Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(3)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36986781

RESUMEN

Skeletal muscle tissue engineering presents a promising avenue to address the limitations pertaining to the regenerative potential of stem cells in case of injury or damage. The objective of this research was to evaluate the effects of utilizing novel microfibrous scaffolds, containing the compound quercetin (Q), on skeletal muscle regeneration. Morphological test results showed us that the combination of bismuth ferrite (BFO), polycaprolactone (PCL), and Q were bonded and well-ordered with each other, and a uniform microfibrous structure was obtained. Antimicrobial susceptibility testing of PCL/BFO/Q was conducted, and microbial reduction was found to be over 90% in the highest concentration of Q-loaded microfibrous scaffolds with the most inhibitory effect on S. aureus strains. Further, biocompatibility was investigated by performing MTT testing, fluorescence testing, and SEM imaging on mesenchymal stem cells (MSCs) to determine whether they could act as suitable microfibrous scaffolds for skeletal muscle tissue engineering. Incremental changes in the concentration of Q led to increased strength and strain, allowing muscles to withstand stretching during the healing process. In addition, electrically conductive microfibrous scaffolds enhanced the drug release capability by revealing that Q can be released significantly more quickly by applying the appropriate electric field, compared with conventional drug-release techniques. These findings suggest a possible use for PCL/BFO/Q microfibrous scaffolds in skeletal muscle regeneration by demonstrating that the combined action of both guidance biomaterials was more successful than Q itself acting alone.

2.
Pharmaceutics ; 13(7)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34201978

RESUMEN

The novel controlled and localized delivery of drug molecules to target tissues using an external electric stimulus makes electro-responsive drug delivery systems both feasible and desirable, as well as entailing a reduction in the side effects. Novel micro-scaffold matrices were designed based on poly(lactic acid) (PLA) and graphene oxide (GO) via electrospinning. Quercetin (Q), a natural flavonoid, was loaded into the fiber matrices in order to investigate the potential as a model drug for wound dressing applications. The physico-chemical properties, electrical triggering capacity, antimicrobial assay and biocompatibility were also investigated. The newly fabricated PLA/GO/Q scaffolds showed uniform and smooth surface morphologies, without any beads, and with diameters ranging from 1107 nm (10%PLA/0.1GO/Q) to 1243 nm (10%PLA). The in vitro release tests of Q from the scaffolds showed that Q can be released much faster (up to 8640 times) when an appropriate electric field is applied compared to traditional drug-release approaches. For instance, 10 s of electric stimulation is enough to ensure the full delivery of the loaded Q from the 10%PLA/1%GO/Q microfiber scaffold at both 10 Hz and at 50 Hz. The antimicrobial tests showed the inhibition of bacterial film growth. Certainly, these materials could be loaded with more potent agents for anti-cancer, anti-infection, and anti-osteoporotic therapies. The L929 fibroblast cells cultured on these scaffolds were distributed homogeneously on the scaffolds, and the highest viability value of 82.3% was obtained for the 10%PLA/0.5%GO/Q microfiber scaffold. Moreover, the addition of Q in the PLA/GO matrix stimulated the production of IL-6 at 24 h, which could be linked to an acute inflammatory response in the exposed fibroblast cells, as a potential effect of wound healing. As a general conclusion, these results demonstrate the possibility of developing graphene oxide-based supports for the electrically triggered delivery of biological active agents, with the delivery rate being externally controlled in order to ensure personalized release.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA