device exhibited an energy density of 38.89 Wh kg-1 at the power density of 800.02 W kg-1 and excellent cycling stability, that exceed many MOFs based devices. Moreover, it could be successfully used for LED light-emitting, demonstrating a good application prospect. This work provides a feasible strategy for the improved performance of MOFs and CNFs based materials in the field of energy storage.

10.
J Control Release ; 375: 316-330, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39251139

RESUMEN

In addition to residual tumor cells, surgery-induced inflammation significantly contributes to tumor recurrence and metastasis by recruiting polymorphonuclear neutrophils (PMNs) and promoting their involvement in tumor cell proliferation, invasion and immune evasion. Efficiently eliminating residual tumor cells while concurrently intervening in PMN function represents a promising approach for enhanced postoperative cancer treatment. Here, a chitosan/polyethylene oxide electrospun fibrous scaffold co-delivering celecoxib (CEL) and doxorubicin-loaded tumor cell-derived microparticles (DOX-MPs) is developed for postoperative in-situ treatment in breast cancer. This implant (CEL/DOX-MPs@CP) ensures prolonged drug retention and sustained release within the surgical tumor cavity. The released DOX-MPs effectively eliminate residual tumor cells, while the released CEL inhibits the function of inflammatory PMNs, suppressing their promotion of residual tumor cell proliferation, migration and invasion, as well as remodeling the tumor immune microenvironment. Importantly, the strategy is closely associated with interference in neutrophil extracellular trap (NET) released from inflammatory PMNs, leading to a substantial reduction in postoperative tumor recurrence and metastasis. Our results demonstrate that CEL/DOX-MPs@CP holds great promise as an implant to enhance the prognosis of breast cancer patients following surgery.

11.
Bioimpacts ; 14(5): 30193, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39296800

RESUMEN

Introduction: Wound healing is a major therapeutic concern in regenerative medicine. The current study aimed to investigate the second-degree burn wound treatment in rats using rat adipose- derived stem cells (ADSCs) and manganese nanoparticles (MnO2-NPs) in a polycaprolactone/gelatin electrospun nanofiber scaffold. Methods: After the synthesis of nanoparticles and electrospinning of nanofibers, the SEM analysis, contact angle, mechanical strength, blood compatibility, porosity, swelling, biodegradability, cell viability, and adhesion assays were performed. According to the results, the PCL/Gel/5%MnO2-NPs nanofiber (Mn-5%) was determined to be the most suitable scaffold. The ADSCs-seeded Mn-5% scaffolds were applied as a burn wound dressing. The wound closure rate, IL-1ß, and IL-6 level, hydroxyproline, and glycosaminoglycans content were measured, and the hematoxylin and eosin, Masson's trichrome, and immunohistochemistry stainings were carried out. Results: Based on the results, in Mn+S (ADSCs+PCL/Gel/5%MnO2-NPs nanofiber) and N+S (ADSCs+PCL/Gel nanofiber) groups, the IL-6 and IL-1ß levels were reduced, and the percentage of wound closure, glycosaminoglycans, and hydroxyproline content were increased compared to the control group (P<0.05). Also, the lowest amount of α-SMA was observed in these two groups, demonstrating stem cells' role in reducing α-SMA levels and thus preventing fibrosis. Moreover, the amount of α-SMA in the Mn+S group is lower than in the N+S group and, is closer to healthy skin. According to histology results, the best type of treatment was observed in the Mn+S group. Conclusion: In conclusion, the ADSCs-seeded PCL/Gel/5%MnO2-NPs scaffold demonstrated considerable therapeutic effects in burn wound healing.

12.
Int J Biol Macromol ; 279(Pt 3): 135333, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39241997

RESUMEN

Curcumin (Cur) and resveratrol (Rsv) have already been proposed for both anti-tumor and wound healing applications and contrasting results have been published regarding their anti- or pro-angiogenic activity; depending on the final application, an anti- or a pro-angiogenic activity is required. In the present study, a comparison of Cur and Rsv loaded electrospun fibers based on collagen and polycaprolactone (PCL) mixture was performed in order to make a contribution to understanding whether the two polyphenols have anti or pro-angiogenic activity. Despite their hydrophobic character, the two polyphenols affected morphology and wettability of the fibers, and Rsv-loaded fibers resulted larger and more quickly wettable. After hydration, collagen/PCL fibers loaded with both Cur and Rsv exhibited higher elongation and better deformation with respect to the unloaded fibers. Fourier transformed infrared spectroscopy and thermal analysis showed interactions between the polyphenols and collagen. Both fiber formulations resulted biocompatible with an increase of fibroblast number during 7 days of culture; confocal microscopy analyses demonstrated that Cur released by the fibers was internalized by the cells which remained vital and adherent. Chick embryo chorioallantoic membrane assay showed that both fibers had anti-angiogenic behavior, suggesting that an anti-cancer application more than a wound healing one could be envisaged.

13.
Mikrochim Acta ; 191(10): 581, 2024 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-39243346

RESUMEN

To meet the needs of developing efficient extractive materials alongside the evolution of miniaturized sorbent-based sample preparation techniques, a mesoporous structure of g-C3N4 doped with sulfur as a heteroatom was achieved utilizing a bubble template approach while avoiding the severe conditions of other methods. In an effort to increase the number of adsorption sites, the resultant exfoliated structure was then modified with thymol-coumarin NADES as a natural sorbent modifier, followed by introduction into a nylon 6 polymer via an electrospinning process. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field-emission scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) surface area analysis validated S-doped g-C3N4 and composite production. The prepared electrospun fiber nanocomposite, entailing satisfactory processability, was then successfully utilized as a sorbent in on-chip thin film micro-solid-phase extraction of non-steroidal anti-inflammatory drugs (NSAIDs) from saliva samples prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Utilizing a chip device, a thin film µ-SPE coupled with LC-MS/MS analysis yielded promising outcomes with reduced sample solution and organic solvents while extending lifetime of a thin film sorbent. The DES-modified S-doped g-C3N4 amount in electrospun was optimized, along with adsorption and desorption variables. Under optimal conditions, selected NSAIDs were found to have a linear range of 0.05-100.0 ng mL-1 with an R2 ≥ 0.997. The detection limits were ranged between 0.02 and 0.2 ng mL-1. The intra-day and inter-day precisions obtained were less than 6.0%. Relative recoveries were between 93.3 and 111.4%.


Asunto(s)
Antiinflamatorios no Esteroideos , Disolventes Eutécticos Profundos , Grafito , Límite de Detección , Nanofibras , Saliva , Espectrometría de Masas en Tándem , Saliva/química , Espectrometría de Masas en Tándem/métodos , Grafito/química , Nanofibras/química , Humanos , Adsorción , Antiinflamatorios no Esteroideos/análisis , Porosidad , Disolventes Eutécticos Profundos/química , Cromatografía Liquida/métodos , Compuestos de Nitrógeno/química , Microextracción en Fase Sólida/métodos , Extracción en Fase Sólida/métodos
14.
Food Chem X ; 23: 101756, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39295963

RESUMEN

Studies have demonstrated the protective effect of milk fat globule membrane (MFGM) on probiotics in harsh environments. However, currently, there are no reports on the encapsulation of probiotics using MFGM. In this study, MFGM and pullulan (PUL) polysaccharide fibers were prepared by electrostatic spinning and used to encapsulate probiotics, with whey protein isolates (WPI)/PUL as the control. The morphology, physical properties, mechanical properties, survival, and stability of the encapsulated Lacticaseibacillus rhamnosus GG (LGG) were studied. The results showed that the MFGM/PUL solution had significant effects on pH, viscosity, conductivity, and stability. Electrostatic spinning improved the mechanical properties and encapsulation ability of the polymer formed by MFGM/PUL. LGG encapsulated in MFGM/PUL nanofibers survived rate was higher than WPI/PUL nanofibers in mimic intestinal juice, which could be attributed to the phospholipid content contained in MFGM. These results demonstrate that MFGM is a promising material for probiotic encapsulation, providing an important basis for the potential use of MFGM/PUL nanofibers as a robust encapsulation matrix.

15.
Front Pharmacol ; 15: 1397761, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104391

RESUMEN

Oral leukoplakia (OLK) is the most common oral precancerous lesion, and 3%-17% of OLK patients progress to oral squamous cell carcinoma. OLK is susceptible to recurrence and has no effective treatment. However, conventional drugs have significant side effects and limitations. Therefore, it is important to identify drugs that target OLK. In this study, scavenger receptor A (SR-A) was found to be abnormally highly expressed in the oral mucosal epithelial cells of OLK patients, whereas molecular biology studies revealed that low molecular weight fucoidan (LMWF) promoted apoptosis of dysplastic oral keratinocytes (DOK) and inhibited the growth and migration of DOK, and the inhibitory effect of LMWF on OLK was achieved by regulating the SR-A/Wnt signaling axis and related genes. Based on the above results and the special situation of the oral environment, we constructed LMWF/poly(caprolactone-co-lactide) nanofiber membranes with different structures for the in-situ treatment of OLK using electrospinning technology. The results showed that the nanofiber membranes with a shell-core structure had the best physicochemical properties, biocompatibility, and therapeutic effect, which optimized the LMWF drug delivery and ensured the effective concentration of the drug at the target point, thus achieving precise treatment of local lesions in the oral cavity. This has potential application value in inhibiting the development of OLK.

16.
Sci Rep ; 14(1): 18143, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103502

RESUMEN

In this study, multifibrillar carbon and carbon/ceramic (C/SiCON) fibers consisting of thousands of single nanofibers are continuously manufactured. The process starts with electrospinning of polyacrylonitrile (PAN) and PAN/oligosilazane precursors resulting in poorly aligned polymer fibers. Subsequent stretching leads to parallel aligned multifibrillar fibers, which are continuously stabilized and pyrolyzed to C or C/SiCON hybrid fibers. The multifibrillar carbon fibers show a high tensile strength of 911 MPa and Young's modulus of 154 GPa, whereas the multifibrillar C/SiCON fibers initially have only tensile strengths of 407 MPa and Young's modulus of 77 GPa, due to sticking of the nanofibers during the stabilization in air. Additional curing with electron beam radiation, results in a remarkable increase in tensile strength of 707 MPa and Young's modulus of 98 GPa. The good mechanical properties are highlighted by the low linear density of the multifibrillar C/SiCON fibers (~ 1 tex) compared to conventional C and SiC fiber bundles (~ 200 tex). In combination with the large surface area of the fibers better mechanical properties of respective composites with a reduced fiber content can be achieved. In addition, the developed approach offers high potential to produce advanced endless multifibrillar carbon and C/SiCON nanofibers in an industrial scale.

17.
Int J Biol Macromol ; 279(Pt 1): 134544, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39116968

RESUMEN

Electrospun nanofibrous films containing different active agents were prepared and compared to improve the storage quality of blackberries. We added different essential oils, phenolic acids, microbial antagonists and plant growth regulators to poly(lactic acid)/polycaprolactone (PP) nanofilms and compared their antimicrobial properties against bacteria and fungi. Based on the results, oregano essential oil/PP (OPP), chlorogenic acid/PP (CPP), natamycin/PP (NPP) and methyl jasmonate/PP (MPP) were selected. The addition of active agents decreased the tensile strength and increased the elastic modulus and elongation at break. These active agents did not affect the thermal stability, water contact angle (except for NPP) or water permeability (except for NPP and MPP) of the nanofilms. Nanofilms also controlled the release of active agents and showed antioxidant activity and biosafety. Different nanofilms were applied to blackberry postharvest storage, and OPP contributed the lowest to deterioration in appearance, 'red small drupelets' phenomenon, decay rate, weight loss and softening. Among these nanofilms, the OPP nanofilm exhibited the best shelf-life extension of blackberry.

18.
Adv Sci (Weinh) ; : e2406742, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120009

RESUMEN

Reactive astrogliosis is the main cause of secondary injury to the central nerves. Biomaterials can effectively suppress astrocyte activation, but the mechanism remains unclear. Herein, Differentially Expressed Genes (DEGs) are identified through whole transcriptome sequencing in a mouse model of spinal cord injury, revealing the VIM gene as a pivotal regulator in the reactive astrocytes. Moreover, DEGs are predominantly concentrated in the extracellular matrix (ECM). Based on these, 3D injectable electrospun short fibers are constructed to inhibit reactive astrogliosis. Histological staining and functional analysis indicated that fibers with unique 3D network spatial structures can effectively constrain the reactive astrocytes. RNA sequencing and single-cell sequencing results reveal that short fibers downregulate the expression of the VIM gene in astrocytes by modulating the "ECM receptor interaction" pathway, inhibiting the transcription of downstream Vimentin protein, and thereby effectively suppressing reactive astrogliosis. Additionally, fibers block the binding of Vimentin protein with inflammation-related proteins, downregulate the NF-κB signaling pathway, inhibit neuron apoptosis, and consequently promote the recovery of spinal cord neural function. Through mechanism elucidation-material design-feedback regulation, this study provides a detailed analysis of the mechanism chain by which short fibers constrain the abnormal spatial expansion of astrocytes and promote spinal cord neural function.

19.
Appl Spectrosc ; : 37028241268223, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39094013

RESUMEN

Carbon nanofibers are a new type of carbon materials. One of the methods of obtaining them is the carbonization of a polymer precursor. They are attractive in many areas, including medicine, due to the possibility of modifying their properties in a wide range. For example, the conditions of the carbonization process result in the creation of materials with designed structures and surface parameters. In the current work, the nanoprecursor was polyacrylonitrile (PAN) fibers. Two types of carbon fibers obtained by carbonization of the PAN precursor at 1000 °C were tested. The first electrospun carbon nanofibers (ESCNFs) were cytotoxic, while the second ESCNF-f were biocompatible after functionalization. The parameters obtained from Raman tests did not clearly discriminate between the tested materials. Multiwavelength Raman studies, analyzed using the two-dimensional correlation spectroscopy (2D-COS), treating the laser energy as an external disturbance, showed a difference between both fibrous structures. 2D-COS indicates that structures resembling graphite systems, devoid of disordered carbon forms, are nontoxic.

20.
Reprod Biol Endocrinol ; 22(1): 95, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095895

RESUMEN

BACKGROUND: Assisted Reproductive Technologies (ARTs) have been validated in human and animal to solve reproductive problems such as infertility, aging, genetic selection/amplification and diseases. The persistent gap in ART biomedical applications lies in recapitulating the early stage of ovarian folliculogenesis, thus providing protocols to drive the large reserve of immature follicles towards the gonadotropin-dependent phase. Tissue engineering is becoming a concrete solution to potentially recapitulate ovarian structure, mostly relying on the use of autologous early follicles on natural or synthetic scaffolds. Based on these premises, the present study has been designed to validate the use of the ovarian bioinspired patterned electrospun fibrous scaffolds fabricated with poly(ε-caprolactone) (PCL) for multiple preantral (PA) follicle development. METHODS: PA follicles isolated from lamb ovaries were cultured on PCL scaffold adopting a validated single-follicle protocol (Ctrl) or simulating a multiple-follicle condition by reproducing an artificial ovary engrafted with 5 or 10 PA (AO5PA and AO10PA). The incubations were protracted for 14 and 18 days before assessing scaffold-based microenvironment suitability to assist in vitro folliculogenesis (ivF) and oogenesis at morphological and functional level. RESULTS: The ivF outcomes demonstrated that PCL-scaffolds generate an appropriate biomimetic ovarian microenvironment supporting the transition of multiple PA follicles towards early antral (EA) stage by supporting follicle growth and steroidogenic activation. PCL-multiple bioengineering ivF (AO10PA) performed in long term generated, in addition, the greatest percentage of highly specialized gametes by enhancing meiotic competence, large chromatin remodeling and parthenogenetic developmental competence. CONCLUSIONS: The study showcased the proof of concept for a next-generation ART use of PCL-patterned scaffold aimed to generate transplantable artificial ovary engrafted with autologous early-stage follicles or to advance ivF technologies holding a 3D bioinspired matrix promoting a physiological long-term multiple PA follicle protocol.


Asunto(s)
Folículo Ovárico , Poliésteres , Ingeniería de Tejidos , Andamios del Tejido , Femenino , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/citología , Andamios del Tejido/química , Animales , Poliésteres/química , Ingeniería de Tejidos/métodos , Ovinos , Ovario/crecimiento & desarrollo , Ovario/citología , Oogénesis/fisiología , Oogénesis/efectos de los fármacos , Bioingeniería/métodos , Técnicas Reproductivas Asistidas , Fertilización In Vitro/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA