Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PhytoKeys ; 246: 251-263, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39301118

RESUMEN

Xantolisweimingii sp. nov. (Sapotaceae) is described and illustrated from Yunnan, southwest China. The new species is morphologically most similar to X.tomentosa (Roxb.) Raf., but differs from the latter in the ovate or obovate leaves, entirely glabrous corollas, lanceolate, ca. 5 mm long staminodes, fringed at the base. We provided a distribution map and a preliminary conservation assessment for the new species. Additionally, an updated dichotomous key to all known species of Xantolis is presented.

2.
Sensors (Basel) ; 24(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39123830

RESUMEN

Time-series Interferometric Synthetic Aperture Radar (InSAR) technology, renowned for its high-precision, wide coverage, and all-weather capabilities, has become an essential tool for Earth observation. However, the quality of the interferometric baseline network significantly influences the monitoring accuracy of InSAR technology. Therefore, optimizing the interferometric baseline is crucial for enhancing InSAR's monitoring accuracy. Surface vegetation changes can disrupt the coherence between SAR images, introducing incoherent noise into interferograms and reducing InSAR's monitoring accuracy. To address this issue, we propose and validate an optimization method for the InSAR baseline that considers changes in vegetation coverage (OM-InSAR-BCCVC) in the Yuanmou dry-hot valley. Initially, based on the imaging times of SAR image pairs, we categorize all interferometric image pairs into those captured during months of high vegetation coverage and those from months of low vegetation coverage. We then remove the image pairs with coherence coefficients below the category average. Using the Small Baseline Subset InSAR (SBAS-InSAR) technique, we retrieve surface deformation information in the Yuanmou dry-hot valley. Landslide identification is subsequently verified using optical remote sensing images. The results show that significant seasonal changes in vegetation coverage in the Yuanmou dry-hot valley lead to noticeable seasonal variations in InSAR coherence, with the lowest coherence in July, August, and September, and the highest in January, February, and December. The average coherence threshold method is limited in this context, resulting in discontinuities in the interferometric baseline network. Compared with methods without baseline optimization, the interferometric map ratio improved by 17.5% overall after applying the OM-InSAR-BCCVC method, and the overall inversion error RMSE decreased by 0.5 rad. From January 2021 to May 2023, the radar line of sight (LOS) surface deformation rate in the Yuanmou dry-hot valley, obtained after atmospheric correction by GACOS, baseline optimization, and geometric distortion region masking, ranged from -73.87 mm/year to 127.35 mm/year. We identified fifteen landslides and potential landslide sites, primarily located in the northern part of the Yuanmou dry-hot valley, with maximum subsidence exceeding 100 mm at two notable points. The OM-InSAR-BCCVC method effectively reduces incoherent noise caused by vegetation coverage changes, thereby improving the monitoring accuracy of InSAR.

3.
Ecol Evol ; 14(5): e11410, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38770119

RESUMEN

Campylotropis xinfeniae, a new species from the dry-hot valley of the Jinsha River in the Yunnan province, China, is described and illustrated. It is morphologically similar to C. wilsonii and C. brevifolia in having glabrescent old branches, absent stipels, 3-foliolate leaves, and adaxially puberulent leaflets, while it differs from the latter two in having often paniculate inflorescences, obviously white standard, not incurved sickle keel, larger narrowly oblique legumes, and longer legume beak. The complete chloroplast genome of this new species is 149,073 bp in length and exhibits a typical quadripartite structure. Phylogenetic analyses based on the complete chloroplast genome also supported C. xinfeniae as a new species located at the basal distinct clade of the genus Campylotropis, clearly separated from the remaining members of the genus and its allied genera. A conservation assessment of data deficient (DD) is recommended for the new species without extensive exploring of similar habitats according to the IUCN Categories and Criteria.

4.
PhytoKeys ; 237: 191-200, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304345

RESUMEN

Isodonxiaoluzhiensis, a new species of the tribe Ocimeae in family Lamiaceae, is described and illustrated. The new species is known only from the type locality, Xiaoluzhi village in Luzhijang dry-hot valley of Yimen County, central Yunnan, southwest China. It is characterized by having a procumbent habit, gracile stems and branches, relatively small leaves and flowers, and the phenology of flowering in winter. The morphological comparisons with its putative closest relatives (I.adenanthus and I.hsiwenii) are also presented.

5.
Mol Phylogenet Evol ; 190: 107955, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37898294

RESUMEN

The numerous naturally-fragmented sky islands (SIs) in the Hengduan Mountains Region (HMR) of southwestern China constitute discontinuous landscapes where montane habitats are isolated by dry-hot valleys which have fostered exceptional species diversification and endemicity. However, studies documenting the crucial role of SI on the speciation dynamics of native freshwater organisms are scarce. Here we used a novel set of comprehensive genetic markers (24 nuclear DNA sequences and complete mitogenomes), morphological characters, and biogeographical information to reveal the evolutionary history and speciation mechanisms of a group of small-bodied montane potamids in the genus Tenuipotamon. Our results provide a robustly supported phylogeny, and suggest that the vicariance events of these montane crabs correlate well with the emergence of SIs due to the uplift of the HMR during the Late Oligocene. Furthermore, ancestrally, mountain ridges provided corridors for the dispersal of these montane crabs that led to the colonization of moist montane-specific habitats, aided by past climatic conditions that were the crucial determinants of their evolutionary history. The present results illustrated that the mechanisms isolating SIs are reinforced by the harsh-dry isolating climatic features of dry-hot valleys separating SIs and continue to affect local diversification. This offers insights into the causes of the high biodiversity and endemism shown by the freshwater crabs of the HMR-SIs in southwestern China.


Asunto(s)
Braquiuros , Animales , Filogenia , Braquiuros/genética , China , Biodiversidad , Agua Dulce
6.
Plants (Basel) ; 12(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37836123

RESUMEN

Deep learning networks might require re-training for different datasets, consuming significant manual labeling and training time. Transfer learning uses little new data and training time to enable pre-trained network segmentation in relevant scenarios (e.g., different vegetation images in rainy and dry seasons); however, existing transfer learning methods lack systematicity and controllability. So, an MTPI method (Maximum Transfer Potential Index method) was proposed to find the optimal conditions in data and feature quantity for transfer learning (MTPI conditions) in this study. The four pre-trained deep networks (Seg-Net (Semantic Segmentation Networks), FCN (Fully Convolutional Networks), Mobile net v2, and Res-Net 50 (Residual Network)) using the rainy season dataset showed that Res-Net 50 had the best accuracy with 93.58% and an WIoU (weight Intersection over Union) of 88.14%, most worthy to transfer training in vegetation segmentation. By obtaining each layer's TPI performance (Transfer Potential Index) of the pre-trained Res-Net 50, the MTPI method results show that the 1000-TDS and 37-TP were estimated as the best training speed with the smallest dataset and a small error risk. The MTPI transfer learning results show 91.56% accuracy and 84.86% WIoU with 90% new dataset reduction and 90% iteration reduction, which is informative for deep networks in segmentation tasks between complex vegetation scenes.

7.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2767-2776, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-37897284

RESUMEN

Scientific assessment of landscape ecological risk in ecologically fragile areas of the upper reaches of the Yangtze River is of great significance to regional ecological regulation and construction of the Yangtze River ecological security barrier. With the dry-hot valley area of Jinsha River in Yunnan Province as the research area, we constructed a landscape ecological risk evaluation model, and analyzed the spatial and temporal variations of regional landscape ecological risk. The results showed that the average values of landscape ecological risk index (LER) in the study area were 0.414, 0.398, and 0.462 in 2000, 2010 and 2020, respectively. The LER value of the whole region had reached a higher risk level by 2020. In 2000 and 2010, the landscape ecological risk zones of each level were staggered, and the high-risk zones showed a centralized distribution in 2020. During the two decades, the average LER of each section in the study area was around 0.42, which was close to the high risk level, indicating high landscape ecological risk level. The area of middle and low risk zones had decreased, while the area of high risk zone had significantly increased. The area of high risk zone in the western and middle sections was much higher than that in the eastern section. The area with significant changes of landscape ecological risk accounted for about 55% of the total study area, with obvious spatial agglomeration characteristics of significant increase and decrease of risk. The competition between government-led ecological management policies and measures and market-led land use activities was the main cause of landscape ecological risk variations in this region. In the future, the driving mechanism of climate change coupled with human activities on global and local landscape ecological risk changes in the study area should be uncovered to effectively cope with regional ecological risks.


Asunto(s)
Ecología , Ríos , Humanos , Conservación de los Recursos Naturales , China , Actividades Humanas , Ecosistema
8.
Sci Total Environ ; 878: 163185, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37004763

RESUMEN

Vegetation restoration is a good way to improve soil quality and reduce erosion. However, the impact of vegetation restoration on soil quality in the dry-hot valley region has been overlooked for many years. This study aimed to reveal the effects of Pennisetum sinese (PS) and natural vegetation (NV) on soil quality and then to explore the feasibility of introducing PS for the vegetation restoration of the dry-hot valley region. The PS and NV restoration areas deserted land evolving from cultivated land (CL) have been established since 2011. The results showed that the soil properties were obviously improved by PS from the dry to wet seasons, except for the soil available phosphorous. The comprehensive soil quality indexes of the three typical seasons (dry, dry-wet, and wet) were determined by using nonlinear weighted additive (NLWA) based on the total dataset, significant dataset and minimum dataset (MDS). The results indicated that the comprehensive minimum dataset soil quality index (MDS-SQI) of the three typical seasons evaluate soil quality well. The soil quality of PS was significantly greater than that of CL and NV (P < 0.05), as shown by the MDS-SQI. Additionally, PS could maintain a stable soil quality in the three typical seasons, while both CL and NV had obvious fluctuations. In addition, the result of the generalized linear mode suggested that the vegetation type had the greatest impact on the soil quality (44.51 %). Comprehensively, vegetation restoration in the dry-hot valley region has a positive impact on the soil properties and quality. PS is a great candidate species for the early vegetation restoration in the dry-hot valley region. This work provides a reference for vegetation restoration and rational utilization of soil resources in degraded ecosystems in dry-hot valleys and other soil erosion areas.

9.
Front Plant Sci ; 13: 1002519, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325543

RESUMEN

Both changing tectonics and climate may shape the phylogeographic patterns of plant species. The dry-hot valleys in southwestern China harbor a high number of endemic plants. In this study, we investigated the evolutionary history and potential distribution of an endemic shrub Himalrandia lichiangensis (Rubiaceae), to evaluate the effects of tectonic and climatic processes on this thermophilic plant species from the dry-hot valleys. By sequencing DNA from four plastid non-coding regions (psbM-trnD, trnD-trnT, atpB-rbcL and accD-psaI) and the CAMX1F-CAMX2R region and ITS for 423 individuals from 23 populations, we investigated the genetic diversity, phylogeographical pattern and population dynamics of H. lichiangensis. We found a high degree of differentiation in H. lichiangensis during the middle Miocene (15-13 Myr), possibly triggered by the rapid tectonic uplift event in this period area. accompanied by frequent orogeneses in this period. This hypothesis is also supported by the association between genetic differentiation and altitudinal gradients among populations. The middle reach of the Jinsha River, which harbors the greatest genetic diversity, is most likely to have been a refugia for H. lichiangensis during Quaternary. We also detected a strong barrier effect between the Nanpan River and Jinsha River, suggesting the river system may play a role in geographical isolation between clades on both sides of the barrier. The Maximum Entropy Model (MaxEnt) results showed that future climate warming will lead to the niche expansion in some areas for H. lichiangensis but will also cause a scattered and fragmented distribution. Given the high among-population differentiation and no recent expansion detected in H. lichiangensis, its current phylogeographical pattern is possibly due to a long-term geographical barrier caused by uplifting mountains since the Miocene, as well as Quaternary climate refugia isolated also by high mountains. This study illustrated tectonic and climatic processes may have a continuous effect on plant phylogeography and offers insights into the origin of biodiversity and endemism in the dry-hot valleys of southwestern China.

10.
Ying Yong Sheng Tai Xue Bao ; 33(10): 2743-2752, 2022 Oct.
Artículo en Chino | MEDLINE | ID: mdl-36384610

RESUMEN

In this study, we examined plant C:N:P stoichiometry of herbaceous plants in different sections (stable area, unstable area and deposition area) of the unstable slope on both shade and sunny aspects of dry-hot valley with different soil properties. The results showed that C concentration (320.59 g·kg-1), N concentration (12.15 g·kg-1), and N:P ratio (25.37) of shoot on the unstable slope were significantly higher than those of root, with 254.01 g·kg-1, 6.12 g·kg-1 and 13.43, respectively. The average value of the C:N ratio was significantly higher in root (43.09) than shoot (31.90). The C content and N:P ratio of shoot and root in stable and unstable areas were significantly higher than in deposition area, whereas the N content in unstable area was significantly higher than that in deposition area on the sunny slope. In addition, the N and P contents of shoot and the root P content in deposition area were significantly higher than in stable and unstable areas, whereas the C content of root in stable and unstable areas were significantly higher than in deposition area on the shade slope. Moreover, the shoot growth of plants was mainly limited by P, whereas root growth was mainly limited by N and the limitation gradually increased as the section goes down. Soil water content (SWC) was an important factor controlling the C, N, and P contents change of shoot with the relative influence ratios of 28.8%, 20.8%, and 19.9%, respectively. Soil organic carbon (SOC) had a significant impact on the C and P contents of root with the relative influence ratios of 49.5% and 22.1%. The change of root N content was mainly affected by soil pH (24.3%). Our results revealed that nutrient allocation of plant was significantly affected by slope aspects, sections and soil factors, which were mainly constituted by SWC, SOC, and soil pH.


Asunto(s)
Carbono , Suelo , Suelo/química , Plantas , Agua , Nutrientes
11.
Artículo en Inglés | MEDLINE | ID: mdl-35805863

RESUMEN

Gully erosion is a common form of soil erosion in dry-hot valleys, and it often brings serious land degradation. A multi-criteria method integrating the characteristics of the longitudinal profile (LP), the cross profile (CP) and the knickpoints of gullies was applied to identify the development stage of gullies in Yuanmou County, Yunnan Province, in southwestern China. Firstly, based on the high-resolution data sources produced by an unmanned aerial vehicle (UAV), 50 gullies were selected as the typical ones in Tutujiliangzi and Shadi village. The LPs were extracted, and their morphological indices, information entropy and fitting functions were calculated. The morphological characteristics of the CPs and the presence or absence of knickpoints were recorded. The results show that the period of the gullies in Tutujiliangzi and Shadi is dominated by the deep incision period and the equilibrium adjustment period, which means that most gullies are in the period of the severe erosion stage. Among the gullies, 13 LPs' morphological index is between 0.636 and 0.933, and the morphology of the LP presents an upward convex shape; the cross profiles are mainly V-shaped and U-shaped. Thirty-two LPs' morphological index is between 1.005~2.384, which presents a slightly concave shape; the cross profiles are mainly repeated U-shapes. The remaining five LPs have a morphological index of 0.592, 0.462, 1.061, 1.344 and 0.888, respectively; the LPs of upstream and downstream are different. The LPs of the Tutujiliangzi gullies are nearly straight lines and slightly concave, while those of the Shadi village gullies are convex and nearly straight lines. The knickpoints and step-pools in Shadi village are more developed, while the gullies in Tutujiliangzi develop more rapidly. This study shows that in counties with similar conditions, these conditions such as temperature and precipitation, local topographic changes, soil properties and vegetation conditions have obvious effects on the development of gullies.


Asunto(s)
Conservación de los Recursos Naturales , Lipopolisacáridos , China , Conservación de los Recursos Naturales/métodos , Suelo
12.
Ying Yong Sheng Tai Xue Bao ; 33(5): 1352-1362, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-35730094

RESUMEN

The study of short-term dynamics of soil moisture in the dry-hot valley area during rainfall process will help identify soil hydrological function. In this study, we analyzed the short-term responses of soil moisture to rainfall in Huajiang dry-hot valley of Guizhou, using in-situ monitoring method to yield high-frequency soil moisture monitoring data of different slope positions. The results showed that, during the whole monitoring period, soil moisture at each layer was at a moderate variation level (15.2%≤coefficient of variation CV≤29.7%), for both upper slope and middle slope. The fluctuation range of soil moisture of the upper slope (CV=21.1%) was greater than that of the middle slope (CV=19.1%), and that of the 0-5 cm soil layer (CV=26.2%) was greater than 20-40 cm layer (CV=16.5%). Compared with the middle slope, soil moisture of the upper slope had a faster response to rainfall. The supplement amount of rainfall was bigger and the supplement speed of rainfall was faster at the upper slope than that at the middle slope. The difference between the supplement speed and the depletion speed of soil moisture of the upper slope (2.3%·h-1) was greater than that of the middle slope (1.8%·h-1). With the increase of soil depth, the responses of soil moisture to rainfall in subsoil layer was earlier or synchronous with that in topsoil layer. When the supplement amount of soil moisture decreased and the supplement speed slowed down, the depletion speed slowed down. Compared with the middle slope, soil at the upper slope had greater water infiltration capacity and better water retention capacity. The responses of soil moisture to rainfall in dry-hot valley were influenced by micro-environment and microclimate, and the rapid recharge of dominant flow at rock-soil interface accelerated the response speed of subsoil moisture to rainfall, which made the slopes in this area easier to form mixed runoff generation mechanism.


Asunto(s)
Lluvia , Suelo , China , Hidrología , Agua , Movimientos del Agua
13.
PhytoKeys ; 199: 9-16, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36761874

RESUMEN

Indigoferavallicola (Fabaceae), a new species is described and illustrated. This plant is only found from two localities in the central Yunnan Province, southwest China. It is characterized by having the prostrate habit, usually 13-17-foliolate leaves and the relatively small (3-5 mm long) flowers. Morphological comparisons with its closest relatives, I.rigioclada, I.franchetii, I.chaetodonta, and I.henryi are also presented.

14.
Commun Integr Biol ; 14(1): 248-260, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925688

RESUMEN

The Yuanjiang dry-hot valley features hot and dry climate, low vegetation and soil degradation. It had lush vegetation in the past, but has become degraded in recent decades. Understanding the interrelationship between species and the habitat is necessary to explain this change. In this study, a link between fern and fern allies - a group that is hypersensitive to environmental factors and their circumstances is constructed. Intensive transects and plots were designed to be proxies for extant fern and fern allies, and their habitats. Fifty years of meteorological records of precipitation and temperature along altitude and river running direction (latitudinal) were employed. Alpha and beta diversity are used to access diversity. Species_estimated, Singletons, Uniques, ACE, ICE, and Chao2, which associate to abundance and rarity, are subscribed to the correlation between fern and fern allies, and their ecosystem. Eight species, Selaginella pseudopaleifera, Aleuritopteris squamosa, Adiantum malesianum, Pteris vittata, Davallia trichomanoides, Sinephropteris delavayi, Selaginella jugorum, and Lygodium japonicum are used as indicators of a typical xeric and sun-drying habitat. The results indicate (1) accompanied by dramatically shrinking habitats, fern and fern allies are in very low diversity and abundance, whereas the rarity is relatively high; (2) for fern and fern allies, environmental factors are positive when altitude goes up; and (3) eight indicator species are latitudinally correlated with fern and fern allies along the river running direction.

15.
Geohealth ; 5(7): e2021GH000438, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34296051

RESUMEN

Due to the specific hydrothermal conditions of dry-hot valleys, temperature changes caused by the development of large-scale hydropower projects may be more extreme than they are in other regions. In this study, we analyzed these temperature changes at four hydropower stations in both dry-hot and non-dry-hot valleys. Based on the calculated relative temperatures of the downstream river and the areas surrounding the reservoirs, we employed two indices to quantify the influence of the reservoirs on the temperatures of these two regions: the downstream river temperature change and the reservoir effect change intensity. Our results are as follows: (a) In the downstream rivers, the temperature regulation effect was more pronounced in the wet season; in the regions surrounding the reservoirs, the temperature regulation effect was more pronounced in the dry season. (b) The downstream river temperature in both the dry-hot and wet-hot valleys exhibited noticeable warming in both the wet and dry seasons, while the cold-dry valley was characterized by cooling in the dry season and warming in the wet season. With the exception of the Liyuan station (where the influence of the reservoir on the downstream temperatures only extended to a distance of 9 km from the dam) during the dry season, the existence of the hydropower stations affected the temperatures of the entire downstream region. (c) For the areas surrounding the reservoir, the presence of a hydropower station mainly caused the temperatures in the dry-hot valleys to rise and the temperatures in the non-dry-hot valleys to decrease.

16.
Ying Yong Sheng Tai Xue Bao ; 31(3): 725-734, 2020 Mar.
Artículo en Chino | MEDLINE | ID: mdl-32537966

RESUMEN

To clarify the morphological characteristics of soil preferential flow and the effect of plant roots on its formation, plants from the typical vegetation types of an artificial woodland (Leucaena acacia) and a dry watershed grassland (Heteropogon contortus) of Yuanmou County, Jinsha River were selected as the experimental objects. Based on the staining and tracing method combined with Photoshop CS5 and the Image-Pro Plus 6.0 image processing technology, we analyzed the morphological and distribution characteristics of soil preferential flow under the two planting types and examined the effects of plant roots. We found significant difference in soil preferential flow dyeing area between the woodland and grassland species, and the overall variation trend of the forestland dyeing area ratio decreased with increasing soil depth. The dyeing area of the grassland decreased monotonously with the increases of soil depth. The occurrence degree of soil preferential flow in forest was higher than that of grassland. Root systemaffected the formation of soil preferential flow. At the root diameter ranges of 0≤d≤5 mm and d>10 mm, root length density of the woodland showed a monotonous decreasing trend with increasing soil depth, while in the root diameter range of 5 mm5 mm. The overall change trend of soil preferential flow dyeing area of two vegetation types in the study area decreased with increasing soil depth. Plant root system was closely related to the formation of soil preferential flow. Fine roots could promote while coarse roots may retard the formation of preferential flows.


Asunto(s)
Ríos , Suelo , China , Bosques , Pradera , Raíces de Plantas
17.
Int J Syst Evol Microbiol ; 69(7): 1903-1909, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31046875

RESUMEN

A Gram-positive, aerobic, non-motile actinobacterium, designated YIM 75507T, that was isolated from a soil sample collected from a dry-hot valley, was subjected to a polyphasic taxonomic study. The isolate formed branched hyphae and no fragmentation was found. Clustered spore chains were borne from aerial mycelium. The cell-wall peptidoglycan contained glutamic acid, alanine and meso-diaminopimelic acid. Whole-cell sugars were galactose, mannose, glucosamine, glucose and ribose. The major menaquinones were MK-9(H6), MK-9(H8) and MK-10(H6). The polar phospholipids contained phosphatidylmethylethanolamine, phosphatidylethanolamine and ninhydrin-positive phosphoglycolipid. Major fatty acids were iso-C16 : 0 and 10-methyl-C17 : 0. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain YIM 75507T formed a stable and distinct lineage clustered with the genus Sinosporangium in the family Streptosporangiaceae. The draft genome sequence of strain YIM 75507T exhibited low average nucleotide identity to the closest related strain, Sinosporangium album CPCC 201354T (83.97 %), well below the 95-96 % species circumscription threshold. The G+C content of the genomic DNA was 73.8 mol%. On the basis of morphological, chemotaxonomic and phylogenetic evidence, strain YIM 75507T is assigned to a novel species of a new genus, for which the name Bailinhaonella thermotolerans gen. nov., sp. nov. is proposed. The type strain of Bailinhaonella thermotolerans is YIM 75507T (=KCTC 49229T=CGMCC 4.7547T).


Asunto(s)
Actinomycetales/clasificación , Filogenia , Microbiología del Suelo , Actinomycetales/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , Pared Celular/química , China , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/química
18.
Physiol Mol Biol Plants ; 25(1): 31-45, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30804628

RESUMEN

Dendrobium wangliangii is an endangered and epiphytic orchid with tolerance to seasonally extreme arid conditions and occurs exclusively in the hot-dry valley area of southwestern China. To reveal its molecular basis responsible for ecological adaptation, large-scale transcriptome sequencing was performed using Illumina sequencing with pooled mRNA extracted from whole plants and pseudobulbs during drought and rainy seasons. Based on the target transcript selection, the differentially expressed genes were related to 8 well-known drought-tolerant categories, and to morphological traits in resistance to water stress including pseudobulbs and roots. Further gene ontology enrichment analysis revealed that 'nucleoside/nucleotide and ribonucleoside/ribonucleotide metabolic processes' and 'response to stimulus' were the two most important aspects in resistance to drought stress with respect to the whole plant. In addition, the difference in the number and category of differentially expressed genes in whole plant and stem suggested the involvement of genes specifically localized in the stem, such as GTP-binding protein, lipases, signaling related transcripts and those involved in the ATP metabolic process. The comprehensive analysis of the epiphytic orchid in response to water deprivation indicates that integral tactics lead to active adaptation as a basal defense response to drought stress by the endangered epiphyte, including the collaboration of metabolic processes, responses to a various stimulus and other candidate genes contribute to its extreme drought tolerance. Insights from this study can be further utilized to understand stress-responsive genes in other medicinally important species and to improve the drought tolerance of food crops.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA