Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(16)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39204655

RESUMEN

Buttonweed (Cotula coronopifolia) is native to South Africa but invasive in wetlands in Europe, North America, and Australasia, where it excludes native plants. Despite being dry-fruited, field studies suggest migratory waterbirds can disperse its seeds via gut passage (endozoochory), aiding its expansion. To explore the potential for endozoochory in different regions and habitats, we collected seeds from six populations in Spain, Sweden, and the UK. Germination was tested under different salinity levels (0, 5, 10, 15 g/L) and simulated gut passage treatments: scarification, acidification, or both. No germination occurred at 15 g/L. Higher salinity reduced and delayed germination, but full gut passage treatment (i.e., both scarification and acidification) increased germinability and accelerated germination. Scarification or acid treatment alone resulted in intermediate germination patterns. There were significant salinity × population and gut passage × population interactions on germinability. The acceleration effect of gut passage on germination was stronger at 5-10 g/L than at 0 g/L. This study highlights how migratory birds can facilitate the spread of alien plants introduced by humans. Endozoochory by waterbirds is an understudied mechanism for the long-distance dispersal of dry-fruited alien plants. Further research on C. coronopifolia, including population genetics, is necessary to understand dispersal mechanisms and facilitate management strategies.

2.
Plants (Basel) ; 12(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37050096

RESUMEN

Recent field data suggest that migratory gulls disperse many rice field weeds by gut passage (endozoochory), most of which are dry fruited and widely assumed to have no long-distance dispersal mechanisms, except via human activity. We investigated this mechanism with a feeding experiment, in which seeds of five common rice field weeds (in order of increasing seed size: Juncus bufonius, Cyperus difformis, Polypogon monspeliensis, Amaranthus retroflexus, and the fleshy-fruited Solanum nigrum) were fed to seven individuals of lesser black-backed gulls Larus fuscus held in captivity. We quantified seed survival after collecting faeces at intervals for 33 h after ingestion, then extracting intact seeds and running germination tests, which were also conducted for control seeds. All five species showed high seed survival after gut passage, of >70%. Gut retention times averaged 2-4 h, but maxima exceeded 23 h for all species. Germinability after gut passage was 16-54%, and gut passage accelerated germination in J. bufonius and S. nigrum, but slowed it down in the other species. All species had lower germinability after gut passage compared to control seeds (likely due to stratification prior to the experiment), but the loss of germinability was higher in smaller seeds. There was no evidence that the different dispersal syndromes assigned to the five species (endozoochory, epizoochory or barochory) had any influence on our results. In contrast, mean gut retention time was strongly and positively related to seed size, likely because small seeds pass more quickly from the gizzard into the intestines. Non-classical endozoochory of dry-fruited seeds by waterbirds is a major but overlooked mechanism for potential long-distance dispersal, and more research into this process is likely essential for effective weed management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA