Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Insect Sci ; 3: 1151789, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38469482

RESUMEN

Gene silencing by feeding double-stranded (dsRNA) holds promise as a novel pest management strategy. Nonetheless, degradation of dsRNA in the environment and within the insect gut, as well as inefficient systemic delivery are major limitations to applying this strategy. Branched amphiphilic peptide capsules (BAPCs) complexed with dsRNA have been used to successfully target genes outside and inside the gut epithelium upon ingestion. This suggests that BAPCs can protect dsRNA from degradation in the gut environment and successfully shuttle it across gut epithelium. In this study, our objectives were to 1) Determine whether feeding on BAPC-dsRNA complexes targeting a putative peritrophin gene of P. japonica would result in the suppression of gut peritrophin synthesis, and 2) gain insight into the cellular uptake mechanisms and transport of BAPC-dsRNA complexes across the larval midgut of P. japonica. Our results suggest that BAPC-dsRNA complexes are readily taken up by the midgut epithelium, and treatment of the tissue with endocytosis inhibitors effectively suppresses intracellular transport. Further, assessment of gene expression in BAPC- peritrophin dsRNA fed beetles demonstrated significant downregulation in mRNA levels relative to control and/or dsRNA alone. Our results demonstrated that BAPCs increase the efficacy of gene knockdown relative to dsRNA alone in P. japonica adults. To our knowledge, this is the first report on nanoparticle-mediated dsRNA delivery through feeding in P. japonica.

2.
Front Microbiol ; 13: 978075, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204602

RESUMEN

Rhizoctonia solani is a widely distributed plant pathogen that can damage many crops. Here, we identified a novel mycovirus tentatively named Rhizoctonia solani partitivirus 433 (RsPV433) from an R. solani (AG-3) strain which caused tobacco target spot disease on flue-cured tobacco. RsPV433 was consisted of two dsRNA segments with lengths of 2450 and 2273 bp, which encoded an RNA-dependent RNA polymerase and a coat protein, respectively. BLASTP results of RsPV433 showed that the closest relative of RsPV433 was Sarcosphaera coronaria partitivirus (QLC36830.1), with an identity of 60.85% on the RdRp amino sequence. Phylogenetic analysis indicated that RsPV433 belonged to the Betapartitivirus genus in the Partitiviridae family. The virus transmission experiment revealed that RsPV433 can be transmitted horizontally. We further tested the biological effect of RsPV433 on R. solani strains and found that the RsPV433-infected R. solani strain grew slower than the RsPV433-free strain on the PDA medium and RsPV433 seemed to have no obvious impact on the lesion inducing ability of R. solani.

3.
Front Physiol ; 13: 836106, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35492592

RESUMEN

RNA interference (RNAi) is a highly conserved pathway for the post-transcriptional regulation of gene expression. It has become a crucial tool in life science research, with promising potential for pest-management applications. To induce an RNAi response, long double-stranded RNA (dsRNA) sequences specific to the target gene must be delivered to the cells. This dsRNA substrate is then processed to small RNA (sRNA) fragments that direct the silencing response. A major obstacle to applying this technique is the need to produce sufficiently large amounts of dsRNA in a very cost-effective manner. To overcome this issue, much attention has been given to the development and optimization of biological production systems. One such system is the E. coli HT115 strain transformed with the L4440 vector. While its effectiveness at inducing knockdowns in animals through feeding of the bacteria has been demonstrated, there is only limited knowledge on the applicability of bacteria-derived dsRNA for in vitro experiments. In this paper, we describe and compare methods for the economical (43.2 €/mg) and large-scale (mg range) production of high-quality dsRNA from the HT115 bacterial system. We transformed the bacteria with constructs targeting the Helicoverpa-specific gene Dicer2 and, as a non-endogenous control, the Green Fluorescent Protein gene (GFP). First, we compared the total RNA extraction yields of four cell-lysis treatments: heating, lysozyme digestion, sonication, and a control protocol. Second, we assessed the quality and purity of these extracted dsRNAs. Third, we compared methods for the further purification of dsRNAs from crude RNA extracts. Finally, we demonstrated the efficiency of the produced dsRNAs at inducing knockdowns in a lepidopteran cell line. The insights and results from this paper will empower researchers to conduct otherwise prohibitively expensive knockdown studies, and greatly reduce the production times of routinely or large-scale utilized dsRNA substrates.

4.
JID Innov ; 2(2): 100090, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35199090

RESUMEN

This past decade has seen tremendous advances in understanding the molecular pathogenesis of melanoma and the development of novel effective therapies for melanoma. Targeted therapies and immunotherapies that extend survival of patients with advanced disease have been developed; however, the vast majority of patients experience relapse and therapeutic resistance over time. Moreover, cellular plasticity has been demonstrated to be a driver of therapeutic resistance mechanisms in melanoma and other cancers, largely functioning through epigenetic mechanisms, suggesting that targeting of the cancer epigenetic landscape may prove a worthwhile endeavor to ensure durable treatment responses and cures. Here, we review the epigenetic alterations that characterize melanoma development, progression, and resistance to targeted therapies as well as epigenetic therapies currently in use and under development for melanoma and other cancers. We further assess the landscape of epigenetic therapies in clinical trials for melanoma and provide a framework for future advances in epigenetic therapies to circumvent the development of therapeutic resistance in melanoma.

5.
Acta Pharm Sin B ; 12(1): 92-106, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35127374

RESUMEN

Nanoparticulate drug delivery systems (Nano-DDSs) have emerged as possible solution to the obstacles of anticancer drug delivery. However, the clinical outcomes and translation are restricted by several drawbacks, such as low drug loading, premature drug leakage and carrier-related toxicity. Recently, pure drug nano-assemblies (PDNAs), fabricated by the self-assembly or co-assembly of pure drug molecules, have attracted considerable attention. Their facile and reproducible preparation technique helps to remove the bottleneck of nanomedicines including quality control, scale-up production and clinical translation. Acting as both carriers and cargos, the carrier-free PDNAs have an ultra-high or even 100% drug loading. In addition, combination therapies based on PDNAs could possibly address the most intractable problems in cancer treatment, such as tumor metastasis and drug resistance. In the present review, the latest development of PDNAs for cancer treatment is overviewed. First, PDNAs are classified according to the composition of drug molecules, and the assembly mechanisms are discussed. Furthermore, the co-delivery of PDNAs for combination therapies is summarized, with special focus on the improvement of therapeutic outcomes. Finally, future prospects and challenges of PDNAs for efficient cancer therapy are spotlighted.

6.
Acta Pharm Sin B ; 12(2): 600-620, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34401226

RESUMEN

The use of small interfering RNAs (siRNAs) has been under investigation for the treatment of several unmet medical needs, including acute lung injury/acute respiratory distress syndrome (ALI/ARDS) wherein siRNA may be implemented to modify the expression of pro-inflammatory cytokines and chemokines at the mRNA level. The properties such as clear anatomy, accessibility, and relatively low enzyme activity make the lung a good target for local siRNA therapy. However, the translation of siRNA is restricted by the inefficient delivery of siRNA therapeutics to the target cells due to the properties of naked siRNA. Thus, this review will focus on the various delivery systems that can be used and the different barriers that need to be surmounted for the development of stable inhalable siRNA formulations for human use before siRNA therapeutics for ALI/ARDS become available in the clinic.

7.
Synth Syst Biotechnol ; 6(4): 437-445, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34901482

RESUMEN

The invasive plant Mikania micrantha Kunth (M. micrantha) from South America poses a significant threat to the stability and biodiversity of ecosystems. However, an effective and economical method to control M. micrantha is still lacking. RNA interference (RNAi) has been widely studied and applied in agriculture for trait improvement. Spray-induced gene silencing (SIGS) can produce RNAi silencing effects without introducing heritable modifications to the plant genome and is becoming a novel nontransformation strategy for plant protection. In this study, the genes encoding chlorophyll a/b-binding proteins were selected as targets of RNAi, based on high-throughput sequencing of M. micrantha transcriptome and bioinformatic analyses of sequence specificity. Three types of RNAi molecules, double-stranded RNA, RNAi nanomicrosphere, and short hairpin RNA (shRNA), with their corresponding short interfering RNA sequences were designed and synthesized for SIGS vector construction, from which each RNAi molecule was transcribed and extracted to be sprayed on M. micrantha leaves. Whereas water-treated control leaves remained green, leaves treated with RNAi molecules turned yellow and eventually wilted. Quantitative real-time PCR showed that the expression levels of target genes were significantly reduced in the RNAi-treated groups compared with those of the control, suggesting that all three types of RNAi herbicides effectively silenced the endogenous target genes, which are essential for the growth of M. micrantha. We also found that shRNA showed better silencing efficiency than the other two molecules. Taken together, our study successfully designed three types of RNAi-based herbicides that specifically silenced endogenous target genes and controlled the growth of M. micrantha. Moreover, we identified a gene family encoding chlorophyll a/b-binding proteins that is important for the growth and development of M. micrantha and could serve as potential targets for controlling the spread of M. micrantha.

8.
Hum Vaccin Immunother ; 11(7): 1573-84, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25996182

RESUMEN

Oncolytic viruses are a relatively new class of anti-cancer immunotherapy agents. Several viruses have undergone evaluation in clinical trials in the last decades, and the first agent is about to be approved to be used as a novel cancer therapy modality. In the current review, an overview is presented on recent (pre)clinical developments in the field of oncolytic viruses that have previously been or currently are being evaluated in clinical trials. Special attention is given to possible safety issues like toxicity, environmental shedding, mutation and reversion to wildtype virus.


Asunto(s)
Viroterapia Oncolítica , Virus Oncolíticos , Ensayos Clínicos como Asunto , Humanos , Investigación Biomédica Traslacional , Esparcimiento de Virus
9.
Transcription ; 6(2): 33-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25831023

RESUMEN

Reduced expression of the mitochondrial protein Frataxin (FXN) is the underlying cause of Friedreich's ataxia. We propose a model of premature termination of FXN transcription induced by pathogenic expanded GAA repeats that links R-loop structures, antisense transcription, and heterochromatin formation as a novel mechanism of transcriptional repression in Friedreich's ataxia.


Asunto(s)
Ataxia de Friedreich/genética , Proteínas de Unión a Hierro/biosíntesis , Terminación de la Transcripción Genética , Expansión de Repetición de Trinucleótido/genética , Ataxia de Friedreich/patología , Regulación de la Expresión Génica , Heterocromatina/genética , Humanos , Proteínas de Unión a Hierro/genética , Mitocondrias/genética , Frataxina
10.
Autophagy ; 11(3): 503-15, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25714412

RESUMEN

Autophagy is an essential component of host innate and adaptive immunity. Viruses have developed diverse strategies for evading or utilizing autophagy for survival. The response of the autophagy pathways to virus invasion is poorly documented. Here, we report on the induction of autophagy initiated by the pathogen receptor HSP90AA1 (heat shock protein 90 kDa α [cytosolic], class A member 1) via the AKT-MTOR (mechanistic target of rapamycin)-dependent pathway. Transmission electron microscopy and confocal microscopy revealed that intracellular autolysosomes packaged avibirnavirus particles. Autophagy detection showed that early avibirnavirus infection not only increased the amount of light chain 3 (LC3)-II, but also upregulated AKT-MTOR dephosphorylation. HSP90AA1-AKT-MTOR knockdown by RNA interference resulted in inhibition of autophagy during avibirnavirus infection. Virus titer assays further verified that autophagy inhibition, but not induction, enhanced avibirnavirus replication. Subsequently, we found that HSP90AA1 binding to the viral protein VP2 resulted in induction of autophagy and AKT-MTOR pathway inactivation. Collectively, our findings suggest that the cell surface protein HSP90AA1, an avibirnavirus-binding receptor, induces autophagy through the HSP90AA1-AKT-MTOR pathway in early infection. We reveal that upon viral recognition, a direct connection between HSP90AA1 and the AKT-MTOR pathway trigger autophagy, a critical step for controlling infection.


Asunto(s)
Autofagia , Avibirnavirus/metabolismo , Proteínas de la Cápside/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Membrana Celular/metabolismo , Pollos , Citosol/metabolismo , Células HEK293 , Humanos , Lisosomas/metabolismo , Microscopía Confocal , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/metabolismo , Fagosomas/metabolismo , Fosforilación , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
11.
Cell Cycle ; 14(6): 880-93, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25714331

RESUMEN

Cyclin-dependent kinases (CDKs) are central regulators of eukaryotic cell cycle progression. In contrast to interphase CDKs, the mitotic phase CDK1 is the only CDK capable of driving the entire cell cycle and it can do so from yeast to mammals. Interestingly, plants and the marine chordate, Oikopleura dioica, possess paralogs of the highly conserved CDK1 regulator. However, whereas in plants the 2 CDK1 paralogs replace interphase CDK functions, O. dioica has a full complement of interphase CDKs in addition to its 5 odCDK1 paralogs. Here we show specific sub-functionalization of odCDK1 paralogs during oogenesis. Differential spatiotemporal dynamics of the odCDK1a, d and e paralogs and the meiotic polo-like kinase 1 (Plk1) and aurora kinase determine the subset of meiotic nuclei in prophase I arrest that will seed growing oocytes and complete meiosis. Whereas we find odCDK1e to be non-essential, knockdown of the odCDK1a paralog resulted in the spawning of non-viable oocytes of reduced size. Knockdown of odCDK1d also resulted in the spawning of non-viable oocytes. In this case, the oocytes were of normal size, but were unable to extrude polar bodies upon exposure to sperm, because they were unable to resume meiosis from prophase I arrest, a classical function of the sole CDK1 during meiosis in other organisms. Thus, we reveal specific sub-functionalization of CDK1 paralogs, during the meiotic oogenic program.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Cordados/metabolismo , Meiosis , Oogénesis , Homología de Secuencia de Aminoácido , Animales , Técnicas de Silenciamiento del Gen , Centro Organizador de los Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/ultraestructura , Membrana Nuclear/metabolismo , Fenotipo , ARN Bicatenario/metabolismo
12.
Cell Cycle ; 14(2): 206-18, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25483073

RESUMEN

The antimetabolite 5'-Fluorouracil (5FU) is an analog of uracil commonly employed as a chemotherapeutic agent in the treatment of a range of cancers including colorectal tumors. To assess the cellular effects of 5FU, we performed a genome-wide screening of the haploid deletion library of the eukaryotic model Schizosaccharomyces pombe. Our analysis validated previously characterized drug targets including RNA metabolism, but it also revealed unexpected mechanisms of action associated with chromosome segregation and organization (post-translational histone modification, histone exchange, heterochromatin). Further analysis showed that 5FU affects the heterochromatin structure (decreased levels of histone H3 lysine 9 methylation) and silencing (down-regulation of heterochromatic dg/dh transcripts). To our knowledge, this is the first time that defects in heterochromatin have been correlated with increased cytotoxicity to an anticancer drug. Moreover, the segregation of chromosomes, a process that requires an intact heterochromatin at centromeres, was impaired after drug exposure. These defects could be related to the induction of genes involved in chromatid cohesion and kinetochore assembly. Interestingly, we also observed that thiabendazole, a microtubule-destabilizing agent, synergistically enhanced the cytotoxic effects of 5FU. These findings point to new targets and drug combinations that could potentiate the effectiveness of 5FU-based treatments.


Asunto(s)
Segregación Cromosómica/efectos de los fármacos , Fluorouracilo/farmacología , Schizosaccharomyces/metabolismo , Cromátides/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Heterocromatina/metabolismo , Histonas/metabolismo , Cinetocoros/metabolismo , Metilación , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
13.
Transcription ; 5(4): e944039, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25483405

RESUMEN

Pervasive, or genome-wide, transcription has been reported in all domains of life. In bacteria, most pervasive transcription occurs antisense to protein-coding transcripts, although recently a new class of pervasive RNAs was identified that originates from within annotated genes. Initially considered to be non-functional transcriptional noise, pervasive transcription is increasingly being recognized as important in regulating gene expression. The function of pervasive transcription is an extensively debated question in the field of transcriptomics and regulatory RNA biology. Here, we highlight the most recent contributions addressing the purpose of pervasive transcription in bacteria and discuss their implications.


Asunto(s)
ARN Bacteriano/metabolismo , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Proteína de Factor 1 del Huésped/metabolismo , Procesamiento Postranscripcional del ARN , ARN sin Sentido/metabolismo , Ribonucleasa III/metabolismo , Factor sigma/metabolismo , Transcripción Genética
14.
RNA Biol ; 11(10): 1226-32, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25584639

RESUMEN

The double-stranded RNA-binding domain (dsRBD) is a small protein domain found in eukaryotic, prokaryotic and viral proteins, whose central property is to bind to double-stranded RNA (dsRNA). Aside from this major function, recent examples of dsRBDs involved in the regulation of the sub-cellular localization of proteins, suggest that the participation of dsRBDs in nucleocytoplasmic trafficking is likely to represent a widespread auxiliary function of this type of RNA-binding domain. Overall, dsRBDs from proteins involved in many different biological processes have been reported to be implicated in nuclear import and export, as well as cytoplasmic, nuclear and nucleolar retention. Interestingly, the function of dsRBDs in nucleocytoplasmic trafficking is often regulated by their dsRNA-binding capacity, which can either enhance or impair the transport from one compartment to another. Here, we present and discuss the emerging function of dsRBDs in nucleocytoplasmic transport.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Núcleo Celular/metabolismo , Citoplasma/metabolismo , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Núcleo Celular/genética , Citoplasma/genética , Humanos , ARN Bicatenario/genética , Proteínas de Unión al ARN/genética
15.
Acta Pharm Sin B ; 4(4): 241-7, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26579391

RESUMEN

Interferon (IFN) in combination with ribavirin has been the standard of care (SOC) for chronic hepatitis C for the past few decades. Although the current SOC lacks the desired efficacy, and 4 new direct-acting antiviral agents have been recently approved, interferons are still likely to remain the cornerstone of therapy for some time. Moreover, as an important cytokine system of innate immunity, host interferon signaling provides a powerful antiviral response. Nevertheless, the mechanisms by which HCV infection controls interferon production, and how interferons, in turn, trigger anti-HCV activities as well as control the outcome of HCV infection remain to be clarified. In this report, we review current progress in understanding the mechanisms of IFN against HCV, and also summarize the knowledge of induction of interferon signaling by HCV infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA