RESUMEN
Carbon-based nanostructures have unparalleled electronic properties. At the same time, using an allotrope of carbon as the contacts can yield better device control and reproducibility. In this work, we simulate a single-electron transistor composed of a segment of a graphene nanoribbon coupled to carbon nanotubes electrodes. Using the non-equilibrium Green's function formalism we atomistically describe the electronic transport properties of the system including electron-electron interactions. Using this methodology we are able to recover experimentally observed phenomena, such as the Coulomb blockade, as well as the corresponding Coulomb diamonds. Furthermore, we separate the different contributions to transport and show that incoherent effects due to the interaction play a crucial role in the transport properties depending on the region of the stability diagram being considered.
RESUMEN
Ordered and disordered semiconductor superlattices represent structures with completely opposed properties. For instance, ordered superlattices exhibit extended Bloch-like states, while disordered superlattices present localized states. These characteristics lead to higher conductance in ordered superlattices compared to disordered ones. Surprisingly, disordered dimer superlattices, which consist of two types of quantum wells with one type always appearing in pairs, exhibit extended states. The percentage of dissimilar wells does not need to be large to have extended states. Furthermore, the conductance is intermediate between ordered and disordered superlattices. In this work, we explore disordered dimer superlattices in graphene. We calculate the transmission and transport properties using the transfer matrix method and the Landauer-Büttiker formalism, respectively. We identify and discuss the main energy regions where the conductance of random dimer superlattices in graphene is intermediate to that of ordered and disordered superlattices. We also analyze the resonant energies of the double quantum well cavity and the electronic structure of the host gated graphene superlattice (GGSL), finding that the coupling between the resonant energies and the superlattice energy minibands gives rise to the extended states in random dimer GGSLs.
RESUMEN
In this study, we explore the potential of functionalized two-dimensional (2D) diamond for spin-dependent electronic devices using first-principles calculations. Specifically, we investigate functionalizations with either hydroxyl (-OH) or fluorine (-F) groups. In the case of an isolated layer, we observe that the quantity and distribution of (-OH) or (-F) on the 2D diamond surface significantly influence thesp2/sp3ratio of the carbon atoms in the layer. As the coverage is reduced, both the band gap and magnetic moment decrease. When the 2D diamond is placed between gold contacts and functionalized with (-OH), it results in a device with lower resistance compared to the (-F) functionalization. We predict that the maximum current achieved in the device increases with decreasing (-OH) surface coverage, while the opposite behavior occurs for (-F). Additionally, the surface coverage alone can alter the direction of current rectification in (-F) functionalized 2D diamonds. For all studied systems, a single spin component contributes to the total current for certain values of applied bias, indicating a spin filter behavior.
RESUMEN
In this work, we study theoretically the structural, electronic and transport properties of oxidized stanene using a combination of density functional theory (DFT), quantum molecular dynamics and the Landauer-Büttiker theory for the ballistic transport. Our results clearly show that oxygen adsorb onto stanene surface in both molecular or atomic forms, thus causing considerable modifications to its electronic structure and transport properties. Nevertheless, our quantum conductance calculations reveal that, in spite of oxidation, stanene still remains a good conductor that might be applied as field effect transistors, gas sensors and other devices.
RESUMEN
The topological properties of materials are, until now, associated with the features of their crystalline structure, although translational symmetry is not an explicit requirement of the topological phases. Recent studies of hopping models on random lattices have demonstrated that amorphous model systems show a nontrivial topology. Using ab initio calculations, we show that two-dimensional amorphous materials can also display topological insulator properties. More specifically, we present a realistic state-of-the-art study of the electronic and transport properties of amorphous bismuthene systems, showing that these materials are topological insulators. These systems are characterized by the topological index [Formula: see text]2 = 1 and bulk-edge duality, and their linear conductance is quantized, [Formula: see text], for Fermi energies within the topological gap. Our study opens the path to the experimental and theoretical investigation of amorphous topological insulator materials.
RESUMEN
Nanomembranes (NMs) are freestanding structures with few-nanometer thickness and lateral dimensions up to the microscale. In nanoelectronics, NMs have been used to promote reliable electrical contacts with distinct nanomaterials, such as molecules, quantum dots, and nanowires, as well as to support the comprehension of the condensed matter down to the nanoscale. Here, we propose a tunable device architecture that is capable of deterministically changing both the contact geometry and the current injection in nanoscale electronic junctions. The device is based on a hybrid arrangement that joins metallic NMs and molecular ensembles, resulting in a versatile, mechanically compliant element. Such a feature allows the devices to accommodate a mechanical stimulus applied over the top electrodes, enlarging the junctions' active area without compromising the molecules. A model derived from the Hertzian mechanics is employed to correlate the contact dynamics with the electronic transport in these novel devices denominated as variable-area transport junctions (VATJs). As a proof of concept, we propose a direct application of the VATJs as compression gauges envisioning the development of hypersensitive pressure pixels. Regarding sensitivity (â¼480 kPa-1), the VATJ-based transducers constitute a breakthrough in nanoelectronics, with the prospect of carrying its sister-field of molecular electronics out of the laboratory via integrative, hybrid organic/inorganic nanotechnology.
RESUMEN
The geometry configuration of charged armchair graphene nanoribbons (AGNRs) is theoretically investigated in the framework of a two-dimensional tight-binding model that includes lattice relaxation. Our findings show that the charge distribution and, consequently, the bond length pattern is dependent on the parity of the nanoribbon width. In this sense, the lattice distortions decrease smoothly for increasingly wider GNRs. As should be expected, AGNRs belonging to a particular family present similar patterns for the bond lengths. The interplay between the electron-phonon coupling and band gap is also investigated. The results show that the electron-phonon coupling strength is fundamental to promote the transition from metallic towards semiconducting-like behavior for the band gap. Most important, such strength is crucial on defining the degree of lattice distortions in AGNRs.
RESUMEN
Os biossensores são dispositivos empregados para a detecção de um analito específico, podendo assim ser no controle de qualidade nos alimentos para determinar a presença de micro-organismos, toxinas ou metabólitos. O presente estudo objetiva desenvolver um biossensor condutométrico, baseado na imobilização de peroxidasse em membranas de quitosana e quitosana com nanopartículas de ouro (AuNP) para a detecção de peroxido de hidrogênio. O trabalho foi dividido em três etapas. Na primeira etapa foi estudada a obtenção de AuNP empregando agentes redutores biológicos, sendo avaliados três monossacarídeos (glicose, frutose e galactose), três dissacarídeos (sacarose, maltose e lactose), dois biopolímeros (amido e quitosana), assim como os extratos obtidos a partir das folhas de hortelã (Mentha piperita) e cascas de furtas de abacaxi (Ananas comosus), banana (Musa sp. ), maracujá (Passiflora edulis), tangerina (Citrus reticulata). A quitosana mostrou-se como o melhor agente redutor na síntese das AuNP, as quais foram empregadas na segunda etapa para a produção de membranas. Três tipos de membranas foram processadas, membranas de quitosana sem AuNP e membranas de quitosana com AuNP com concentrações de 8 e 11mM., as quais foram caraterizadas morfológica e eletricamente. Finalmente foi avaliada a imobilização da peroxidasse usando quatro tratamentos diferentes, sendo a dispersão da peroxidasse nas soluções filmogênicas precursoras das membranas a mais eficiente. A resposta elétrica destas membranas é dependente da concentração de AuNP e da presença de enzimas, e também foi alterada quando as mesmas foram expostas a soluções de tampão fosfato com diferentes concentrações de peroxido de hidrogênio. Isto constitui o principio de operação dos biossensores condutométricos desenvolvidos neste trabalho.
Biosensors are devices used for detecting a specific analyte, and thus can be used in quality control of food for determining the presence of micro-organisms, toxins or metabolites. The present study aims to develop a conductometric biosensor based on the immobilization of peroxidase in membranes of chitosan and chitosan with gold nanoparticles (AuNP) for the detection of hydrogen peroxide. The work was divided into three stages. In the first stage, methods for obtaining AuNP employing biological reducing agents were studied, evaluating three monosaccharides (glucose, fructose and galactose), three disaccharides (sucrose, maltose and lactose), two biopolymers (starch and chitosan), as well as the extracts obtained from the leaves of mint (Mentha piperita) and husks dost thou pineapple (Ananas comosus), banana (Musa sp), passion fruit (Passiflora edulis), mandarin (Citrus reticulata). Chitosan exhibited the best behavior as reducing agent for the synthesis of AuNP, which were employed in the second step for the production of membranes. Three types of membranes were processed, chitosan membranes without AuNP and chitosan membranes with AuNP with concentrations of 8 and 11mM, which were morphologically and electrically characterized. Finally the peroxidase immobilization was evaluated using four different procedures, being the dispersion of the peroxidase in filmogenic solutions precursor of membranes the more efficient. The electrical response of these membranes, depends on the AuNP concentration and the presence of enzymes, and was also altered when they were exposed to hydrogen peroxide containing phosphate buffer solutions. This constitutes the principle of operation of the conductometric biosensor developed in this work.
Asunto(s)
Biopelículas/clasificación , Nanoestructuras/efectos adversos , Calidad de los Alimentos , Quitosano , Transporte Biológico/fisiología , Técnicas Biosensibles , Control y Fiscalización de Alimentos y Bebidas , Moduladores del Transporte de Membrana/análisis , PeroxidasasRESUMEN
PURPOSE: Study density of ionization in cells containing gold nanoparticles (AuNP) submitted to Radiation Therapy. METHODS: Spherical gold nanoparticles with diameters ranging 0-100nm were considered evenly distributed inside a 20mgr;m cubic cell, maintaining the gold concentration of 0.01%, with constant number of gold atoms inside the cell. Monte Carlo simulations were performed using PENELOPE code considering event-by-event transport of secondary electrons with minimum energy of 1keV. Simulated clinical energy spectrum of 250kV and 6MV x-rays;Co-60 and Ir-192 γ-ray sources obtained at each corresponding build-up depths were considered. Density of ionization inside the cell was evaluated counting delta electrons created either in AuNP or cell, excluding electrons attenuated inside the nanoparticles. The dose enhancement resultant from interaction of electrons with few micrometers range was quantified by the factor µDEF as the ratio of doses inside the cell with and without AuNP. RESULTS: Maps of ionization density were obtained at the central plane of the cell illustrating ionizations around and between AuNP. The density of ionization increases in cell medium as the AuNP diameter enlarges, being higher to larger nanoparticles for all energies studied. The total dose deposited in the cell is affected by the fraction of electrons consumed in the nanoparticles, resulting in size-dependence for µDEF. The µDEFs for 250kV are 1.68 to 20nm, 1.83 to 60nm and 1.72 to 100nm; µDEFs for 6MV are 1.14 to 20nm, 1.38 to 60nm and 1.20 to 100nm, therefore presenting an optimum nanoparticle size for clinical applications in Radiation Therapy. CONCLUSIONS: The µDEF describes dose enhancements founded on the effective density of ionizations inside cell medium containing AuNP, considering real electron tracks close to metallic interfaces. The profile of ionizations describes electron spectra of electrons with intracellular range considering dynamics of creation and consumption, hence being directly proportional to potential applicability of AuNP in Radiation Therapy. This work was funding supported by CAPES - Nanobiomed Network.