Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.336
Filtrar
1.
J Bacteriol ; : e0015124, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258918

RESUMEN

Small multidrug resistance (SMR) transporters are key players in the defense of multidrug-resistant pathogens to toxins and other homeostasis-perturbing compounds. However, recent evidence demonstrates that EmrE, an SMR from Escherichia coli and a model for understanding transport, can also induce susceptibility to some compounds by drug-gated proton leak. This runs down the ∆pH component of the proton-motive force (PMF), reducing the viability of the affected bacteria. Proton leak may provide an unexplored drug target distinct from the targets of most known antibiotics. Activating proton leak requires an SMR to be merely present, rather than be the primary resistance mechanism, and dissipates the energy source for many other efflux pumps. PAsmr, an EmrE homolog from Pseudomonas aeruginosa, transports many EmrE substrates in cells and purified systems. We hypothesized that PAsmr, like EmrE, may confer susceptibility to some compounds via drug-gated proton leak. Growth assays of E. coli expressing PAsmr displayed substrate-dependent resistance and susceptibility phenotypes, and in vitro solid-supported membrane electrophysiology experiments revealed that PAsmr performs both antiport and substrate-gated proton uniport, demonstrating the same functional promiscuity observed in EmrE. Growth assays of P. aeruginosa strain PA14 demonstrated that PAsmr contributes resistance to some antimicrobial compounds, but no growth defect is observed with susceptibility substrates, suggesting P. aeruginosa can compensate for the proton leak occurring through PAsmr. These phenotypic differences between P. aeruginosa and E. coli advance our understanding of the underlying resistance mechanisms in P. aeruginosa and prompt further investigation into the role that SMRs play in antibiotic resistance in pathogens. IMPORTANCE: Small multidrug resistance (SMR) transporters are a class of efflux pumps found in many pathogens, although their contributions to antibiotic resistance are not fully understood. We hypothesize that these transporters may confer not only resistance but also susceptibility, by dissipating the proton-motive force. This means to use an SMR transporter as a target; it merely needs to be present (as opposed to being the primary resistance mechanism). Here, we test this hypothesis with an SMR transporter found in Pseudomonas aeruginosa and find that it can perform both antiport (conferring resistance) and substrate-gated proton leak. Proton leak is detrimental to growth in Escherichia coli but not P. aeruginosa, suggesting that P. aeruginosa responds differently to or can altogether prevent ∆pH dissipation.

2.
Results Probl Cell Differ ; 73: 353-373, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242386

RESUMEN

Tunneling nanotubes (TNTs) are thin, membranous protrusions that connect cells and allow for the transfer of various molecules, including proteins, organelles, and genetic material. TNTs have been implicated in a wide range of biological processes, including intercellular communication, drug resistance, and viral transmission. In cancer, they have been investigated more deeply over the past decade for their potentially pivotal role in tumor progression and metastasis. TNTs, as cell contact-dependent protrusions that form at short and long distances, enable the exchange of signaling molecules and cargo between cancer cells, facilitating communication and coordination of their actions. This coordination induces a synchronization that is believed to mediate the TNT-directed evolution of drug resistance by allowing cancer cells to coordinate, including through direct expulsion of chemotherapeutic drugs to neighboring cells. Despite advances in the overall field of TNT biology since the first published report of their existence in 2004 (Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH, Science. 303:1007-10, 2004), the mechanisms of formation and components vital for the function of TNTs are complex and not yet fully understood. However, several factors have been implicated in their regulation, including actin polymerization, microtubule dynamics, and signaling pathways. The discovery of TNT-specific components that are necessary and sufficient for their formation, maintenance, and action opens a new potential avenue for drug discovery in cancer. Thus, targeting TNTs may offer a promising therapeutic strategy for cancer treatment. By disrupting TNT formation or function, it may be possible to inhibit tumor growth and metastasis and overcome drug resistance.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Humanos , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Comunicación Celular , Nanotubos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Estructuras de la Membrana Celular
3.
Biomed Pharmacother ; 179: 117400, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243427

RESUMEN

PURPOSE: To improve the oral bioavailability of albendazole (ABZ), a series of albendazole-bile acid conjugates (ABCs) were synthesized. ABC's transmembrane transport mechanism and in vivo pharmacokinetic properties were preliminarily studied. METHODS: The transmembrane transport mechanism of ABCs was studied using the Caco-2 monolayer cell model and intestinal perfusion model. The concentration of ABCs and ABZ were evaluated using High-Performance Liquid Chromatography (HPLC) and HPLC-Mass Spectrometry (HPLC-MS/MS). RESULTS: Compared to ABZ, better permeability was observed for different types and concentrations of ABCs using the Caco-2 monolayer cell model, with ABC-C8 showing the highest permeability. The transmembrane transport of ABCs was affected by ASBT inhibitors, indicating an ASBT-mediated active transport mechanism. Additionally, introducing cholic acid resulted in ABZ no longer being a substrate for P-gp, MRP2, and BCRP, effectively reversing ABZ efflux. In vivo unidirectional intestinal perfusion results in rats showed that ABCs altered the absorption site of ABZ from the jejunum to the ileum. The absorption efficiency of ABCs in each intestinal segment was higher than that of ABZ, and the transmembrane transport efficiency decreased with increasing concentrations of ASBT inhibitors. This further confirmed the presence of both passive diffusion and ASBT-mediated active transport mechanisms in the transport of ABCs. The solubility of ABCs in gastric juice and pharmacokinetics in rats showed that ABZ-C4 exhibited enhanced solubility. Moreover, ABCs significantly increased oral bioavailability compared to ABZ, with ABC-C4 showing an approximately 31-fold increase in bioavailability. CONCLUSION: The transmembrane transport mechanism of ABCs involves a combination of ASBT-mediated active transport and passive diffusion. Moreover, the incorporation of BAs successfully reverses the efflux of ABZ by efflux proteins. Among the synthesized conjugates, ABC-C4 demonstrated superior dissolution behavior both in vitro and in vivo.

4.
mBio ; : e0237024, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248573

RESUMEN

Efflux pumps are well known to be an important mechanism for removing noxious substances such as antibiotics from bacteria. Given that many antibiotics function by accumulating inside bacteria, efflux pumps contribute to resistance. Efflux pump inactivation is a potential strategy to combat antimicrobial resistance, as bacteria would not be able to pump out antibiotics. We recently discovered that the impact of loss of efflux function is only apparent in actively growing cells. We demonstrated that the global transcriptome of Salmonella Typhimurium is drastically altered during slower growth leading to stationary-phase cells having a remodeled, less permeable envelope that prevents antibiotics entering the cell. Here, we investigated the effects of deleting the major efflux pump of Salmonella Typhimurium, AcrB, on global gene transcription across growth. We revealed that an acrB knockout entered stationary phase later than the wild-type strain SL1344 and displayed increased and prolonged expression of genes responsible for anaerobic energy metabolism. We devised a model linking efflux and membrane potential, whereby deactivation of AcrB prevents influx of protons across the inner membrane and thereby hyperpolarization. Knockout or deactivation of AcrB was demonstrated to increase membrane potential. We propose that the global transcription regulator ArcBA senses changes to the redox state of the quinol pool (linked to the membrane potential of the bacterium) and coordinates the shift from exponential to stationary phase via the key master regulators RpoS, Rsd, and Rmf. Inactivation of efflux pumps therefore influences the fundamental physiology of Salmonella, with likely impacts on multiple phenotypes.IMPORTANCEWe demonstrate for the first time that deactivation of efflux pumps brings about changes to gross bacterial physiology and metabolism. Rather than simply being a response to noxious substances, efflux pumps appear to play a key role in maintenance of membrane potential and thereby energy metabolism. This discovery suggests that efflux pump inhibition or inactivation might have unforeseen positive consequences on antibiotic activity. Given that stationary-phase bacteria are more resistant to antibiotic uptake, late entry into stationary phase would prolong antibiotic accumulation by bacteria. Furthermore, membrane hyperpolarization could result in increased generation of reactive species proposed to be important for the activity of some antibiotics. Finally, changes in gross physiology could also explain the decreased virulence of efflux mutants.

5.
Front Physiol ; 15: 1423989, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234305

RESUMEN

Introduction: High density lipoproteins (HDL) exert cardiovascular protection in part through their antioxidant capacity and cholesterol efflux function. Effects of exercise training on HDL function are yet to be well established, while impact on triacylglycerol (TG)-lowering has been often reported. We previously showed that a short-term high-intensity interval training (HIIT) program improves insulin sensitivity but does not inhibit inflammatory pathways in immune cells in insulin-resistant subjects. The purpose of this study is to evaluate HDL function along with changes of lipoproteins after the short-term HIIT program in lean, obese nondiabetic, and obese type 2 diabetic (T2DM) subjects. Methods: All individuals underwent a supervised 15-day program of alternative HIIT for 40 minutes per day. VO2peak was determined before and after this training program. A pre-training fasting blood sample was collected, and the post-training fasting blood sample collection was performed 36 hours after the last exercise session. Results: Blood lipid profile and HDL function were analyzed before and after the HIIT program. Along with improved blood lipid profiles in obese and T2DM subjects, the HIIT program affected circulating apolipoprotein amounts differently. The HIIT program increased HDL-cholesterol levels and improved the cholesterol efflux capacity only in lean subjects. Furthermore, the HIIT program improved the antioxidant capacity of HDL in all subjects. Data from multiple logistic regression analysis showed that changes in HDL antioxidant capacity were inversely associated with changes in atherogenic lipids and changes in HDL-TG content. Discussion: We show that a short-term HIIT program improves aspects of HDL function depending on metabolic contexts, which correlates with improvements in blood lipid profile. Our results demonstrate that TG content in HDL particles may play a negative role in the anti-atherogenic function of HDL.

6.
bioRxiv ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39229117

RESUMEN

Mycobacterium abscessus is a pulmonary pathogen that exhibits intrinsic resistance to antibiotics, but the factors driving this resistance are incompletely understood. Insufficient intracellular drug accumulation could explain broad-spectrum resistance, but whether antibiotics fail to accumulate in M. abscessus and the mechanisms required for drug exclusion remain poorly understood. We measured antibiotic accumulation in M. abscessus using mass spectrometry and found a wide range of drug accumulation across clinically relevant antibiotics. Of these compounds, linezolid accumulates the least, suggesting that inadequate uptake impacts its efficacy. We utilized transposon mutagenesis screening to identify genes that cause linezolid resistance and found multiple transporters that promote membrane permeability or efflux, including an uncharacterized, M. abscessus-specific protein that effluxes linezolid and several chemically related antibiotics. This demonstrates that membrane permeability and drug efflux are critical mechanisms of antibiotic resistance in M. abscessus and suggests that targeting membrane transporters could potentiate the efficacy of certain antibiotics.

7.
Drug Metab Pharmacokinet ; 58: 101028, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39265438

RESUMEN

Cyclic peptides have attracted attention as new modalities for drug development owing to their unique pharmacokinetic and pharmacodynamic properties. Destruxin E, a 19-membered cyclodepsipeptide, is a promising candidate drug for cancer therapy. The purpose of the present study was to clarify the molecular mechanisms underlying membrane transport, metabolism, and the binding for target molecules of destruxin E in human cervical carcinoma HeLa cells used as a model of cancer cells. The influx transport and the intracellular metabolism of destruxin E were non-saturable and saturable, respectively, at up to 10 µM. The intracellular amounts of destruxin E and destruxin E-diol after incubation of destruxin E with the cells significantly decreased at 4 °C compared to those at 37 °C. Destruxin E-diol, but not destruxin E, undergoes efflux transport out of cells via P-gp/MDR1/ABCB1 and BCRP/ABCG2. The epoxide hydrolase EPHX2 functions as a potent metabolizing enzyme that can convert the epoxide of destruxin E to the destruxin E-diol. Treatment with an EPHX2 inhibitor increased the intracellular destruxin E levels and enhanced the inhibitory activity of vacuolar type-H+ ATPase. These results suggest that epoxide hydrolase could be a regulatory factor for intracellular destruxin E levels and its pharmacological activity.

8.
Microbiology (Reading) ; 170(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39230258

RESUMEN

Klebsiella pneumoniae is a pathogen of major concern in the global rise of antimicrobial resistance and has been implicated as a reservoir for the transfer of resistance genes between species. The upregulation of efflux pumps is a particularly concerning mechanism of resistance acquisition as, in many instances, a single point mutation can simultaneously provide resistance to a range of antimicrobials and biocides. The current study investigated mutations in oqxR, which encodes a negative regulator of the RND-family efflux pump genes, oqxAB, natively found in the chromosome of K. pneumoniae. Resistant mutants in four K. pneumoniae strains (KP6870155, NTUH-K2044, SGH10, and ATCC43816) were selected from single exposures to 30 µg/mL chloramphenicol and 12 mutants were selected for whole genome sequencing to identify mutations associated with resistance. Resistant mutants generated by single exposures to chloramphenicol, tetracycline, or ciprofloxacin at ≥4 X MIC were replica plated onto all three antibiotics to observe simultaneous cross-resistance to all compounds, indicative of a multidrug resistance phenotype. A variety of novel mutations, including single point mutations, deletions, and insertions, were found to disrupt oqxR leading to significant and simultaneous increases in resistance to chloramphenicol, tetracycline, and ciprofloxacin. The oqxAB-oqxR locus has been mobilized and dispersed on plasmids in many Enterobacteriaceae species and the diversity of these loci was examined to evaluate the evolutionary pressures acting on these genes. Comparison of the promoter regions of oqxR in plasmid-borne copies of the oqxR-oqxAB operon indicated that some constructs may produce truncated versions of the oqxR transcript, which may impact on oqxAB regulation and expression. In some instances, co-carriage of chromosomal and plasmid encoded oqxAB-oqxR was found in K. pneumoniae, implying that there is selective pressure to maintain and expand the efflux pump. Given that OqxR is a repressor of oqxAB, any mutation affecting its expression or function can lead to multidrug resistance. This is in contrast to antibiotic target site mutations that must occur in limited sequence space to be effective and not impact the fitness of the cell. Therefore, oqxR may act as a simple genetic switch to facilitate resistance via OqxAB mediated efflux.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Farmacorresistencia Bacteriana Múltiple , Klebsiella pneumoniae , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cloranfenicol/farmacología , Ciprofloxacina/farmacología , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Mutación , Tetraciclina/farmacología , Secuenciación Completa del Genoma
9.
Microbiol Mol Biol Rev ; : e0008923, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235227

RESUMEN

SUMMARYThe discovery of bacterial efflux pumps significantly advanced our understanding of how bacteria can resist cytotoxic compounds that they encounter. Within the structurally and functionally distinct families of efflux pumps, those of the Resistance-Nodulation-Division (RND) superfamily are noteworthy for their ability to reduce the intracellular concentration of structurally diverse antimicrobials. RND systems are possessed by many Gram-negative bacteria, including those causing serious human disease, and frequently contribute to resistance to multiple antibiotics. Herein, we review the current literature on the structure-function relationships of representative transporter proteins of tripartite RND efflux pumps of clinically important pathogens. We emphasize their contribution to bacterial resistance to clinically used antibiotics, host defense antimicrobials and other biocides, as well as highlighting structural similarities and differences among efflux transporters that help bacteria survive in the face of antimicrobials. Furthermore, we discuss technical advances that have facilitated and advanced efflux pump research and suggest future areas of investigation that will advance antimicrobial development efforts.

10.
Microb Pathog ; 195: 106902, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39218374

RESUMEN

Mastitis remains a paramount economic threat to dairy livestock, with antibiotic resistance severely compromising treatment efficacy. This study provides an in-depth investigation into the multidrug resistance (MDR) mechanisms in bacterial isolates from bovine mastitis, emphasizing the roles of antimicrobial resistance genes (ARGs), biofilm formation, and active efflux systems. A total of 162 Staphylococci, eight Escherichia coli, and seven Klebsiella spp. isolates were obtained from 215 milk samples of clinical and subclinical mastitis cases. Antibiotic susceptibility testing identified Twenty Staphylococci (12.35 %), six E. coli (75 %) and seven Klebsiella (100 %) identified as MDR displaying significant resistance to ß-lactams and tetracyclines The Multiple Antibiotic Resistance (MAR) index of these isolates ranged from 0.375 to 1.0, highlighting extensive resistance. Notably, 29 of the 33 MDR isolates produced biofilms on Congo red agar, while all exhibited biofilm formation in the Microtitre Plate assay. Critical ARGs (blaZ, blaTEM, blaCTX-M, tetM, tetA, tetB, tetC, strA/B, aadA) and efflux pump genes (acrB, acrE, acrF, emrB, norB) regulating active efflux were identified. This pioneering study elucidates the synergistic contribution of ARGs, biofilm production, and efflux pump activity to MDR in bovine mastitis pathogens. To our knowledge, this comprehensive study is the first of its kind, offering novel insights into the complex resistance mechanisms. The findings underscore the imperative need for advanced antibiotic stewardship and strategic interventions in dairy farming to curb the rise of antibiotic-resistant infections, thereby protecting both animal and public health.


Asunto(s)
Antibacterianos , Biopelículas , Farmacorresistencia Bacteriana Múltiple , Klebsiella , Mastitis Bovina , Pruebas de Sensibilidad Microbiana , Leche , Staphylococcus , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Bovinos , Animales , Mastitis Bovina/microbiología , Femenino , Farmacorresistencia Bacteriana Múltiple/genética , Antibacterianos/farmacología , Klebsiella/genética , Klebsiella/efectos de los fármacos , Staphylococcus/efectos de los fármacos , Staphylococcus/genética , Leche/microbiología , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Genes Bacterianos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
11.
Int Immunopharmacol ; 142(Pt A): 113131, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39276454

RESUMEN

BACKGROUND: Abnormalities in iron and lipid metabolism are recognized as key contributors to atherosclerosis (AS). Therefore, this study proposes to characterize the biomarker related to iron and lipid metabolism in AS using bioinformatics, animal, and cell experiments. METHODS: The limma package was utilized to identify differentially expressed genes (DEGs) in GSE70126 and GSE70619 datasets, and biomarkers were screened using enrichment analysis and PPI networks. IFIT2 was knocked down using shRNA lentivirus in a high fat diet (HFD)-induced APOE-/- AS model to investigate its effects of IFIT2 on the pathology, iron retention, and lipid accumulation. Iron storage-related and cholesterol efflux-related proteins were evaluated following exogenous modulation of IFIT2 expression in ox-LDL-induced foamy macrophages. RESULTS: Compared to non-foamy macrophages from the aorta, 189 and 4152 DEGs were identified in foamy macrophages within the GSE70126 and GSE70619 datasets, respectively. Moreover, intersecting DEGs may modulate immune responses, cell adhesion, vascular permeability, and oxidative stress through NF-kappa B, Wnt, TNF and HIF-1 signaling pathways. Notably, IFIT2 was significantly upregulated in foamy macrophages and AS models. In vivo, IFIT2 co-localized with foamy macrophages, and its knockdown led to reductions in plasma lipid levels, plaque area, immune infiltration, iron retention, and lipid accumulation. In vitro, IFIT2 knockdown alleviated the ox-LDL-induced increase in iron storage-related proteins (Ferritin-L and Ferritin-H) and iron (Fe2+ and Fe3+) in foamy macrophages. Furthermore, IFIT2 knockdown reduced lipid accumulation and upregulated cholesterol efflux-related proteins (PPARγ, LXRα, ABCA1, and ABCG1) in foamy macrophages. CONCLUSION: IFIT2 knockdown attenuates iron retention and lipid accumulation in AS plaques, and facilitated cholesterol efflux from foamy macrophages via the PPARγ/LXRα/ABCA1-ABCG1 pathway.

12.
J Leukoc Biol ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39278634

RESUMEN

Antimicrobial resistance is an increasing worldwide public health burden that threatens to make existent antimicrobials obsolete. An important mechanism of antimicrobial resistance is the overexpression of efflux pumps, which reduce the intracellular concentration of antimicrobials. TolC is the outer membrane protein of an efflux pump that has gained attention as a therapeutic target. Little is known about the immune response against TolC. Here we evaluated the immune response against TolC from Escherichia coli. TolC in silico epitope prediction showed several residues that could bind to human antibodies, and we showed that human plasma presented higher titers of anti-TolC IgG and IgA, than IgM. E. coli recombinant TolC protein stimulated macrophages in vitro to produce nitric oxide, as well as IL-6 and TNF-α, assessed by Griess assay and ELISA, respectively. Immunization of mice with TolC intraperitoneally and an in vitro re-stimulation led to increased T cell proliferation and IFNγ production, evaluated by flow cytometry and ELISA, respectively. TolC mouse immunization stimulated anti-TolC IgM and IgG production, with higher levels of IgG1 and IgG2, amongst the IgG subclasses. Anti-TolC murine antibodies could bind to live E. coli and increase bacterial uptake and elimination by macrophages in vitro. Intraperitoneal or intranasal, but not oral, immunizations with inactivated E. coli also led to anti-TolC antibody production. Finally, TolC immunization increased mouse survival rates to antimicrobial-sensitive or resistant E. coli infection. Our results showed that TolC is immunogenic, leading to the production of protective antibodies against E. coli, reinforcing its value as a therapeutic target.

13.
Cardiovasc Diabetol ; 23(1): 339, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267053

RESUMEN

BACKGROUND: Cardiovascular disease represents a significant risk factor for mortality in individuals with type 2 diabetes mellitus (T2DM). High-density lipoprotein (HDL) is believed to play a crucial role in maintaining cardiovascular health through its multifaceted atheroprotective effects and its capacity to enhance glycemic control. The impact of dietary interventions and intermittent fasting (IF) on HDL functionality remains uncertain. The objective of this study was to assess the effects of dietary interventions and IF as a strategy to safely improve glycemic control and reduce body weight on functional parameters of HDL in individuals with T2DM. METHODS: Before the 12-week intervention, all participants (n = 41) of the INTERFAST-2 study were standardized to a uniform basal insulin regimen and randomized to an IF or non-IF group. Additionally, all participants were advised to adhere to dietary recommendations that promoted healthy eating patterns. The IF group (n = 19) followed an alternate-day fasting routine, reducing their calorie intake by 75% on fasting days. The participants' glucose levels were continuously monitored. Other parameters were measured following the intervention: Lipoprotein composition and subclass distribution were measured by nuclear magnetic resonance spectroscopy. HDL cholesterol efflux capacity, paraoxonase 1 (PON1) activity, lecithin cholesterol acyltransferase (LCAT) activity, and cholesterol ester transfer protein (CETP) activity were assessed using cell-based assays and commercially available kits. Apolipoprotein M (apoM) levels were determined by ELISA. RESULTS: Following the 12-week intervention, the IF regimen significantly elevated serum apoM levels (p = 0.0144), whereas no increase was observed in the non-IF group (p = 0.9801). ApoM levels correlated with weight loss and fasting glucose levels in the IF group. Both groups exhibited a robust enhancement in HDL cholesterol efflux capacity (p < 0.0001, p = 0.0006) after 12 weeks. Notably, only the non-IF group exhibited significantly elevated activity of PON1 (p = 0.0455) and LCAT (p = 0.0117) following the 12-week intervention. In contrast, the changes observed in the IF group did not reach statistical significance. CONCLUSIONS: A balanced diet combined with meticulous insulin management improves multiple metrics of HDL function. While additional IF increases apoM levels, it does not further enhance other aspects of HDL functionality. TRIAL REGISTRATION: The study was registered at the German Clinical Trial Register (DRKS) on 3 September 2019 under the number DRKS00018070.


Asunto(s)
Biomarcadores , Glucemia , Diabetes Mellitus Tipo 2 , Ayuno , Obesidad , Fosfatidilcolina-Esterol O-Aciltransferasa , Humanos , Masculino , Persona de Mediana Edad , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/fisiopatología , Femenino , Ayuno/sangre , Fosfatidilcolina-Esterol O-Aciltransferasa/sangre , Resultado del Tratamiento , Obesidad/sangre , Obesidad/diagnóstico , Obesidad/dietoterapia , Obesidad/fisiopatología , Obesidad/terapia , Glucemia/metabolismo , Factores de Tiempo , Biomarcadores/sangre , Restricción Calórica , Arildialquilfosfatasa/sangre , HDL-Colesterol/sangre , Proteínas de Transferencia de Ésteres de Colesterol/sangre , Pérdida de Peso , Anciano , Adulto , Dieta Saludable , Hipoglucemiantes/uso terapéutico , Insulina/sangre , Ayuno Intermitente
14.
Virulence ; 15(1): 2399983, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39239906

RESUMEN

Bacterial resistance poses a significant threat to both human and animal health. N-acetylcysteine (NAC), which is used as an anti-inflammatory, has been shown to have distinct and contrasting impacts on bacterial resistance. However, the precise mechanism underlying the relationship between NAC and bacterial resistance remains unclear and requires further investigation. In this study, we study the effect of NAC on bacterial resistance and the underlying mechanisms. Specifically, we examine the effects of NAC on Edwardsiella tarda ATCC15947, a pathogen that exhibits resistance to many antibiotics. We find that NAC can promote resistance of E. tarda to many antibiotics, such as doxycycline, resulting in an increase in the bacterial survival rate. Through proteomic analysis, we demonstrate that NAC activates the amino acid metabolism pathway in E. tarda, leading to elevated intracellular glutathione (GSH) levels and reduced reactive oxygen species (ROS). Additionally, NAC reduces antibiotic influx while enhancing efflux, thus maintaining low intracellular antibiotic concentrations. We also propose that NAC promotes protein aggregation, thus contributing to antibiotic resistance. Our study describes the mechanism underlying E. tarda resistance to doxycycline and cautions against the indiscriminate use of metabolite adjuvants.


Asunto(s)
Acetilcisteína , Antibacterianos , Doxiciclina , Farmacorresistencia Bacteriana , Edwardsiella tarda , Edwardsiella tarda/efectos de los fármacos , Edwardsiella tarda/genética , Doxiciclina/farmacología , Antibacterianos/farmacología , Acetilcisteína/farmacología , Especies Reactivas de Oxígeno/metabolismo , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Animales , Glutatión/metabolismo , Proteómica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana
15.
Sci Total Environ ; 953: 176065, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244063

RESUMEN

The emergence of tmexCD-toprJ, a novel plasmid-mediated resistance-nodulation-division (RND) type efflux pump gene cluster, poses a significant threat to public health by diminishing bacterial susceptibility to the last-resort antibiotics, including tigecycline. Between 2020 and 2022, 18 Klebsiella pneumoniae strains carrying the tmexCD-toprJ gene were recovered from over 30,000 human stool samples collected from patients across five hospitals in China. Phylogenetic analysis of these 18 strains revealed clonal transmission of tmexCD-toprJ-carrying K. pneumoniae among patients and hospital settings. Comparative analysis of the 18 tmexCD-toprJ-carrying plasmids showed conservation in the genetic backgrounds of tmexCD-toprJ, despite the diverse backbone structures among the plasmids. The inactive suppressor, TNfxB1, is located in front of all tmexCD1-toprJ1, while TNfxB3 is located upstream of tmexCD3-toprJ3. Conjugation experiments demonstrated the transferability of plasmids from three strains to the recipient Escherichia coli J53. Among all 237 globally distributed tmexCD-toprJ-carrying strains, the majority (92.83 %) were from China. These strains encompassed 50 sequence types, with the most prevalent being ST11 (12.66 %), ST37 (11.81 %), and ST15 (11.39 %). Samples originated from various sources: 47.26 % from human, 38.82 % from livestock, and 13.08 % from the environment. The most common tmexCD-toprJ genotype was tmexCD1-toprJ1 (86.92 %, n = 206), followed by tmexCD2-toprJ2 (8.86 %, n = 21) and tmexCD3-toprJ3 (4.22 %, n = 10). The tmexCD1-toprJ1 gene was found in livestock (44.66 %, n = 92), humans (39.81 %, n = 82), and environmental samples (15.05 %, n = 31). In contrast, tmexCD2-toprJ2 and tmexCD3-toprJ3 were only found in human samples. Additionally, tmexCD-toprJ has been detected in 79 strains of K. pneumoniae harboring carbapenem-resistance genes. Given the presence of tmexCD-toprJ across various hosts and environments, establishing a comprehensive surveillance system from a One Health perspective is particularly vital.

16.
Redox Biol ; 76: 103341, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244794

RESUMEN

AIMS: Acute heart failure (AHF) is typified by inflammatory and oxidative stress responses, which are associated with unfavorable patient outcomes. Given the anti-inflammatory and antioxidant properties of high-density lipoprotein (HDL), this study sought to examine the relationship between impaired HDL function and mortality in AHF patients. The complex interplay between various HDL-related biomarkers and clinical outcomes remains poorly understood. METHODS: HDL subclass distribution was quantified by nuclear magnetic resonance spectroscopy. Lecithin-cholesterol acyltransferase (LCAT) activity, cholesterol ester transfer protein (CETP) activity, and paraoxonase (PON-1) activity were assessed using fluorometric assays. HDL-cholesterol efflux capacity (CEC) was assessed in a validated assay using [3H]-cholesterol-labeled J774 macrophages. RESULTS: Among the study participants, 74 (23.5 %) out of 315 died within three months after hospitalization due to AHF. These patients exhibited lower activities of the anti-oxidant enzymes PON1 and LCAT, impaired CEC, and lower concentration of small HDL subclasses, which remained significant after accounting for potential confounding factors. Smaller HDL particles, particularly HDL3 and HDL4, exhibited a strong association with CEC, PON1 activity, and LCAT activity. CONCLUSIONS: In patients with AHF, impaired HDL CEC, HDL antioxidant and anti-inflammatory function, and impaired HDL metabolism are associated with increased mortality. Assessment of HDL function and subclass distribution could provide valuable clinical information and help identify patients at high risk.

17.
Bioorg Chem ; 153: 107782, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39244975

RESUMEN

Candida auris (C. auris) has caused notable outbreaks across the globe in last decade and emerged as a life-threatening human pathogenic fungus. Despite significant advances in antifungal research, the drug resistance mechanisms in C. auris still remain elusive. Under such pressing circumstances, research on identification of new antifungal compounds is of immense interest. Thus, our studies aimed at identifying novel drug candidates and elucidate their biological targets in C. auris. After screening of several series of synthetic and hemisynthetic compounds from JUNIA chemical library, compounds C4 (butyl 2-(4-chlorophenyl)hydrazine-1-carboxylate) and C13 (phenyl 2-(4-chlorophenyl) hydrazine-1-carboxylate), belonging to the carbazate series, were identified to display considerable antifungal activities against C. auris as well as its fluconazole resistant isolates. Elucidation of biological targets revealed that C4 and C13 lead to changes in polysaccharide composition of the cell wall and disrupt vacuole homeostasis. Mechanistic insights further unravelled inhibited efflux pump activities of ATP binding cassette transporters and depleted ergosterol content. Additionally, C4 and C13 cause mitochondrial dysfunction and confer oxidative stress. Furthermore, both C4 and C13 impair biofilm formation in C. auris. The in vivo efficacy of C4 and C13 were demonstrated in Caenorhabditis elegans model after C. auris infection showing reduced mortality of the nematodes. Together, promising antifungal properties were observed for C4 and C13 against C. auris that warrant further investigations. To summarise, collected data pave the way for the design and development of future first-in-class antifungal drugs.

18.
BMC Biol ; 22(1): 199, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256727

RESUMEN

BACKGROUND: Haem is essential but toxic for metazoan organisms. Auxotrophic nematodes can acquire sufficient haem from the environment or their hosts in the meanwhile eliminate or detoxify excessive haem through tightly controlled machinery. In previous work, we reported a role of the unique transporter protein HRG-1 in the haem acquisition and homeostasis of parasitic nematodes. However, little is known about the haem efflux and detoxification via ABC transporters, particularly the multiple drug resistance proteins (MRPs). RESULTS: Here, we further elucidate that a member of the mrp family (mrp-3) is involved in haem efflux and detoxification in a blood-feeding model gastrointestinal parasite, Haemonchus contortus. This gene is haem-responsive and dominantly expressed in the intestine and inner membrane of the hypodermis of this parasite. RNA interference of mrp-3 resulted in a disturbance of genes (e.g. hrg-1, hrg-2 and gst-1) that are known to be involved in haem homeostasis and an increased formation of haemozoin in the treated larvae and lethality in vitro, particularly when exposed to exogenous haem. Notably, the nuclear hormone receptor NHR-14 appears to be associated the regulation of mrp-3 expression for haem homeostasis and detoxification. Gene knockdown of nhr-14 and/or mrp-3 increases the sensitivity of treated larvae to exogenous haem and consequently a high death rate (> 80%). CONCLUSIONS: These findings demonstrate that MRP-3 and the associated molecules are essential for haematophagous nematodes, suggesting novel intervention targets for these pathogens in humans and animals.


Asunto(s)
Haemonchus , Hemo , Animales , Haemonchus/genética , Haemonchus/metabolismo , Hemo/metabolismo , Inactivación Metabólica/genética , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Interferencia de ARN , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo
19.
Iran J Microbiol ; 16(4): 552-559, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39267932

RESUMEN

Background and Objectives: Today, medicinal plants and their derivatives are considered to reduce the prevalence of antibiotic resistance. The aim of this study was to investigate the effect of Mentha longifolia essential oil on oqxA efflux pump gene expression and biofilm formation in ciprofloxacin-resistant Klebsiella pneumoniae strains. Materials and Methods: A total of 50 clinical strains of K. pneumoniae resistant to ciprofloxacin were studied. The minimum inhibitory concentration (MIC) of M. longifolia essential oil and its synergistic effect with ciprofloxacin were determined using the microbroth dilution method and the fractional inhibitory concentration (FIC) method. Minimum biofilm inhibition concentration (MBIC) of M. longifolia essential oil was detected. The effect of essential oils on the expression level of the oqxA gene was detected by Real-time PCR. Results: M. longifolia essential oil showed inhibitory activity against ciprofloxacin-resistant strains of K. pneumoniae. When M. longifolia essential oil was combined with ciprofloxacin, the MIC was reduced 2-4 times. In 28% of the strains, M. longifolia with ciprofloxacin showed a synergistic effect. M. longifolia essential oil reduces the strength of biofilm formation and alters the biofilm phenotype. A significant decrease in oqxA gene expression was observed in all isolates after treatment with M. longifolia essential oil. Conclusion: Based on the results of this study, it was observed that supplementing M. longifolia essential oil can help reduce ciprofloxacin resistance and inhibit biofilm formation in fluoroquinolone-resistant K. pneumoniae strains.

20.
Med Int (Lond) ; 4(6): 67, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39268247

RESUMEN

As a notorious bacterial pathogen, Staphylococcus aureus (S. aureus) can readily induce infections in the community and hospital, causing significant morbidity and mortality. With the extensive rise of multiple resistance, conventional antibiotic therapy has rapidly become ineffective for related infections. Resveratrol is a naturally occurring polyphenolic substance that has been demonstrated to have effective antimicrobial activity against S. aureus. Resveratrol at sub-inhibitory doses can suppress the expression of virulence factors, contributing to attenuated biofilm formation, interference with quorum sensing and the inhibition of the production of toxins. As a promising efflux pump inhibitor, resveratrol enhances antibiotic susceptibility to a certain extent. In conjunction with conventional antibiotics, resveratrol displays unique synergistic effects with norfloxacin and aminoglycoside on S. aureus, yet antagonizes the lethal effects of daptomycin, oxacillin, moxifloxacin and levofloxacin. Nevertheless, given the low oral bioavailability of resveratrol, advanced formulations need to be developed to delay the rapid metabolism conversion to low or inactive conjugates. The present review discusses the antibacterial properties of resveratrol against S. aureus, in an aim to provide in-depth insight for researchers to address the challenges of antimicrobial resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA