Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 434
Filtrar
1.
J Egypt Public Health Assoc ; 99(1): 23, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39285014

RESUMEN

BACKGROUND: The textile industry is the second risk factor for bladder cancer, after smoking. Previous studies focused on the impact of exposure to high concentrations of bladder carcinogenic chemicals in the textile dyeing industry on the elevation of bladder cancer biomarkers. This study aimed to evaluate bladder carcinogenic air pollutants in a textile dyeing factory and investigate its role and the role of serum 25-hydroxyvitamin D (25-OH vit. D) on cancer bladder biomarkers in exposed workers. METHODS: A cross-sectional study was conducted. Particulate and vapor forms of polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) were monitored in the printing, dyeing, and preparing sections of a textile factory. Bladder tumor antigen (BTA), nuclear matrix protein 22 (NMP-22), and 25-OH vit. D were estimated in all the exposed workers (147 exposed workers) and in workers not occupationally exposed to chemicals (130 unexposed workers). RESULTS: Aromatic bladder carcinogenic compounds were either in low concentrations or not detected in the air samples of working areas. BTA and NMP-22 of exposed workers were not significantly different from the unexposed. However, 25-OH vit. D was significantly lower in the exposed than unexposed workers. There was a significant inverse correlation between 25-OH vit. D and duration of exposure in exposed workers. CONCLUSION: The mean levels of PAHs and VOCs were within the safe standard levels in the working areas. The non-significant difference in BTA and NMP-22 between the exposed and unexposed groups suggests the presence of occupational exposures to safe levels of bladder carcinogenic aromatics, while the significantly lower 25-OH vit. D levels among the exposed than the unexposed groups could suggest the potential association of 25-OH vit. D with occupational exposures to low levels of PAHs and VOCs, and this association was found to be inversely correlated with the duration of exposures. Accordingly, more specific predictor tests must be applied for early diagnosis of bladder cancer among the exposed workers.

2.
J Environ Manage ; 370: 122548, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299115

RESUMEN

High-salt textile dyeing wastewater is difficult to treat. Magnetic fields can enhance the biodegradation capacity and extreme environmental adaptabilities of microorganisms. Thus, magnetically enhanced bioreactors are expected to improve the treatment efficiency and stability of high-salt textile dyeing wastewater. Accordingly, a novel Built-in Static Magnetic Field - Biological Aerated Filter (BSMF-BAF) was constructed and investigated for treating actual high-salt textile dyeing wastewater in this study. Two other BAFs packed with traditional and magnetic ceramsite carriers, respectively, were simultaneously operated for comparison. The removal of color, chemical oxygen demand (COD), suspended solid (SS) and acute toxicity were monitored. The activities of key enzymes and microbial community structure were analyzed to reveal possible mechanisms for improving the treatment efficiency of traditional BAF using the BSMF. The results showed that the BSMF-BAF possessed the highest removal efficiencies of color, COD, SS and acute toxicity among the three BAFs. The BSMF induced significant increases in the activities of azoreductase and lignin peroxidase, which were responsible for the degradation of azo compounds in the wastewater and the detoxification of toxic intermediates, respectively. Additionally, the BSMF induced the relative enrichment of potentially effective bacteria and fungi, and it maintained a relatively high abundance of fungi in the microbial community, resulting in a high treatment efficiency.

3.
J Colloid Interface Sci ; 678(Pt A): 732-741, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39217689

RESUMEN

Meta-aramid (PMIA) fabrics are typically problematic to dye owing to their extremely crystalline structure and high compactness. Herein, Dimethyl sulfoxide (DMSO) and electrolyte as hydrogen bond regulators were selected to improve the dyeability of PIMA dyed with cationic dyes. The PMIA shows both high dyeing and mechanical properties as a result of the synergistic effect of DMSO and electrolyte in the system, which destructs hydrogen bonding networks and increase interaction energy density between dye molecules and PMIA, confirmed by a series of characterization and molecular dynamics simulations. In the DMSO/NaCl/PMIA system, while maintaining excellent mechanical (breaking strength and elongation at break of 24.6Mpa and 37.6 %, respectively) and thermal properties, PMIA not only obtained the best dyeability, increasing the Dye uptake from 20 % to 70.62 % and the K/S value from 2.92 to 18.02, but also achieved excellent colour fastness (fastness to dry and wet rubbing, fastness to light, and fastness to washing of 4-5, 3-4, 3-4 and 4-5, respectively). Simulated results and experimental data verified that the DMSO/NaCl system optimally synergizes hydrogen bond regulation for PMIA and achieves the best dyeing effects for cationic dyes, manifesting its great potential in the PMIA wearability area.

4.
Materials (Basel) ; 17(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39274738

RESUMEN

Due to the severe harmful impacts of industrial dyeing wastewater on ecosystems and human health, proper treatment is crucial. Herein, the use of modified graphite as an adsorbent for dyeing wastewater treatment was investigated in this study. The graphite was oxidized and intercalated using a phosphoric acid-nitric acid-potassium permanganate system and then thermally treated at high temperatures to optimize its structure. By adjusting the thermal treatment temperature, the graphite adsorbent with varying porosity was obtained. The optimized graphite demonstrated significant improvement in adsorption performance for dyes and organic compounds, achieving a removal rate of over 85% for methylene blue (MB) dye. The optimal adsorption performance is achieved with a 1.6 mg modified graphite adsorbent at 60 °C under alkaline conditions for adsorbing 10 ppm MB. Adsorption kinetics and isotherm models were applied to elucidate the adsorption mechanisms. The results fit the Langmuir model, suggesting that monolayer homogeneous adsorption is favorable. Importantly, the results demonstrate that high-temperature treatment can significantly enhance the adsorption properties of coal-based graphite, supporting its application in dyeing wastewater treatment.

5.
Luminescence ; 39(9): e4890, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39234919

RESUMEN

Three dyes-diesters of monoimides of perylene-3,4,9,10-tetracarboxylic acid were synthesized in three-stage process: esterification, hydrolysis, and monoimidation as potential fluorescent light-stable colorants for high visibility safety wear. The structure of these compounds was confirmed by 1H nuclear magnetic resonance spectroscopy and mass spectrometry, and their spectroscopic and physicochemical properties were determined. Colorants were applied to dyeing polyester fibre and polystyrene and poly (methyl methacrylate) films. The light, wash, and rubbing fastness of the dyeings were determined, and chromaticity coordinates were measured and discussed.


Asunto(s)
Perileno , Poliésteres , Polimetil Metacrilato , Poliestirenos , Poliestirenos/química , Poliestirenos/síntesis química , Perileno/química , Perileno/síntesis química , Perileno/análogos & derivados , Poliésteres/química , Poliésteres/síntesis química , Polimetil Metacrilato/química , Polimetil Metacrilato/síntesis química , Estructura Molecular , Ésteres/química , Imidas/química , Imidas/síntesis química , Colorantes/química , Colorantes/síntesis química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química
6.
Carbohydr Polym ; 346: 122578, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245479

RESUMEN

Estimated 20 % of global clean water pollution is attributed to textile production. Dyeing and finishing processes use an extensive amount of water and chemicals, and most of the effluents and wastewater is released into the environment. In this study, we explore spin-dyeing of man-made cellulosic fibres (MMCFs) with vat dyes using the Ioncell process, circumventing the ubiquitous use of fresh water and potentially reducing effluents streams to a great extent. Spin-dyeing is an established process for synthetic polymers but is not common for MMCFs. Regenerated cellulose fibres were produced through dissolution of dissolving pulp in the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-ene acetate. The produced fibres were processed into yarn and a jersey fabric was knitted. Mechanical and colour fastness properties were tested. The fibres properties were also assessed through SEM, birefringence, and crystallinity measurements. Fibres with excellent mechanical properties (tenacity higher than 50 cN/tex) and colour fastness were produced, with most samples receiving the highest or next highest performance grade. The spun-dyed fibres also hold great potential to be recycled themselves without colour change or loss in colour intensity. Textiles with colours produced in large quantities such as black or navy blue could be the first market entry point.

7.
Int J Biol Macromol ; 278(Pt 3): 134964, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39179072

RESUMEN

As an important cellulose macromolecular-based material, cotton/polyamide and cotton/polyester fabrics are widely utilized in the textile and garment field due to their combination of the advantages of both cotton and synthetic fibers, such as excellent breathability, hygroscopicity, and abrasion performance. However, the synthetic dyes used in fabric coloration are derived from non-renewable resources, and the long-time dyeing procedure poses large pollution problems. Herein, microbial prodigiosins fermented by Serratia marcescens were employed for cotton/polyamide and cotton/polyester fabric dyeing and functionalizing. The results demonstrated that the prodigiosins suspension exhibited outstanding stability. Synthetic fibers contributed significantly to the overall color of fabrics and provided good dimensional stability and durability. In contrast, cotton fibers imparted relatively lighter color but played an essential role in enhancing the softness and comfort of fabrics. The dyed fabrics presented bright overall color light with good uniformity. Furthermore, the antibacterial rates of the dyed cotton/polyamide and cotton/polyester fabrics were 87.31 % and 89.70 %, respectively. The UPF values of the dyed cotton/polyamide and cotton/polyester fabrics were recorded as 52.3 and 93.5, respectively. This study provided a novel approach for cleaner functional dyeing of cotton/synthetic fiber two-component fabrics using prodigiosins.


Asunto(s)
Celulosa , Colorantes , Fibra de Algodón , Prodigiosina , Textiles , Celulosa/química , Colorantes/química , Prodigiosina/química , Serratia marcescens , Antibacterianos/química , Antibacterianos/farmacología , Color
8.
Int J Biol Macromol ; 278(Pt 3): 134997, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39181349

RESUMEN

The flocculation of dyeing wastewater generated a large amount of sludge that was often disposed as refractory hazardous waste. The resource utilization of flocculation sludge was of great significance in terms of low treatment cost of sludge, low environmental risk and high usage efficiency of reactive dyes. Herein, a flocculation sludge-derived (FSD) adsorbent was prepared via cross-linking of flocculation sludge yielding by carboxymethyl chitosan-based flocculants and dyes. FSD adsorbent had excellent selective adsorption performance for methylene blue (MB) treatment. The highest removal rate of MB and adsorption capacity of FSD adsorbent were 96.48 % and 354.7066 mg/g, attributing to its rich functional groups, negative charges and special micropore structure. FSD adsorbent owned the favorable regeneration efficiency and stability. Its removal rate of MB was still above 71.8 % after 6 regeneration-adsorption cycles. Its leaching rate of dyes was only 0.0016 mg/mg that was rather lower than common dried flocculation sludge. The adsorption processes of FSD adsorbent were complex in accordance with its characteristics, adsorption isotherms, adsorption kinetics and theoretical calculation. Multiple adsorption mechanisms were present in the treatment of dyeing wastewater by FSD adsorbent. The resource utilization of flocculation sludge, as adsorbents, was a potential candidate in field application.


Asunto(s)
Quitosano , Floculación , Azul de Metileno , Aguas del Alcantarillado , Contaminantes Químicos del Agua , Quitosano/química , Quitosano/análogos & derivados , Azul de Metileno/química , Adsorción , Aguas del Alcantarillado/química , Cinética , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Colorantes/química , Concentración de Iones de Hidrógeno , Aguas Residuales/química
9.
Int J Cosmet Sci ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134925

RESUMEN

BACKGROUND: Use of permanent hair dyes causes unintended oxidative damage during the short time frame of the dyeing process that leads to perceivable changes in the feel, manageability and appearance of hair. Moreover, after hair has been dyed, regular exposure to the sun as a key environmental stressor continues to stimulate additional oxidative damage and to induce newly developed hair colours to fade prematurely or undergo changes in colour quality. OBJECTIVE: To document the utility of acetyl zingerone methyl ether (MAZ) as a newly designed haircare ingredient to afford extra protection against oxidative damage and safeguard the integrity of hair colour. RESULTS: We demonstrate that MAZ is compatible chemically with the high alkaline conditions required for the colouring process and from theoretical calculations preferentially binds Fe and Cu ions relative to Ca or Zn ions. In model Fenton reactions MAZ effectively chelated active redox metals (Fe and Cu ions) in the presence of excess Ca+2 ions to inhibit the production of hydroxyl radicals, and in separate studies, MAZ neutralized singlet oxygen with greater efficiency than α-tocopherol by a factor of 2.5. When mixed into permanent dyes prior to hair tress application, MAZ significantly reduced combing forces, and SEM images led to substantial reductions in visual signs of surface damage. In a 28-day clinical study, relative to controls, mixing MAZ into hair dyes prior to application interfered neither with colour development nor with ability to cover grey hair and led to significant improvements in perceived attributes associated with hair's condition immediately following the dyeing process. Over a 28-day maintenance phase, especially between Day 14 and Day 28, continued use of shampoo and conditioner containing MAZ significantly preserved gloss measurements and hair colour in terms of longevity and colour quality as remaining desired and fresh compared to use of control shampoo and conditioner. CONCLUSION: This work establishes MAZ as a next-generation hair care ingredient for use in permanent dyes to attenuate oxidative damage and in shampoos and conditioners to promote longevity of hair colour and to maintain overall health and appearance of hair on a daily basis.


CONTEXTE: L'utilisation de colorants capillaires permanents provoque des dommages oxydatifs involontaires pendant la courte période du processus de teinture, ce qui entraîne des changements perceptibles dans la texture, la maniabilité et l'aspect des cheveux. De plus, après la teinture des cheveux, une exposition régulière au soleil comme facteur de stress environnemental clé continue de stimuler des dommages oxydatifs supplémentaires et d'induire une décoloration prématurée des nouvelles couleurs de cheveux ou des changements dans la qualité de la couleur. OBJECTIF: Documenter l'utilité de l'éther méthylique d'acétyl zingérone (MAZ) en tant qu'ingrédient de soin capillaire nouvellement conçu pour offrir une protection supplémentaire contre les dommages oxydatifs et sauvegarder l'intégrité de la couleur des cheveux. RÉSULTATS: Nous démontrons que le MAZ est chimiquement compatible avec les conditions alcalines élevées requises pour le processus de coloration et, d'après les calculs théoriques, lie de préférence les ions Fe et Cu aux ions Ca ou Zn. Dans les réactions de Fenton, le MAZ chélate efficacement les métaux redox actifs (atomes de Fe et de Cu) en présence d'un excès d'ions Ca+2 pour inhiber la production de radicaux hydroxyles et, dans des études séparées, le MAZ neutralise l'oxygène seul avec une efficacité supérieure à celle de l'α­tocophérol, d'un facteur de 2.5. Lorsqu'il est mélangé à des teintures permanentes avant l'application de la coiffure, le MAZ réduit de manière significative les forces de peignage et, d'après les images SEM, conduit à des réductions substantielles des signes visuels de dommages à la surface. Dans une étude clinique de 28 jours, le mélange de MAZ dans les teintures capillaires avant l'application n'interfère pas avec le développement de la couleur ni avec la capacité à couvrir les cheveux gris et conduit à des améliorations significatives des attributs perçus associés à l'état des cheveux immédiatement après le processus de teinture. Au cours d'une phase d'entretien de 28 jours, en particulier entre le 14ème et le 28ème jour, l'utilisation continue du shampooing et de l'après­shampooing contenant du MAZ a permis de préserver de manière significative les mesures de brillance et la couleur des cheveux en termes de longévité et de qualité de la couleur, qui reste telle que désirée et nette, par rapport à l'utilisation du shampooing et de l'après­shampooing de contrôle. CONCLUSION: Ces travaux font du MAZ un ingrédient de nouvelle génération pour les soins capillaires, à utiliser dans les teintures permanentes pour atténuer les dommages oxydatifs et dans les shampooings, et après­shampooings pour promouvoir la longévité de la couleur des cheveux et maintenir la santé et l'apparence générales des cheveux au quotidien.

10.
Chemosphere ; 364: 143148, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39168387

RESUMEN

Azo dye degradation can be achieved by simulating a series of anaerobic and aerobic conditions within the constructed wetland (CW) system. The current investigation evaluated the effectiveness of a baffled horizontal-vertical CW system, planted with Typha angustifolia, simulating anaerobic-aerobic conditions to treat carbon-deficient synthetic dyeing wastewater containing 100 mg/L Reactive Yellow 145 (RY145) azo dye. In the absence of an available carbon source in dyeing wastewater, an optimum quantity of sodium acetate was supplemented as the substrate for microbial degradation of RY145. Influent dyeing wastewater characteristics were 5555 ADMI colour, 461 mg/L chemical oxygen demand (COD) and 39 mg/L total nitrogen (TN). During the operation period, the CW system achieved 97% colour, 87% COD, 95% ammonium nitrogen (NH4+-N) and 71% TN removals at 4 d hydraulic retention time (HRT). Favourable environmental conditions, such as low redox conditions and substrate availability in horizontal CW, contributed to a significant reduction in colour (96%). Most TN reduction (67%) happened in horizontal CW by denitrification and plant assimilation. The metagenomic study revealed that Proteobacteria, Bacteroidetes, Chloroflexi and Firmicutes were responsible for pollutant degradation within horizontal CW. The UV-visible spectra and high-resolution liquid chromatograph mass spectrometer (HR-LCMS) analysis confirmed that dye degradation intermediates generated from the breakage of azo bonds were eliminated in vertical CW with high redox conditions. The results of the phytotoxicity and fish toxicity experiments demonstrated a substantial toxicity reduction in the CW system-treated effluent.

11.
ACS Appl Mater Interfaces ; 16(30): 40030-40045, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39013080

RESUMEN

The printing and dyeing industry is currently accelerating toward a direction of high efficiency, energy conservation, environmental protection, and integration with digitalization. Disperse dye wash-free digital inkjet dyeing is a revolutionary breakthrough for cleaning and coloring polyester fabric. Based on the solubility parameters and the hot-melt dyeing characteristics of disperse dyes, soft, hard, and functional monomers of acrylate were used as the main body. Moreover, single-vinyl fluorinated polysiloxane and divinyl polysiloxane with low solubility parameters were used as modified monomers. A modified polyacrylate (PFSMA) adhesive containing silicon in the main chain and fluorine silicon in the side chain was prepared via miniemulsion polymerization. Using disperse digital inkjet dyeing of polyester fabric without washing can realize energy saving, emission reduction, and carbon reduction. Results showed that the optimum preparation conditions of PFSMA were as follows: DVFS molecular weight of 957 g/mol and DVFS content of 2.5 wt %. Compared with that of polyacrylate (PA), the glass-transition temperature of PFSMA film decreased, and its water resistance, toughness, and adhesion enhanced. When the PFSMA content in the wash-free disperse red ink was 8 wt %, the color yields of the front and back of the PFSMA jet-dyed polyester fabric were 18.86 and 13.28, respectively. Moreover, the color yield of the front of PFSMA jet-dyed polyester fabric was 39.9% higher than that of the pure liquid disperse red jet-dyed fabric. The simulated fixation rate was 87.9%, approximately 2.9 times higher than that of the PA wash-free jet-dyed fabric. The color fastness to dry rubbing reached level 4 and the color fastness to wet rubbing reached level 3-4, which was one level higher than that of pure liquid disperse red jet-dyed fabrics. The color fastness to soaping reached grade 5 and the color fastness to heat compression reached grades 4-5 and above. The fabric was a little firmer but smoother. The color properties, color fastness, and hand feeling of the PFSMA wash-free jet-dyed polyester fabric exceeded the levels of commercially available adhesives.

12.
J Environ Manage ; 366: 121758, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38986372

RESUMEN

The agricultural processing industry produces a large amount of waste on a global scale whose disposal is simultaneously a nuisance and of special interest. The by-products are rich in bioactive phytoconstituents that might be beneficial to the production of bio-functional textiles. The present work uses agricultural wastes for the eco-friendly dyeing of woolen yarns. Response surface methodology based on 23- Central Composite Design was used to design experiments, evaluate the main dyeing parameters, develop efficient mathematical models to predict the dyeing process, and optimize the procedure. The quadratic regression models developed were found to be statistically significant using ANOVA, with R2 -value of 0.9734 and 0.9820 for color strength and lightness responses, respectively. Also, eye-soothing tone and hues with a good resistance to durability (4-5) and light (4) were achieved. The banana shell and gallnut bio-mordants improved UV protection by up to 25.33% and 59.79%, respectively. Generally speaking, the results showed that C. Oblonga leaf as well as gallnut and banana shells could be used as whole crop products in an ecologically sound textile dyeing process through a sustainable approach and that the proposed innovative application might serve as an attractive procedure for recycling and green waste management.


Asunto(s)
Agricultura , Reciclaje , Textiles , Colorantes/química
13.
J Environ Manage ; 366: 121894, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39032261

RESUMEN

The leather manufacturing industry is increasingly embracing chrome-free tanning methods to promote environmental sustainability. However, the transition to chrome-free tanning systems presents a notable obstacle: the incompatibility of traditional anionic wet finishing materials with chrome-free tanned leather due to differences in surface electrical behavior. Herein, an amphoteric polymer, referred to P(AA-co-DMAEMA-co-DA), was synthesized through a simple one-step free radical copolymerization using acrylic acid (AA), dimethylaminoethyl methacrylate (DMAEMA), and dodecyl acrylate (DA). Notably, the isoelectric point of P(AA-co-DMAEMA-co-DA) is 7.7, which contributes to improving the leather's positive electric property and enhancing the binding between the amphoteric polymer fatliquors (APF) and collagen fiber. The APF achieves a remarkable absorption rate of 96.2% and a dyeing uptake rate of 94.3% for anionic dyes, resulting in a uniformly bright surface color of the dyed leather and further significantly reducing the dye usage. Overall, the comprehensive properties of APF align with the electrical origins of organic chrome-free tanning leather, exhibiting a pronounced fatliquoring effect while reducing the dye content in the waste liquor. This contribution holds promise for advancing chrome-free tanning technology toward greener environmental practices.


Asunto(s)
Polímeros , Curtiembre , Polímeros/química , Colorantes/química , Acrilatos/química
14.
Indian J Microbiol ; 64(2): 618-634, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39011001

RESUMEN

Natural pigments are becoming increasingly popular owing of their reliability. Microbial pigments provide an alternative to natural colours. A total of 24 fungal cultures were collected from leaf bits of Senna auriculata, with one strain (FNG1) producing an extracellular red orange pigment. Nigrospora oryzae was confirmed by using physical criteria and molecular phylogenetic study by using ITS and ß- tubulin analysis. In EtOAc, the crude red pigment was the most soluble. The TLC analysis was used to partly purify the natural pigment. The partially purified fungal pigment was used in successive bioprospecting studies. The antimicrobial activity of the partially purified sample was assessed against eight human pathogens, with Leucobacter AA7 showing the largest zone of inhibition (200-500 µg/mL). The compound's DPPH scavenging activity enhanced from 38.2 to 67.9%, with an IC50 value of 34.195 ± 2.33 µg/mL. Cancer cells were suppressed by partly pure fungal pigment, but non-cancerous HEK 293 cells were unaffected. The GC-MS analysis was used to characterize the molecule present in the partly purified pigment. In addition, the cotton textiles have the greatest staining capability for crude mycobial pigment, which dyes quickly and has a negative cytotoxicity. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01211-y.

15.
Sci Rep ; 14(1): 15067, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956163

RESUMEN

The dyeing process of textile materials is inherently intricate, influenced by a myriad of factors, including dye concentration, dyeing time, pH level, temperature, type of dye, fiber composition, mechanical agitation, salt concentration, mordants, fixatives, water quality, dyeing method, and pre-treatment processes. The intricacy of achieving optimal settings during dyeing poses a significant challenge. In response, this study introduces a novel algorithmic approach that integrates response surface methodology (RSM), artificial neural network (ANN), and genetic algorithm (GA) techniques for the precise fine-tuning of concentration, time, pH, and temperature. The primary focus is on quantifying color strength, represented as K/S, as the response variable in the dyeing process of polyamide 6 and woolen fabric, utilizing plum-tree leaves as a sustainable dye source. Results indicate that ANN (R2 ~ 1) performs much better than RSM (R2 > 0.92). The optimization results, employing ANN-GA integration, indicate that a concentration of 100 wt.%, time of 86.06 min, pH level of 8.28, and a temperature of 100 °C yield a K/S value of 10.21 for polyamide 6 fabric. Similarly, a concentration of 55.85 wt.%, time of 120 min, pH level of 5, and temperature of 100 °C yield a K/S value of 7.65 for woolen fabric. This proposed methodology not only paves the way for sustainable textile dyeing but also facilitates the optimization of diverse dyeing processes for textile materials.

16.
J Imaging ; 10(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39057721

RESUMEN

This paper explores the intersection of colorimetry and biomimetics in textile design, focusing on mimicking natural plant colors in dyed textiles via instrumental colorant formulation. The experimental work was conducted with two polyester substrates dyed with disperse dyes using the exhaustion process. Textiles dyed with different dye colors and concentrations were measured in a spectrophotometer and a database was created in Datacolor Match Textile software version 2.4.1 (0) with the samples' colorimetric properties. Colorant recipe formulation encompassed the definition and measurement of the pattern colors (along four defined natural plants), the selection of the colorants, and the software calculation of the recipes. After textile dyeing with the lowest expected CIELAB color difference (ΔE*) value recipe for each pattern color, a comparative analysis was conducted by spectral reflectance and visual assessment. Scanning electron microscopy and white light interferometry were also used to characterize the surface of the natural elements. Samples dyed with the formulated recipe attained good chromatic similarity with the respective natural plants' colors, and the majority of the samples presented ΔE* between 1.5 and 4.0. Additionally, recipe optimization can also be conducted based on the colorimetric evaluation. This research contributes a design framework for biomimicking colors in textile design, establishing a systematic method based on colorimetry and color theory that enables the reproduction of nature's color palette through the effective use of colorants.

17.
J Clin Med ; 13(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38930071

RESUMEN

Hair dyeing is widely performed around the world. Chemical and thermal burns can result from the components present in brightening and coloring products, as well as the application process. We present a case of a chemical burn after applying hair dye and review the literature on similar cases, the composition of hair dyes, their mechanism of action, and the process of burns. The patient was a 17-year-old girl, who presented to the Dermatology Clinic with a 13 × 10 cm ulcer on the scalp after hair dyeing in a hairdressing salon. General and local treatment was applied, with particular emphasis on specialized dressings. The ulcer site was replaced by an area of scarring after 11 months of treatment. Based on the presented case and the review of the literature, we conclude that hair dye treatments warrant careful attention for potential scalp complications. The diagnostic and therapeutic approach demands a multidisciplinary effort, with ongoing patient-doctor cooperation throughout the treatment, which may complicate and span several months.

18.
Polymers (Basel) ; 16(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891419

RESUMEN

Waterless dyeing of polyamide 6.6 using scCO2 (supercritical carbon dioxide) was investigated. PA (polyamide) fibers can be dyed with various dyes, including disperse dyes. The conventional aqueous dyeing process uses large amounts of water and produces polluted water. Considering these environmental issues, waterless dyeing of fibers is a forefront issue, and utilization of supercritical carbon dioxide (scCO2) is a commercially viable technology for waterless dyeing. This study tested PA6.6 (polyamide 6.6) dyeing in scCO2 at 100 °C 220 bar pressure for 45 min. Color measurements and color fastness tests were performed, as well as tensile strength, scanning electron microscope (SEM) analysis, and Fourier transform infrared spectroscopy (FTIR) analysis. PA6.6 fabrics yielded higher K/S (color strength, the Kubelka-Munk equation) values with larger molecular weight dye and almost the same color strength with medium and small-sized dyes, demonstrating the ability of dyeing in a supercritical environment without water as a more environmentally friendly dyeing option compared to conventional dyeing.

19.
Anal Sci ; 40(9): 1641-1651, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38814563

RESUMEN

Detecting the concentration of reactive dyes and their hydrolyzed products is essential for controlling the dyeing process and is an important guide for upgrading and improving textile dyeing technology. In this study, capillary electrophoresis (CE) with UV detection was for the first time applied in a real trichromatic dyeing process to provide qualitative and quantitative determination of reactive dyes and their hydrolyzed forms. Here, three original reactive dyes (SES-Cl-red-195, SES-Cl-yellow-145, and SES-Cl-blue-194), their vinyl sulfone forms (VS-Cl-red-195, VS-Cl-yellow-145, and VS-Cl-blue-194), and complete hydrolyzed forms (HES-OH-red-195, HES-OH-yellow-145, and HES-OH-blue-194) could be baseline separated in our developed BGE comprised of 10.0 mol/L Na2B4O7, 15% (V/V) ACN at pH 8.50 that adjusted by 0.50 mol/L H3BO3. The LODs (S/N = 3) of nine analytes ranged from 0.3 to 1.3 mg/L, and high sensitivities were achieved with UV detection. The RSDs of peak area and migration time were in the ranges of 1.4-3.8% and 0.39-1.29%, which indicated the CE methods were reliable for studying different dye forms in complex dye baths, and for evaluating dyeing process quality. Thus, the percentage of dye-uptake in single and trichromatic combination dyes was calculated based on the concentration of the original and their vinyl sulfone and hydrolyzed forms, and the result was consistent with the traditional UV-Vis method.

20.
Ear Nose Throat J ; : 1455613241253924, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813945

RESUMEN

Objective: Pyriform fossa (PF) branchial apparatus anomalies (PFBAA) are rare congenital third or fourth branchial apparatus anomalies (TBAA or FBAA). This article summarizes our paradigm in managing this condition by combining endoscopic procedures and open neck surgery. Methods: A retrospective review was undertaken concerning PFBAA cases treated at our tertiary medical institution between July 2020 and November 2023. Data were collected from case records. Three sequential steps were implemented: (1) direct laryngoscopy to identify internal orifice (IO), with injection of methylene blue into it; (2) open neck surgery to resect all inflammatory tissues, focusing on the ligation of the sinus tract out of PF; and (3) plasma coblation of IO mucosa. Results: In total, 7 cases (4 men and 3 women) were included (28-67 years old, median age 53). Presenting symptoms were various, with 6 lesions on the left and 1 on the right side. Preoperative (PO) fiberoptic laryngoscopy identified IO in 6 patients, while PO barium esophageal study identified outflow from PF in 4 patients. A preliminary diagnosis of PFBAA could be established in all cases (2 TBAA and 5 FBAA cases). Direct laryngoscopy after general anesthesia identified IO in all cases (2 on the base of PF and 5 on the apex of PF). All the surgical procedures were successful, with uneventful recovery in all the patients. No postoperative complications were observed. All the patients resumed oral fluid intake after confirmation of no pharyngeal fistula by barium esophageal study on the seventh postoperative day. The duration of follow-up was between 6 and 40 months (with a median duration of 27 months). No recurrence was observed. Conclusion: Open neck surgery, assisted by endoscopic dyeing of sinus tracts and plasma coblation of IO mucosa, is a suitable treatment for PFBAA in adults. This paradigm is effective and safe for senior surgeons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA