Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.015
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125039, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39197211

RESUMEN

A ratiometric nanosensor was developed for detecting methyl orange (MO) based on down/up-conversion luminescence achieved by a triplet-triplet annihilation upconversion luminescence (TTA-UCL) system. The probe, utilizing sensitizer and annihilator fluorophores encapsulated in nanomicelles, demonstrated high sensitivity and selectivity for MO detection. The energy transfer from UCL to MO endowed the sensor with responsive capabilities. The unaffected triplet-triplet energy transfer process maintained the phosphorescence signal constant, serving as a reference to construct the ratiometric sensor along with the UCL signal. Additionally, a smartphone-assisted colorimetric detection method was also developed based on the ratiometric sensor, enabling rapid and convenient detection of MO without the need for a spectrometer. The performance of the nanosensor in real water samples confirmed its potential for practical environmental applications.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124996, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39197212

RESUMEN

Based on the growing range of applications for polycations in research and commercial materials, a continuing need exists to advance the fundamental knowledge and understanding of this class of materials. Spectroscopic and solution properties characterizations of noncovalently labeled, fluorescent Alexa Fluor® dye complexes of two commercial polycations, poly(2-(trimethylamino) ethyl methacrylate) monocation and poly[bis[2-chloroethyl] ether-alt-1,3-bis[3-(dimethylamino) propyl] urea] dication are reported to help address this need. A variety of fluorescence spectroscopic methods are used with a special emphasis on fluorescence correlation spectroscopy (FCS) which is applied to characterize the Stokes radius (RS) and equilibrium dissociation constants (Kd) of dye-polycation complexes at nanomolar dye concentrations. Resulting RS values indicate dye binding to individual polycation chains. Measured Kd values in the sub-micromolar range are consistent with strong dye binding. Increasing solution ionic strength with sodium chloride addition inhibits dye binding and decreases the RS of dye-polycation complexes due to size collapse of polycation chains. The complexes differ in their solution stability to ionic strength changes suggesting that both electrostatic and hydrophobic binding interactions influence dye binding. This study establishes the viability of noncovalent dye-polycation complexation in concert with FCS characterization as a general approach for investigating the properties of quaternary ammonium ion containing polycations in aqueous solution.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124988, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39163772

RESUMEN

Two quinoxaline dyes utilized in copper-electrolyte-based dye-sensitized solar cells (Cu-DSSCs) are theoretically investigated to analyze the impact of alkyl chains on dye performance. The investigation shows that ZS4, known for its record efficiency of up to 13.2 %, exhibits higher electron coupling and fewer binding sites for dye-[Cu(tmby)2]2+ interaction compared to ZS5. Contrary to common belief, alkyl chains are found to not only provide shielding but also hinder the interaction between dye and [Cu(tmby)2]2+ by influencing the optimal conformation of dyes, thereby impeding the charge recombination process. It is crucial to consider the influence of alkyl chains on dye conformation when discussing the relationship between dye structure and performance, rather than oversimplifying it as often done traditionally. Building on these findings, eight dyes are strategically designed by adjusting the position of the alkyl chain to further decrease charge recombination compared to ZS4. Theoretical evaluation of these dyes reveals that changing the alkyl chain on the nitrogen atom from 2-ethylhexyl (ZS4) to 1-hexylheptyl (D3-2) not only reduces the charge recombination rate but also enhances light harvesting ability. Therefore, D3-2 shows potential as a candidate for experimental synthesis of high-performance Cu-DSSCs with improved efficiency.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125142, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39299078

RESUMEN

This study investigates the effect of a natural dye extracted from common poppy (Papaver rhoeas) waste flowers on the optical properties of chitosan (CS) films. The extraction of natural dyes from waste flowers can be considered a new field for research in green chemistry. CS films are flexible and biodegradable but have low optical activity and band gap, limiting their applications in optical devices. The doped CS polymer with different concentrations of Papaver rhoeas dye exhibited enhanced optical properties. Also, 30 % glycerol was added as a plasticizer to omit film brittleness. The FTIR examinations is helpful to propose a mechanism that explains the interaction of the dye with the host polymer. The UV-vis spectroscopic examination establish that the optical characteristics of the films can be modified by adjusting the dye concentration. Furthermore, optical absorption properties are described using the Tauc non-direct transition model, revealing an approximate optical band gap of 1.64 eV. This band gap defines the energy required for electron transitions, elucidating the material's electronic characteristics. The extinction coefficient (k) and refractive index (n) of the CS-doped films' shows a dispersion behavior at visible regions of EM radiation. The Wemple-DiDomenico single oscillator model was used to investigate the n dispersion and determine the oscillator energy equivalent to the optical band gap. Additionally, calculations have been performed on optical dielectric properties and optical conductivity. The Urbach energy was measured and used to detect the structure of the films. The findings underscore the potential applications of these natural dye-doped CS films in eco-friendly materials and optical devices.

5.
Sci Rep ; 14(1): 21908, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300287

RESUMEN

This investigation presents the synthesis of equiatomic and non-equiatomic AlCo1-xFeNiTiMox (x = 0, 0.1, 0.25 and 1.0) high entropy alloys fabricated by mechanical alloying. Mo partially replaced Co. Classic thermodynamic calculations, such as mixing enthalpy (ΔHmix), configurational entropy (ΔSmix), the atomic size difference (δ), entropy to enthalpy ratio (Ω), electronegativity difference (△χ), and valence electron concentration (VEC) were used. Considering δ, Ω and VEC parameters, a BCC solid solution and an intermetallic phase can be predicted due to the partial replacement of Co by Mo. X-ray and electron diffraction of equiatomic HEA without Mo content revealed that after 35 h of milling, a Fe-type BCC lattice phase was formed in the alloy and two L21 phases, in addition to a minimal amount of FCC phase. As the Mo content increased, the Fe-type BCC phase was steadily replaced by the Mo-type BCC phase and the Fe-type FCC phase, and two L21 phases were also developed. When the 5 at% Mo-containing (x = 0.25) alloy was further milled for 80 h, the amount of phases remained almost the same; only the grain size was strongly reduced. The influence of the Mo addition on the properties of studied alloys was also confirmed in the decolourisation of Rhodamine B using a modified photo-Fenton process. The decolourisation efficiency within 20 min was 72% for AlCoFeNiTi and 87% for AlCo0.75FeNiTiMo0.25 using UV light with 365 nm wavelength.

6.
J Food Sci Technol ; 61(10): 1955-1964, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39285995

RESUMEN

Machine learning techniques were applied systematically to the spectral data of near-infrared (NIR) spectroscopy to find out the sudan dye I adulterants in turmeric powders. Turmeric powder is one of the most commonly used spice and a simple target for adulteration. Pure turmeric powder was prepared at the laboratory and spiked with sudan dye I adulterants. The spectral data of these adulterated mixtures were obtained by NIR spectrometer and investigated accordingly. The concentrations of the adulterants were 1%, 5%, 10%, 15%, 20%, 25%, 30% (w/w) respectively. Exploratory data analysis was done for the visualization of the adulterant classes by principal component analysis (PCA). Optimization of the pre-processing and wavelength selection was done by cross-validation techniques using a partial least squares regression (PLSR) model. For quantitative analysis four different regression techniques were applied namely ensemble tree regression (ENTR), support vector regression (SVR), principal component regression (PCR), and PLSR, and a comparative analysis was done. The best method was found to be PLSR. The accuracy of the PLSR analysis was determined with the coefficients of determination (R2) of greater than 0.97 and with root mean square error (RMSE) of less than 0.93 respectively. For the verification of the robustness of the model, the Figure of merit (FOM) of the model was derived with the help of the Net analyte signal (NAS) theory. The current study established that the NIR spectroscopy can be applied to detect and quantify the amount of sudan dye I adulterants added to the turmeric powders with satisfactory accuracy. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-024-05971-9.

7.
Sci Rep ; 14(1): 21611, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39294196

RESUMEN

Plant-mediated synthesis of nanoparticles is a sustainable approach that has gained widespread scientific acceptance due to its numerous benefits and applications. In this study, a zinc oxide-doped activated carbon (ZAC) derived from palm kernel shells (PKS) was synthesized via a bioreduction route using a water-based extract of Nymphaea lotus leaves as a reducing agent. The synthesized ZAC nanocomposites were characterized using microscopic (TEM, SEM) and spectroscopic (FTIR, EDS, XRD, and UV-Vis) analyses. The adsorptive properties of ZAC and efficiency in scavenging a phenothiazine derivative (methylene blue) from an aqueous solution were investigated. Results reveal that nano-scale ZAC particles were crystalline, exhibited irregular shapes, with an average size of 45 nm, and were highly dispersed. The optimum quantity adsorbed was 248 mg/g at a methylene blue concentration of 140 mg/L for 60 min using 0.02 g/100 mL of ZAC. Adsorption and kinetics data closely aligned with the Freundlich isotherm and the pseudo-second-order model, respectively indicating heterogeneous surface adsorption and chemisorption as the dominant mechanisms. The regeneration study of ZAC shows that over five cycles, thermal regeneration maintained high adsorption capacity with minimal decline and chemical regeneration significantly led to reduction in the adsorption capacity but solvent washing offered a balance between efficacy and structural preservation.

8.
Heliyon ; 10(17): e35634, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39295985

RESUMEN

Optical and photocatalytic restrictions of anatase TiO2 nanoparticles (Nps) limit their potential applications, as antipollutant and antibacterial agents for sanitary applications, to the UV spectral region. While modification with transition metals extends the absorption capacity to the visible light spectrum, often undermines the photocatalysts' biocompatibility due to toxic ion leaching. In this study, we synthesized Cu-doped and Ag-decorated TiO2 photocatalysts by employing solvothermal (ATiO2:Cu) and sol-gel synthetic procedures (BTiO2:Ag), respectively. We acquired TiO2 Nps modified with three percentages of either Cu or Ag content, to examine the potential differentiation of their structural, photocatalytic, and biological impact. Comprehensive structural characterization supports the prevailing anatase crystalline structure of bare and modified titania nanostructures, while morphological differences are demonstrated among the different samples. Optical response in the visible region of ATiO2:Cu Nps stems from band gap narrowing and lattice-defect generation, while plasmonic effects are at play for BTiO2:Ag Nps. Their photocatalytic potential under visible light irradiation, originated from low-energy LED lamps commonly found in indoor spaces, was verified after monitoring the successful enhancement of methylene blue (MB) degradation rate. Safety assessment on immortalized healthy human keratinocyte cell line (HaCaT) revealed their biocompatibility up to a certain concentration, while reactive oxygen species (ROS) production was intensified after light irradiation. The visible-light-induced photocatalytic-driven antibacterial activity was confirmed against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli.

9.
Toxicol Appl Pharmacol ; 492: 117096, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39245080

RESUMEN

Benzene occurs naturally and is widely applied in the production process of petrochemical products. It is mainly exposed through the respiratory tract and dermal and metabolized in the liver, leading to systemic health effects, and 1,2,4-trihydroxybenzene (THB) is a benzene metabolite used as a hair dye ingredient in some countries. In an effort to identify a toxic mechanism of THB, we first analyzed the hair of consumers who used a shampoo containing THB, and contrary to our expectations, THB was not persistent in the hair. Following, we treated THB to human keratinocytes and HeLa Chang liver cells. Membrane damage was observed in both cell lines, which was more notable in HeLa Chang liver cells than in keratinocytes. Thus, we decided on HeLa Chang liver cells as target cells for further study. Cell viability decreased sharply between 20 µg/ml and 40 µg/mL, inducing G2/M phase arrest and non-apoptotic cell death. The expression of carcinogenesis-, DNA damage-, and transcriptional dysregulation-related genes were notably up-regulated, and the structure and function of mitochondria were disrupted. The volume of the ER and acidic compartments decreased, and intracellular ROS and calcium ion levels increased. More interestingly, we found that THB formed unique structures within the cells, especially around the nuclear membrane, and that those structures seemed to dig into the nucleus over time. A reverse docking analysis also showed that SULT1A1, CYP2E1, and CAT, known to play a significant role in protecting cells from harmful factors, might be potential target proteins for THB. Taken together, we suggest that THB induces non-apoptotic cell death via structural damage of intracellular organelles, especially the nuclear membrane.

10.
Int J Biol Macromol ; 279(Pt 4): 135556, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270903

RESUMEN

Herein, bionanocomposite beads based on Carboxymethyl cellulose/Dextrant sulfate (CMC/DS) embedding silver nanoparticle-functionalized zeolite (AgZ) were developed and proposed as catalysts for catalytic hydrogenation of Direct Red 16 (DR16) azo dye under different experimental parameters. The obtained results showed that AgZ incorporation into the polymer matrix produced highly porous structures with improved thermal stability. For antibacterial application, it was shown that the engineered bionanocomposites were effective against all tested bacteria. The CMC-DS-AgZ catalysts showed good catalytic performances for the hydrogenation of DR16 in various real-life water samples and even in presence of several mineral salts, however with a high efficiency (99 %) obtained for the catalyst prepared at elevated AgZ content (with a kapp rate constant of 0.239 min-1). Moreover, the hydrogenation study of various azo dyes highlighted the satisfactory application potential of the catalysts and their versatility. The catalyst beads showed good recyclability for five successive cycles without any significant loss of efficiency or stability. The proposed mechanism for DR16 catalytic hydrogenation on C3-D1-AgZ revealed that AgZ could enhance the catalytic activity of the beads by facilitating the formation of AgH intermediates. Finally, the green synthesized materials were shown to be viable and potential candidates for the purification of environmental media.

11.
Nano Lett ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292766

RESUMEN

Lanthanide-doped upconversion nanoparticles (UCNPs) can convert low-energy near-infrared (NIR) light into high-energy visible light, making them valuable for broad applications. UCNPs often suffer from poor light-harvesting capabilities, which can be significantly improved by incorporating organic dye antennas. However, the dye-sensitized upconversion systems are prone to severe photobleaching in an ambient atmosphere. Here, we present a synergistic approach to mitigate photobleaching by introducing triplet state quencher cyclooctatetraene (COT). COT effectively suppresses the generation of singlet oxygen by quenching the triplet states of the dye and consumes the existing singlet oxygen through oxidant reactions. The inclusion of COT extends the half-life of IR806 by 4.7-times by preventing the oxidation of its poly(methylene) chains. Without significantly affecting emission intensity and dynamics, COT effectively stabilized dye-UCNPs, demonstrating a notable 3.9-fold increase in half-life under continuous laser irradiation. Our findings suggest a new strategy to enhance the photostability of near-infrared dyes and dye-sensitized upconversion nanohybrids.

12.
Int J Biol Macromol ; : 135745, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293621

RESUMEN

Laccase is a multicopper oxidase enzyme that target different types of phenols and aromatic amines. The enzyme can be isolated and characterized from microbes, plants and insects. Its ubiquitous nature and delignification ability makes it a valuable tool for research and development. Sustainable production methods are being employed to develop low cost biomanufacturing of the enzyme while achieving high titers. Laccase have significant industrial application ranging from food industry where it can be used for wine stabilization, texture improvement and detection of phenolic compounds in food products, to cosmetics offering benefits such as skin brightening and hair colouring. Dye decolourization/degradation, removal of pharmaceutical products/emerging pollutants and hydrocarbons from wastewater, biobleaching of textile fabrics, biofuel production and delignification of biomass making laccase a promising green biocatalyst. Innovative methods such as using inducers, microbial co-culturing, recombinant DNA technology, protein engineering have pivotal role in developing laccase with tailored properties. Enzyme immobilization using new age compounds including nanoparticles, carbonaceous components, agro-industrial residues enhance activity, stability and reusability. Commercial formulations of laccase have been prepared and readily available for a variety of applications. Certain challenges including production cost, metabolic stress in response to heterologous expression, difficulty in purification needs to be addressed.

13.
Carbohydr Polym ; 345: 122562, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227101

RESUMEN

In this investigation, a hydrogel adsorbent featuring remarkable efficiency in dye adsorption was successfully synthesized by the integration of natural polysaccharide (pullulan) and nanoparticles (ZIF-8@PDA). The prepared natural polysaccharide nanocomposite hydrogels not only exhibit superior mechanical strength and biocompatibility, but also demonstrate adeptness in the removal of dye pollutants. The dye removal capacities were 615.4 mg/g for malachite green (MG) and 525.8 mg/g for Congo red (CR), respectively. Notably, the adsorption process exhibits minimal susceptibility to variations in water quality and the presence of co-existing ions. The pH-responsive surface charge conversion capability of the adsorbent renders it recyclable, maintaining a dye adsorption performance exceeding 88 % even after 5 cycles of repeated usage. Overall, these environmentally friendly natural polysaccharide nanocomposite hydrogels hold potential for addressing complex wastewater treatment challenges and long-term use.

14.
Biometals ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235582

RESUMEN

Green synthesis of iron oxide nanoparticles using plant extracts is of tremendous interest owing to its cost effectiveness, ecofriendly and high efficiency compared to physical and chemical approaches. In the current study, we describe a green approach for producing iron oxide nanoparticles utilizing Polyalthia korintii aqueous leaf extract (PINPs). The prepared PINPs were assessed of their biological and dye degradation potentials. The physico-chemical characterization of PINPs using UV-Visible spectrophotometer, Fourier Transform Infrared Spectroscopy, X-Ray Diffraction studies, Field emission Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy analysis confirmed the synthesized sample comprised of iron oxide entity, predominantly spherical with the size range of 40-60 nm. Total Phenolic Content of PINPs is 59.36 ± 1.64 µg GAE/mg. The PINPs exhibited 89.78 ± 0.07% DPPH free radical scavenging and 28.7 ± 0.21% ABTS cation scavenging activities. The antibacterial activities were tested against different gram-positive and gram-negative bacteria and PINPs were more effective against Enterococcus faecalis and Klebsiella pneumoniae. Cytotoxicity of PINPs against K562 and HCT116 were measured and IC50 values were found to be 84.99 ± 4.3 µg/ml and 79.70 ± 6.2 µg/ml for 48 h respectively. The selective toxicity of PINPs was demonstrated by their lowest activity on lymphocytes, HEK293 cells, and erythrocytes. The toxicity (LC 50 values) against first, second, third and fourth instar larvae of Culex quinquefasciatus was 40 ± 1.5 mg/mL, 45 ± 0.8 mg/mL, 99 ± 2.1 mg/mL and 120 ± 3.5 mg/mL respectively. Finally, PINPs were utilized to as a catalyst for removal of textile dyes like Methylene blue and methyl orange in a fenton-like reaction. The results showed 100% dye degradation efficiency in a fenton like reaction within 35 min. Thus, the green synthesized PINPs exhibit antioxidant, antibacterial, antiproliferative, larvicidal and dye degradation potentials, indicating their suitability for biological and environmental applications.

15.
Adv Sci (Weinh) ; : e2401424, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231370

RESUMEN

Autodynamic cancer therapy possesses tremendous potential for enhancing therapeutic efficacy by initiating the treatment process autonomously within targeted cells. However, challenges related to biocompatibility and targeted delivery have hindered its clinical translation owing to the induction of adverse effects and cytotoxicity in healthy cells. In this study, a novel approach for auto-initiated dynamic therapy by conjugating zwitterionic near-infrared fluorophores to a cell-penetrating peptide is proposed. This enables efficient cellular uptake and specific targeting of therapy to desired cells while avoiding off-target uptake. The zwitterionic bioconjugate causes cancer-specific toxicity following its internalization into the targeted cells, triggered by specific intracellular conditions in lysosomes. This innovative approach enables selective targeting of lysosomes in malignant cells while minimizing cytotoxic effects on normal cells. By targeting lysosomes, the method overcomes inherent risks and side effects associated with conventional cancer treatments, offering a selective and effective approach to cancer therapy.

16.
Chemosphere ; : 143325, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277041

RESUMEN

Visible-light-driven photocatalysis is an eco-friendly technology for wastewater treatment, where TiO2-based photocatalysts displayed outstanding performance in this regard. Dye sensitization is a promising approach for overcoming the common drawbacks of TiO2 via improving its photocatalytic performance and extending its activity to visible light. Herein, we demonstrate the synthesis of the Thiophene-Hydrazinyl-Thiazole (THT) derivative as a novel organic dye sensitizer to be employed as a visible-light antenna for TiO2 nanoparticles. The physicochemical characteristics of the as-synthesized TiO2-based nanoparticles are examined by different techniques, which revealed the successful fabrication of the proposed THT-TiO2 heterojunction. The incorporation of THT molecules on the TiO2 surface led to slight disorders and deformation in the crystal lattice of TiO2, a remarkable improvement of its absorption in the visible light as a perfect visible-light antenna in the whole visible region, and significant enhancement in the charge transfer. Rhodamine B (RhB) is used as an organic dye model to assess the photocatalytic efficiency of the as-fabricated THT-TiO2 photocatalyst which achieved almost complete degradation (>95% in 150 min) with an observed rate constant (kobs) of 0.0164 min-1; total organic carbon (TOC) measurements suggest ∼75% mineralization. THT-TiO2 achieved 2.1-fold enhancement in photodegradation% and 4.1-fold enhancement in kobs compared to the bare TiO2. THT showed good activity under visible-light irradiation (RhB degradation% was >66% in 150 min and kobs=0.0085 min-1). The influence of the initial pH of the solution was investigated and pH 4 was the optimum pH value for suitable interaction between RhB and the surface of THT-TiO2. Radical quenching experiments were conducted to assess the crucial reactive species where the ∙OH and were the most reactive species. THT-TiO2 showed promising stability over three successive cycles. Finally, the improvement mechanism of the photocatalytic activity of THT-TiO2 was attributed to the electron injection from the excited THT (the dye sensitizer) to TiO2 and enhanced charge separation.

17.
Environ Res ; : 119997, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278580

RESUMEN

Graphene-based materials are gaining increasing attention towards their use in manufacturing and environmental applications. In this context, multi-layer graphene (MG) has been recently applied for the adsorption of contaminants from water resulting in promising results. However, the extreme lightness of this material often makes it difficult to handle due to its potential dispersion in the surrounding environment as well as to its transport and loss with the effluent. In this study, a novel granular material was synthesized by embedding MG into an alginate matrix, resulting in the so-called granular MG (GMG). This material was tested for the adsorption of methylene blue (MB) from water, which is a typical dye used in textile industries and must be removed from the effluent. GMG materials with different MG contents (5 and 20 %) were compared with MG and a commercial adsorbent to assess their adsorption capacity and the most performing material was selected for in-depth physical and chemical characterization. The structural, surface, kinetic, isotherm, and thermodynamic properties, the pH and temperature dependence, as well as the regeneration and reuse of GMG 5% were investigated through batch adsorption tests under different operating conditions. The study reveals that GMG 5% has a superior adsorption capacity compared to the tested materials and can be considered as a promising alternative to commercial carbon-based materials according to techno-economic considerations.

18.
Nanotechnology ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284325

RESUMEN

In this research, the visible light active performance of Bi2ZnB2O7 (BBZO) was significantly enhanced through the formation of a composite with few layer MoS2. The resultant MoS2@BBZO catalyst was employed in both photocatalysis and photodetector applications. Comprehensive structural and morphological analyses of the MoS2@BBZO catalyst were conducted using X-ray diffraction (XRD), Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The estimated band gaps of BBZO and the composite were found to be 2.8 eV and 1.74 eV, respectively. Rhodamine B degradation studies demonstrated that the catalyst achieved 75% degradation within 30 minutes. Additionally, the photodetector application was investigated, revealing rapid photo-switching capabilities and an increased photocurrent.

19.
J Mol Model ; 30(10): 338, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287837

RESUMEN

CONTEXT: Dye-sensitized solar cells (DSSCs) present a convincing substitute for conventional silicon-based solar cells because of their possible lower manufacturing costs and versatile uses. Electron injection and dye regeneration processes are important in meeting the need for photosensitizers with improved efficiency and stability. Aimed at enhancing the performance and efficiency of DSSCs, this study focuses on the structural engineering to performance metrics of novel indoline-benzo[d][1,2,3]thiadiazole based push-pull sensitizers (LHZ1 to LHZ9) with D-D-A-π-A framework. The current study provides insights into the photovoltaic and optoelectronic properties of the investigated dyes, which are significantly influenced by the modification of auxiliary donors (D), internal acceptors with thiophene as a spacer, and cyanoacrylic acid (A) as the terminal acceptor. These modifications enhance rapid charge transfer among the dyes, highlighting the critical role of dye-semiconductor interactions. METHODS: The suitability of developed sensitizers for DSSCs applications is confirmed by executing quantum methods like NBO, TDM, FMO, DOS, Eb, ΔGreg, ΔGinject, VRP, and ICT parameters qCT (e-), DCT ( A ∘ ), H index ( A ∘ ), ∆( A ∘ ), t index ( A ∘ ), and µCT (D). All of the investigated dyes have HOMO levels lower than the electrode I-/I3-'s redox potential (-4.8 eV) and LUMO values that are appropriately higher than the conduction band of TiO2 (-4.0 eV). The novel dyes showed a closing of the energy gap (2.38-1.84 eV). The LHZ7 and LHZ8 molecules with the lowest Eg (1.97 eV and 1.84 eV) demonstrated the highest absorption (up to 746 nm > 402 nm for LHZ), which was caused by the insertion effect of varied donors and internal acceptors. Almost all photosensitizers appeared with remarkable properties, i.e., red-shifted absorption maxima (746 nm), lowest Ex (1.66 eV), Eb (0.02 eV), and highest values of LHE (0.958). The TDM analysis revealed high charge density on HOMO of donor and LUMO of acceptors in designed dyes. DOS analysis revealed that the donor parts of the molecules delocalized the highest occupied molecular orbitals of dye particles. The electronic properties predicted by the NBO analysis showed that donor groups donate high and faster transfer of charge, and internal acceptor groups rapidly accept them. The electron injection (ΔGinject) and dye regeneration (ΔGreg) analysis of photosensitizers attached with TiO2 proved efficient charge transfer properties from the donor of newly designed dyes onto the conduction band of TiO2. This study, also supported by the thermodynamic stability of dyes with negative values of Gibbs free energy, revealed that the performance of the designed dyes is augmented by modifying the donor and internal acceptors of the reference photosensitizer for effective application in the experimental community. All of the dyes are suitable for DSSCs based on the calculated parameters. Still, the LHZ9 dye proved proficient in applying dye-sensitized solar cells due to its remarkable properties, i.e., lowest gap and red-shifted absorption maxima.

20.
J Hazard Mater ; 480: 135853, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39288523

RESUMEN

In response to escalating global wastewater issues, particularly from dye contaminants, many studies have begun using hydrochar to adsorb dye from wastewater. However, the relationship between the preparation conditions of hydrochar, the properties of hydrochar, experimental conditions, types of dyes, and equilibrium adsorption capacity (Q) has not yet been fully explored. This study conducted a comprehensive assessment using twelve distinct ML models. The Gradient Boosting Regressor (GBR) model exhibited superior performance with R² (0.9629) and RMSE (0.1166) in the test dataset, marking it as the most effective among the evaluated models. Moreover, this study also proved the feasibility of the GBR model through stability testing and residual analysis. A feature importance analysis prioritized the variables as follows: experimental conditions (41.5 %), properties of hydrochar (26.0 %), preparation conditions (18.1 %), and type of dye (14.4 %). Meanwhile, experimental conditions (C0 > 30 mmol/g, pH > 8, and higher solvent temperatures) and hydrochar properties (the BET surface area > 2000 m²/g, an (O+N)/C molar ratio < 0.6, and an H/C molar ratio of approximately 0.06) show higher Q for dyes. Experimental validation of the GBR model confirmed its practical utility with a suitable predictive accuracy (R² = 0.8704). Moreover, the study developed a Python-based GUI that has integrated the best GBR models to facilitate researchers' ongoing application and improvement of this predictive model. This study not only underscores the efficacy of ML in enhancing the understanding of dye adsorption by hydrochar but also sets a precedent for future research on sustainable contaminants removal through bio-based adsorbents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA