Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Pharmacol ; 14: 1124693, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180730

RESUMEN

SARS-CoV-2-mediated interactions with drug metabolizing enzymes and membrane transporters (DMETs) in different tissues, especially lung, the main affected organ may limit the clinical efficacy and safety profile of promising COVID-19 drugs. Herein, we investigated whether SARS-CoV-2 infection could dysregulate the expression of 25 clinically relevant DMETs in Vero E6 cells and postmortem lung tissues from COVID-19 patients. Also, we assessed the role of 2 inflammatory and 4 regulatory proteins in modulating the dysregulation of DMETs in human lung tissues. We showed for the first time that SARS-CoV-2 infection dysregulates CYP3A4 and UGT1A1 at the mRNA level, as well as P-gp and MRP1 at the protein level, in Vero E6 cells and postmortem human lung tissues, respectively. We observed that at the cellular level, DMETs could potentially be dysregulated by SARS-CoV-2-associated inflammatory response and lung injury. We uncovered the pulmonary cellular localization of CYP1A2, CYP2C8, CYP2C9, and CYP2D6, as well as ENT1 and ENT2 in human lung tissues, and observed that the presence of inflammatory cells is the major driving force for the discrepancy in the localization of DMETs between COVID-19 and control human lung tissues. Because alveolar epithelial cells and lymphocytes are both sites of SARS-CoV-2 infection and localization of DMETs, we recommend further investigation of the pulmonary pharmacokinetic profile of current COVID-19 drug dosing regimen to improve clinical outcomes.

2.
Acta Pharm Sin B ; 12(3): 1068-1099, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35530147

RESUMEN

Drug-metabolizing enzymes (DMEs), a diverse group of enzymes responsible for the metabolic elimination of drugs and other xenobiotics, have been recognized as the critical determinants to drug safety and efficacy. Deciphering and understanding the key roles of individual DMEs in drug metabolism and toxicity, as well as characterizing the interactions of central DMEs with xenobiotics require reliable, practical and highly specific tools for sensing the activities of these enzymes in biological systems. In the last few decades, the scientists have developed a variety of optical substrates for sensing human DMEs, parts of them have been successfully used for studying target enzyme(s) in tissue preparations and living systems. Herein, molecular design principals and recent advances in the development and applications of optical substrates for human DMEs have been reviewed systematically. Furthermore, the challenges and future perspectives in this field are also highlighted. The presented information offers a group of practical approaches and imaging tools for sensing DMEs activities in complex biological systems, which strongly facilitates high-throughput screening the modulators of target DMEs and studies on drug/herb‒drug interactions, as well as promotes the fundamental researches for exploring the relevance of DMEs to human diseases and drug treatment outcomes.

3.
Pharmacol Ther ; 240: 108219, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35636517

RESUMEN

Drug-metabolizing enzymes (DMEs) have shown increasing importance in anticancer therapy. It is not only due to their effect on activation or deactivation of anticancer drugs, but also because of their extensive connections with pathological and biochemistry changes during tumorigenesis. Meanwhile, it has become more accessible to discovery anticancer drugs that selectively targeted cancer cells with the development of synthetic lethal screen technology. Synthetic lethal strategy makes use of unique genetic markers that different cancer cells from normal tissues to discovery anticancer agents. Dysregulation of DMEs has been found in various cancers, making them promising candidates for synthetic lethal strategy. In this review, we will systematically discuss about the role of DMEs in tumor progression, the application of synthetic lethality strategy in drug discovery, and a link between DMEs and synthetic lethal of cancer.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Mutaciones Letales Sintéticas , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Descubrimiento de Drogas
4.
Acta Pharmaceutica Sinica B ; (6): 1068-1099, 2022.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-929361

RESUMEN

Drug-metabolizing enzymes (DMEs), a diverse group of enzymes responsible for the metabolic elimination of drugs and other xenobiotics, have been recognized as the critical determinants to drug safety and efficacy. Deciphering and understanding the key roles of individual DMEs in drug metabolism and toxicity, as well as characterizing the interactions of central DMEs with xenobiotics require reliable, practical and highly specific tools for sensing the activities of these enzymes in biological systems. In the last few decades, the scientists have developed a variety of optical substrates for sensing human DMEs, parts of them have been successfully used for studying target enzyme(s) in tissue preparations and living systems. Herein, molecular design principals and recent advances in the development and applications of optical substrates for human DMEs have been reviewed systematically. Furthermore, the challenges and future perspectives in this field are also highlighted. The presented information offers a group of practical approaches and imaging tools for sensing DMEs activities in complex biological systems, which strongly facilitates high-throughput screening the modulators of target DMEs and studies on drug/herb‒drug interactions, as well as promotes the fundamental researches for exploring the relevance of DMEs to human diseases and drug treatment outcomes.

5.
J Xenobiot ; 11(3): 94-114, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206277

RESUMEN

Human Cytochrome P450 (CYP) enzymes constitute a superfamily of membrane-bound hemoproteins that are responsible for the metabolism of a wide variety of clinically, physiologically, and toxicologically important compounds. These heme-thiolate monooxygenases play a pivotal role in the detoxification of xenobiotics, participating in the metabolism of many structurally diverge compounds. This short-review is intended to provide a summary on the major roles of CYPs in Phase I xenobiotic metabolism. The manuscript is focused on eight main topics that include the most relevant aspects of past and current CYP research. Initially, (I) a general overview of the main aspects of absorption, distribution, metabolism, and excretion (ADME) of xenobiotics are presented. This is followed by (II) a background overview on major achievements in the past of the CYP research field. (III) Classification and nomenclature of CYPs is briefly reviewed, followed by (IV) a summary description on CYP's location and function in mammals. Subsequently, (V) the physiological relevance of CYP as the cornerstone of Phase I xenobiotic metabolism is highlighted, followed by (VI) reviewing both genetic determinants and (VI) nongenetic factors in CYP function and activity. The last topic of the review (VIII) is focused on the current challenges of the CYP research field.

6.
Clin Transl Oncol ; 22(10): 1667-1680, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32170639

RESUMEN

Although continuous researches are going on for the discovery of new chemotherapeutic agents, resistance to these anticancer agents has made it really difficult to reach the fruitful results. There are many causes for this resistance that are being studied by the researchers across the world, but still, success is far because there are several factors that are going along unattended or have been studied less. Drug-metabolizing enzymes (DMEs) are one of these factors, on which less study has been conducted. DMEs include Phase I and Phase II enzymes. Cytochrome P450s (CYPs) are major Phase I enzymes while glutathione-S-transferases (GSTs), UDP-glucuronosyltransferases (UGTs), dihydropyrimidine dehydrogenases are the major enzymes belonging to the Phase II enzymes. These enzymes play an important role in detoxification of the xenobiotics as well as the metabolism of drugs, depending upon the tissue in which they are expressed. When present in tumorous tissues, they cause resistance by metabolizing the drugs and rendering them inactive. In this review, the role of these various enzymes in anticancer drug metabolism and the possibilities for overcoming the resistance have been discussed.


Asunto(s)
Antineoplásicos/metabolismo , Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Catálisis , Sistema Enzimático del Citocromo P-450/fisiología , Dihidrouracilo Deshidrogenasa (NADP)/fisiología , Glucuronosiltransferasa/fisiología , Glutatión Transferasa/fisiología , Humanos , Inactivación Metabólica
7.
Oncotarget ; 8(27): 44351-44365, 2017 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-28574832

RESUMEN

Chronic unpredicted mild stress (CUMS)-induced depression could alter the pharmacokinetics of many drugs in rats, however, the underlying mechanism is not clear. In this work we studied the pharmacokinetics of repaglinide, and explored the role of glucocorticoid and adrenergic signaling pathway in regulating drug metabolizing enzymes (DMEs) in GK rats and BRL 3A cells. The plasma cortisol and epinephrine levels were increased, meanwhile the pharmacokinetics of repaglinide were altered significantly in depression model rats. Forty-nine genes in liver of model rats displayed significant difference comparing to control rats. The differentially expressed genes enriched in the drug metabolism and steroid hormone biosynthesis pathway significantly, and Nr1i3 matched 335 connectivity genes. CAR and Ugt1a1 protein expression were enhanced significantly in liver of model rats. The mRNA expression of Ugt1a1 and Nr1i2 were increased 2 and 4 times respectively with dexamethasone (DEX) and 8-Br-cAMP co-treatment in BRL 3A cells. The protein expression of PXR was up-regulated, too. However, RU486 reversed the up-regulated effect. The adrenergic receptor agonists had little impact on the DMEs in BRL 3A. Our data suggested that CUMS-induced depression might up-regulate DMEs expression via glucocorticoid signaling pathway, and accelerate the fate of the repaglinide in spontaneous diabetes rats.


Asunto(s)
Carbamatos/farmacocinética , Depresión/etiología , Depresión/metabolismo , Glucocorticoides/metabolismo , Piperidinas/farmacocinética , Transducción de Señal/efectos de los fármacos , Estrés Psicológico , Animales , Vías Biosintéticas/efectos de los fármacos , Línea Celular , Receptor de Androstano Constitutivo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Hígado/metabolismo , Masculino , Farmacogenética , Ratas
8.
Balkan J Med Genet ; 17(2): 5-14, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25937793

RESUMEN

Genetic variation in the regulation, expression and activity of genes coding for Phase I, Phase II drug metabolizing enzymes (DMEs) and drug targets, can be defining factors for the variability in both the effectiveness and occurrence of drug therapy side effects. Information regarding the geographic structure and multi-ethnic distribution of clinically relevant genetic variations is becoming increasingly useful for improving drug therapy and explaining inter-individual and inter-ethnic differences in drug response. This study summarizes our current knowledge about the frequency distribution of the most common allelic variants in three broad gene categories: the Phase I oxidation-cytochrome P450 (CYP450) family (CYP2C9, CYP2C19, CYP3A5, CYP2D6); the Phase II conjugation (GSTT1, SULT1A1; UGT1A1) and drug target (TYMS-TSER, MTHFR and VKORC1) in the population of the Republic of Macedonia and compares the information obtained with data published for other indigenous European populations. Our findings define the population of the Republic of Macedonia as an ethnic group with a highly polymorphic genetic profile. These results add to the evidence regarding the distribution of clinically important variant alleles in DME and drug target genes in populations of European ancestry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA