Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Clin Transl Oncol ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39017955

RESUMEN

BACKGROUND: Biomarkers for colorectal cancer (CRC) can complement population screening methods, but so far, few plasma proteins have been identified as biomarkers for CRC. This study aims to identify potential protein biomarkers and therapeutic targets for CRC within the proteome range. METHODS: We extracted summary-level data of circulating protein from 7 published genome-wide association studies (GWASs) of plasma proteome for Mendelian randomization (MR), summary-data-based MR (SMR), and co-localization analyses to screen and validate proteins with causal effects in CRC. In addition, we further conducted druggability evaluation, prognosis analysis at the transcriptional level, and enrichment expression at the single-cell level, highlighting the important role of these plasma protein biomarkers in CRC. RESULTS: We identified 117 plasma protein biomarkers associated with CRC risk, with 9 proteins showing stronger genetic correlations in Bayesian co-localization (PP.H4 > 0.70). Further, we found 26 protein-coding genes already used in targeted drug development and may potentially become therapeutic targets for CRC. In prognosis analysis, the encoding genes of plasma proteins exhibited consistent effects with MR analysis and can serve as prognostic biomarkers for CRC. Additionally, we also found that the differentially expressed proteins are mainly expressed in fibroblasts, endothelial cells, macrophages, and T cells. CONCLUSION: Our study has identified plasma protein biomarkers associated with CRC risk, which may complement population screening methods for CRC and achieve more precise treatment for patients.

2.
Fungal Biol Biotechnol ; 11(1): 5, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715132

RESUMEN

BACKGROUND: Candida albicans is one of the most prevalent fungi causing infections in the world. Mnt1 is a mannosyltransferase that participates in both the cell wall biogenesis and biofilm growth of C. albicans. While the cell wall performs crucial functions in pathogenesis, biofilm growth is correlated with sequestration of drugs by the extracellular matrix. Therefore, antifungals targeting CaMnt1 can compromise fungal development and potentially also render Candida susceptible to drug therapy. Despite its importance, CaMnt1 has not yet been purified to high standards and its biophysical properties are lacking. RESULTS: We describe a new protocol to obtain high yield of recombinant CaMnt1 in Komagataella phaffii using methanol induction. The purified protein's identity was confirmed by MALDI-TOF/TOF mass spectroscopy. The Far-UV circular dichroism (CD) spectra demonstrate that the secondary structure of CaMnt1 is compatible with a protein formed by α-helices and ß-sheets at pH 7.0. The fluorescence spectroscopy results show that the tertiary structure of CaMnt1 is pH-dependent, with a greater intensity of fluorescence emission at pH 7.0. Using our molecular modeling protocol, we depict for the first time the ternary complex of CaMnt1 bound to its two substrates, which has enabled the identification of residues involved in substrate specificity and catalytic reaction. Our results corroborate the hypothesis that Tyr209 stabilizes the formation of an oxocarbenium ion-like intermediate during nucleophilic attack of the acceptor sugar, opposing the double displacement mechanism proposed by other reports. CONCLUSIONS: The methodology presented here can substantially improve the yield of recombinant CaMnt1 expressed in flask-grown yeasts. In addition, the structural characterization of the fungal mannosyltransferase presents novelties that can be exploited for new antifungal drug's development.

3.
Mol Biol Rep ; 51(1): 594, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683374

RESUMEN

BACKGROUND: Metacaspases comprise a family of cysteine proteases implicated in both cell death and cell differentiation of protists that has been considered a potential drug target for protozoan parasites. However, the biology of metacaspases in Plasmodium vivax - the second most prevalent and most widespread human malaria parasite worldwide, whose occurrence of chemoresistance has been reported in many endemic countries, remains largely unexplored. Therefore, the present study aimed to address, for the first time, the expression pattern of metacaspases in P. vivax parasites. METHODS AND RESULTS: P. vivax blood-stage parasites were obtained from malaria patients in the Brazilian Amazon and the expression of the three putative P. vivax metacaspases (PvMCA1-3) was detected in all isolates by quantitative PCR assay. Of note, the expression levels of each PvMCA varied noticeably across isolates, which presented different frequencies of parasite forms, supporting that PvMCAs may be expressed in a stage-specific manner as previously shown in P. falciparum. CONCLUSION: The detection of metacaspases in P. vivax blood-stage parasites reported herein, allows the inclusion of these proteases as a potential candidate drug target for vivax malaria, while further investigations are still required to evaluate the activity, role and essentiality of metacaspases in P. vivax biology.


Asunto(s)
Malaria Vivax , Plasmodium vivax , Proteínas Protozoarias , Plasmodium vivax/genética , Plasmodium vivax/aislamiento & purificación , Brasil , Humanos , Malaria Vivax/parasitología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Caspasas/genética , Caspasas/metabolismo , Expresión Génica/genética
4.
Viruses ; 15(7)2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37515189

RESUMEN

The Venezuelan equine encephalitis virus (VEEV) nonstructural protein 2 (nsP2) cysteine protease (EC 3.4.22.B79) is essential for viral replication. High throughput in silico/in vitro screening using a focused set of known cysteine protease inhibitors identified two epoxysuccinyl prodrugs, E64d and CA074 methyl ester (CA074me) and a reversible oxindole inhibitor. Here, we determined the X-ray crystal structure of the CA074-inhibited nsP2 protease and compared it with our E64d-inhibited structure. We found that the two inhibitors occupy different locations in the protease. We designed hybrid inhibitors with improved potency. Virus yield reduction assays confirmed that the viral titer was reduced by >5 logs with CA074me. Cell-based assays showed reductions in viral replication for CHIKV, VEEV, and WEEV, and weaker inhibition of EEEV by the hybrid inhibitors. The most potent was NCGC00488909-01 which had an EC50 of 1.76 µM in VEEV-Trd-infected cells; the second most potent was NCGC00484087 with an EC50 = 7.90 µM. Other compounds from the NCATS libraries such as the H1 antihistamine oxatomide (>5-log reduction), emetine, amsacrine an intercalator (NCGC0015113), MLS003116111-01, NCGC00247785-13, and MLS00699295-01 were found to effectively reduce VEEV viral replication in plaque assays. Kinetic methods demonstrated time-dependent inhibition by the hybrid inhibitors of the protease with NCGC00488909-01 (Ki = 3 µM) and NCGC00484087 (Ki = 5 µM). Rates of inactivation by CA074 in the presence of 6 mM CaCl2, MnCl2, or MgCl2 were measured with varying concentrations of inhibitor, Mg2+ and Mn2+ slightly enhanced inhibitor binding (3 to 6-fold). CA074 inhibited not only the VEEV nsP2 protease but also that of CHIKV and WEEV.


Asunto(s)
Proteasas de Cisteína , Virus de la Encefalitis Equina Venezolana , Animales , Caballos , Replicación Viral , Inhibidores de Cisteína Proteinasa/farmacología
5.
J Fungi (Basel) ; 9(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36836308

RESUMEN

Histoplasma capsulatum is a thermodymorphic fungus that causes histoplasmosis, a systemic mycosis that presents different clinical manifestations, ranging from self-limiting to acute lung infection, chronic lung infection and disseminated infection. Usually, it affects severely immunocompromised patients although immunocompetent patients can also be infected. Currently, there are no vaccines to prevent histoplasmosis and the available antifungal treatment presents moderate to high toxicity. Additionally, there are few options of antifungal drugs. Thus, the aim of this study was to predict possible protein targets for the construction of potential vaccine candidates and predict potential drug targets against H. capsulatum. Whole genome sequences from four previously published H. capsulatum strains were analyzed and submitted to different bioinformatic approaches such as reverse vaccinology and subtractive genomics. A total of four proteins were characterized as good protein candidates (vaccine antigens) for vaccine development, three of which are membrane-bound and one is secreted. In addition, it was possible to predict four cytoplasmic proteins which were classified as good protein candidates and, through molecular docking performed for each identified target, we found four natural compounds that showed favorable interactions with our target proteins. Our study can help in the development of potential vaccines and new drugs that can change the current scenario of the treatment and prevention of histoplasmosis.

6.
Curr Top Med Chem ; 23(5): 349-370, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36703583

RESUMEN

BACKGROUND: Neurological disorders are composed of several diseases that affect the central and peripheral nervous system; among these are neurodegenerative diseases, which lead to neuronal death. Many of these diseases have treatment for the disease and symptoms, leading patients to use several drugs that cause side effects. INTRODUCTION: The search for new treatments has led to the investigation of multi-target drugs. METHODS: This review aimed to investigate in the literature the multi-target effect in neurological disorders through an in silico approach. Studies were reviewed on the diseases such as epilepsy, Alzheimer's disease, Amyotrophic Lateral Sclerosis (ALS), Huntington's disease, cerebral ischemia, and Parkinson's disease. RESULTS: As a result, the study emphasize the relevance of research by computational techniques such as quantitative structure-activity relationship (QSAR) prediction models, pharmacokinetic prediction models, molecular docking, and molecular dynamics, besides presenting possible drug candidates with multi-target activity. CONCLUSION: It was possible to identify several targets with pharmacological activities. Some of these targets had diseases in common such as carbonic anhydrase, acetylcholinesterase, NMDA, and MAO being relevant for possible multi-target approaches.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Polifarmacología , Acetilcolinesterasa , Enfermedad de Alzheimer/tratamiento farmacológico
7.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36077062

RESUMEN

Identifying drug-target interactions is a crucial step in discovering novel drugs and for drug repositioning. Network-based methods have shown great potential thanks to the straightforward integration of information from different sources and the possibility of extracting novel information from the graph topology. However, despite recent advances, there is still an urgent need for efficient and robust prediction methods. Here, we present SimSpread, a novel method that combines network-based inference with chemical similarity. This method employs a tripartite drug-drug-target network constructed from protein-ligand interaction annotations and drug-drug chemical similarity on which a resource-spreading algorithm predicts potential biological targets for both known or failed drugs and novel compounds. We describe small molecules as vectors of similarity indices to other compounds, thereby providing a flexible means to explore diverse molecular representations. We show that our proposed method achieves high prediction performance through multiple cross-validation and time-split validation procedures over a series of datasets. In addition, we demonstrate that our method performed a balanced exploration of both chemical ligand space (scaffold hopping) and biological target space (target hopping). Our results suggest robust and balanced performance, and our method may be useful for predicting drug targets, virtual screening, and drug repositioning.


Asunto(s)
Algoritmos , Reposicionamiento de Medicamentos , Sistemas de Liberación de Medicamentos , Reposicionamiento de Medicamentos/métodos , Ligandos
8.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36015142

RESUMEN

Peptide-protein interactions are involved in various fundamental cellular functions, and their identification is crucial for designing efficacious peptide therapeutics. Drug-target interactions can be inferred by in silico prediction using bioinformatics and computational tools. We patented the TnP family of synthetic cyclic peptides, which is in the preclinical stage of developmental studies for chronic inflammatory diseases such as multiple sclerosis. In an experimental autoimmune enceph-alomyelitis model, we found that TnP controls neuroinflammation and prevents demyelination due to its capacity to cross the blood-brain barrier and to act in the central nervous system blocking the migration of inflammatory cells responsible for neuronal degeneration. Therefore, the identification of potential targets for TnP is the objective of this research. In this study, we used bioinformatics and computational approaches, as well as bioactivity databases, to evaluate TnP-target prediction for proteins that were not experimentally tested, specifically predicting the 3D structure of TnP and its biochemical characteristics, TnP-target protein binding and docking properties, and dynamics of TnP competition for the protein/receptor complex interaction, construction of a network of con-nectivity and interactions between molecules as a result of TnP blockade, and analysis of similarities with bioactive molecules. Based on our results, integrins were identified as important key proteins and considered responsible to regulate TnP-governed pharmacological effects. This comprehensive in silico study will help to understand how TnP induces its anti-inflammatory effects and will also facilitate the identification of possible side effects, as it shows its link with multiple biologically important targets in humans.

9.
J Fungi (Basel) ; 8(8)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36012834

RESUMEN

Inteins are genetic mobile elements that are inserted within protein-coding genes, which are usually housekeeping genes. They are transcribed and translated along with the host gene, then catalyze their own splicing out of the host protein, which assumes its functional conformation thereafter. As Prp8 inteins are found in several important fungal pathogens and are absent in mammals, they are considered potential therapeutic targets since inhibiting their splicing would selectively block the maturation of fungal proteins. We developed a target-based drug screening system to evaluate the splicing of Prp8 intein from the yeast pathogen Cryptococcus neoformans (CnePrp8i) using Saccharomyces cerevisiae Ura3 as a non-native host protein. In our heterologous system, intein splicing preserved the full functionality of Ura3. To validate the system for drug screening, we examined cisplatin, which has been described as an intein splicing inhibitor. By using our system, new potential protein splicing inhibitors may be identified and used, in the future, as a new class of drugs for mycosis treatment. Our system also greatly facilitates the visualization of CnePrp8i splicing dynamics in vivo.

10.
Parasit Vectors ; 15(1): 194, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668508

RESUMEN

BACKGROUND: Components of the antioxidant defense system in Trypanosoma cruzi are potential targets for new drug development. Superoxide dismutases (SODs) constitute key components of antioxidant defense systems, removing excess superoxide anions by converting them into oxygen and hydrogen peroxide. The main goal of the present study was to investigate the genes coding for iron superoxide dismutase (FeSOD) in T. cruzi strains from an evolutionary perspective. METHODS: In this study, molecular biology methods and phylogenetic studies were combined with drug assays. The FeSOD-A and FeSOD-B genes of 35 T. cruzi strains, belonging to six discrete typing units (Tcl-TcVI), from different hosts and geographical regions were amplified by PCR and sequenced using the Sanger method. Evolutionary trees were reconstructed based on Bayesian inference and maximum likelihood methods. Drugs that potentially interacted with T. cruzi FeSODs were identified and tested against the parasites. RESULTS: Our results suggest that T. cruzi FeSOD types are members of distinct families. Gene copies of FeSOD-A (n = 2), FeSOD-B (n = 4) and FeSOD-C (n = 4) were identified in the genome of the T. cruzi reference clone CL Brener. Phylogenetic inference supported the presence of two functional variants of each FeSOD type across the T. cruzi strains. Phylogenetic trees revealed a monophyletic group of FeSOD genes of T. cruzi TcIV strains in both distinct genes. Altogether, our results support the hypothesis that gene duplication followed by divergence shaped the evolution of T. cruzi FeSODs. Two drugs, mangafodipir and polaprezinc, that potentially interact with T. cruzi FeSODs were identified and tested in vitro against amastigotes and trypomastigotes: mangafodipir had a low trypanocidal effect and polaprezinc was inactive. CONCLUSIONS: Our study contributes to a better understanding of the molecular biodiversity of T. cruzi FeSODs. Herein we provide a successful approach to the study of gene/protein families as potential drug targets.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Antioxidantes , Teorema de Bayes , Enfermedad de Chagas/parasitología , Humanos , Filogenia , Superóxido Dismutasa/genética , Superóxidos , Trypanosoma cruzi/genética
11.
ACS Infect Dis ; 8(5): 1062-1074, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35482332

RESUMEN

Trypanosoma cruzi is a unicellular parasite that causes Chagas disease, which is endemic in the American continent but also worldwide, distributed by migratory movements. A striking feature of trypanosomatids is the polycistronic transcription associated with post-transcriptional mechanisms that regulate the levels of translatable mRNA. In this context, epigenetic regulatory mechanisms have been revealed to be of great importance, since they are the only ones that would control the access of RNA polymerases to chromatin. Bromodomains are epigenetic protein readers that recognize and specifically bind to acetylated lysine residues, mostly at histone proteins. There are seven coding sequences for BD-containing proteins in trypanosomatids, named TcBDF1 to TcBDF7, and a putative new protein containing a bromodomain was recently described. Using the Tet-regulated overexpression plasmid pTcINDEX-GW and CRISPR/Cas9 genome editing, we were able to demonstrate the essentiality of TcBDF2 in T. cruzi. This bromodomain is located in the nucleus, through a bipartite nuclear localization signal. TcBDF2 was shown to be important for host cell invasion, amastigote replication, and differentiation from amastigotes to trypomastigotes. Overexpression of TcBDF2 diminished epimastigote replication. Also, some processes involved in pathogenesis were altered in these parasites, such as infection of mammalian cells, replication of amastigotes, and the number of trypomastigotes released from host cells. In in vitro studies, TcBDF2 was also able to bind inhibitors showing a specificity profile different from that of the previously characterized TcBDF3. These results point to TcBDF2 as a druggable target against T. cruzi.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Animales , Enfermedad de Chagas/parasitología , Histonas/metabolismo , Mamíferos/metabolismo , Dominios Proteicos , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/genética
12.
Pharmaceutics ; 14(3)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35336000

RESUMEN

Drug discovery (DD) is a time-consuming and expensive process. Thus, the industry employs strategies such as drug repositioning and drug repurposing, which allows the application of already approved drugs to treat a different disease, as occurred in the first months of 2020, during the COVID-19 pandemic. The prediction of drug-target interactions is an essential part of the DD process because it can accelerate it and reduce the required costs. DTI prediction performed in silico have used approaches based on molecular docking simulations, including similarity-based and network- and graph-based ones. This paper presents MPS2IT-DTI, a DTI prediction model obtained from research conducted in the following steps: the definition of a new method for encoding molecule and protein sequences onto images; the definition of a deep-learning approach based on a convolutional neural network in order to create a new method for DTI prediction. Training results conducted with the Davis and KIBA datasets show that MPS2IT-DTI is viable compared to other state-of-the-art (SOTA) approaches in terms of performance and complexity of the neural network model. With the Davis dataset, we obtained 0.876 for the concordance index and 0.276 for the MSE; with the KIBA dataset, we obtained 0.836 and 0.226 for the concordance index and the MSE, respectively. Moreover, the MPS2IT-DTI model represents molecule and protein sequences as images, instead of treating them as an NLP task, and as such, does not employ an embedding layer, which is present in other models.

13.
Parasitol Res ; 121(5): 1329-1343, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35169884

RESUMEN

Echinococcus granulosus, the etiological agent of human cystic echinococcosis (formerly known as hydatid disease), represents a serious worldwide public health problem with limited treatment options. The essential role played by the neuromuscular system in parasite survival and the relevance of serotonin (5-HT) in parasite movement and development make the serotonergic system an attractive source of drug targets. In this study, we cloned and sequenced a cDNA coding for the serotonin transporter from E. granulosus (EgSERT). Bioinformatic analyses suggest that EgSERT has twelve transmembrane domains with highly conserved ligand and ionic binding sites but a less conserved allosteric site compared with the human orthologue (HsSERT). Modeling studies also suggest a good degree of conservation of the overall structure compared with HsSERT. Functional and pharmacological studies performed on the cloned EgSERT confirm that this protein is indeed a serotonin transporter. EgSERT is specific for 5-HT and does not transport other neurotransmitters. Typical monoamine transport inhibitors also displayed inhibitory activities towards EgSERT, but with lower affinity than for the human SERT (HsSERT), suggesting a high divergence of the cestode transporter compared with HsSERT. In situ hybridization studies performed in the larval protoscolex stage suggest that EgSERT is located in discrete regions that are compatible with the major ganglia of the serotonergic nervous system. The pharmacological properties, the amino acidic substitutions at important functional regions compared with the HsSERT, and the putative role of EgSERT in the nervous system suggest that it could be an important target for pharmacological intervention.


Asunto(s)
Cestodos , Equinococosis , Echinococcus granulosus , Animales , Equinococosis/parasitología , Echinococcus granulosus/fisiología , Humanos , Sistema Nervioso/metabolismo , Serotonina/metabolismo , Serotonina/farmacología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
14.
PeerJ ; 10: e12662, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35190783

RESUMEN

BACKGROUND: Within the pathogenic bacterial species Corynebacterium genus, six species that can produce diphtheria toxin (C. belfantii, C. diphtheriae, C. pseudotuberculosis, C. rouxii, C. silvaticum and C. ulcerans) form a clade referred to as the C. diphtheria complex. These species have been found in humans and other animals, causing diphtheria or other diseases. Here we show the results of a genome scale analysis to identify positive selection in protein-coding genes that may have resulted in the adaptations of these species to their ecological niches and suggest drug and vaccine targets. METHODS: Forty genomes were sampled to represent species, subspecies or biovars of Corynebacterium. Ten phylogenetic groups were tested for positive selection using the PosiGene pipeline, including species and biovars from the C. diphtheria complex. The detected genes were tested for recombination and had their sequences alignments and homology manually examined. The final genes were investigated for their function and a probable role as vaccine or drug targets. RESULTS: Nineteen genes were detected in the species C. diphtheriae (two), C. pseudotuberculosis (10), C. rouxii (one), and C. ulcerans (six). Those were found to be involved in defense, translation, energy production, and transport and in the metabolism of carbohydrates, amino acids, nucleotides, and coenzymes. Fourteen were identified as essential genes, and six as virulence factors. Thirteen from the 19 genes were identified as potential drug targets and four as potential vaccine candidates. These genes could be important in the prevention and treatment of the diseases caused by these bacteria.


Asunto(s)
Corynebacterium diphtheriae , Difteria , Vacunas , Humanos , Animales , Corynebacterium diphtheriae/genética , Difteria/prevención & control , Filogenia , Corynebacterium
15.
Methods Mol Biol ; 2343: 191-202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34473323

RESUMEN

Alzheimer's disease (AD) is a degenerative cognitive condition that affects individuals with an increasing prevalence in older age groups. There are currently five drugs on the market for AD but no new effective ones have been discovered for decades. There has been increasing interest in the use of natural remedies such as special diets and plant extracts but these require further study. Based on the known effects on white matter and neuronal conductance in Alzheimer's disease, we present a protocol for proteomic analysis of myelin-enriched brain fractions as a way of identifying potential biomarkers of efficacy. This fingerprint could be used in screening assays for novel compounds for treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Proteómica , Sustancia Blanca , Anciano , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/tratamiento farmacológico , Biomarcadores/análisis , Humanos , Vaina de Mielina , Proteoma
16.
Pharmaceuticals, v. 15, b. 8, 994, ago. 2022
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4484

RESUMEN

Peptide–protein interactions are involved in various fundamental cellular functions, and their identification is crucial for designing efficacious peptide therapeutics. Drug–target interactions can be inferred by in silico prediction using bioinformatics and computational tools. We patented the TnP family of synthetic cyclic peptides, which is in the preclinical stage of developmental studies for chronic inflammatory diseases such as multiple sclerosis. In an experimental autoimmune enceph-alomyelitis model, we found that TnP controls neuroinflammation and prevents demyelination due to its capacity to cross the blood–brain barrier and to act in the central nervous system blocking the migration of inflammatory cells responsible for neuronal degeneration. Therefore, the identification of potential targets for TnP is the objective of this research. In this study, we used bioinformatics and computational approaches, as well as bioactivity databases, to evaluate TnP–target prediction for proteins that were not experimentally tested, specifically predicting the 3D structure of TnP and its biochemical characteristics, TnP–target protein binding and docking properties, and dynamics of TnP competition for the protein/receptor complex interaction, construction of a network of con-nectivity and interactions between molecules as a result of TnP blockade, and analysis of similarities with bioactive molecules. Based on our results, integrins were identified as important key proteins and considered responsible to regulate TnP-governed pharmacological effects. This comprehensive in silico study will help to understand how TnP induces its anti-inflammatory effects and will also facilitate the identification of possible side effects, as it shows its link with multiple biologically important targets in humans.

17.
Mol Hum Reprod ; 27(12)2021 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-34792600

RESUMEN

EPPIN (epididymal protease inhibitor) is a mammalian conserved sperm-binding protein displaying an N-terminal WFDC (whey-acidic protein four-disulfide core) and a C-terminal Kunitz protease inhibitor domains. EPPIN plays a key role in regulating sperm motility after ejaculation via interaction with the seminal plasma protein SEMG1 (semenogelin-1). EPPIN ligands targeting the SEMG1 binding site in the Kunitz domain are under development as male contraceptive drugs. Nevertheless, the relative contributions of EPPIN WFDC and Kunitz domains to sperm function remain obscure. Here, we evaluated the effects of antibodies targeting specific epitopes in EPPIN's WFDC (Q20E antibody, Gln20-Glu39 epitope) and Kunitz (S21C and F21C antibodies, Ser103-Cys123 and Phe90-C110 epitopes, respectively) domains on mouse sperm motility and fertilizing ability. Computer-assisted sperm analysis showed that sperm co-incubation with S21C antibody (but not F21C antibody) lowered progressive and hyperactivated motilities and impaired kinematic parameters describing progressive (straight-line velocity; VSL, average path velocity; VAP and straightness; STR) and vigorous sperm movements (curvilinear velocity; VCL, amplitude of lateral head movement; ALH, and linearity; LIN) compared with control. Conversely, Q20E antibody-induced milder inhibition of progressive motility and kinematic parameters (VAP, VCL and ALH). Sperm co-incubation with S21C or Q20E antibodies affected in vitro fertilization as revealed by reduced cleavage rates, albeit without changes in capacitation-induced tyrosine phosphorylation. In conclusion, we show that targeting specific epitopes in EPPIN Kunitz and WFDC domains inhibits sperm motility and capacitation-associated events, which decrease their fertilizing ability; nevertheless, similar observations in vivo remain to be demonstrated. Simultaneously targeting residues in S21C and Q20E epitopes is a promising approach for the rational design of EPPIN-based ligands with spermostatic activity.


Asunto(s)
Anticuerpos/farmacología , Anticonceptivos Masculinos/farmacología , Diseño de Fármacos , Proteínas Inhibidoras de Proteinasas Secretoras/antagonistas & inhibidores , Capacitación Espermática/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Animales , Sitios de Unión , Fenómenos Biomecánicos , Epítopos , Femenino , Ligandos , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Inhibidoras de Proteinasas Secretoras/química , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Espermatozoides/metabolismo , Tirosina
18.
Microorganisms ; 9(8)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34442758

RESUMEN

Giardia lamblia is a single-celled eukaryotic parasite with a small genome and is considered an early divergent eukaryote. The pentose phosphate pathway (PPP) plays an essential role in the oxidative stress defense of the parasite and the production of ribose-5-phosphate. In this parasite, the glucose-6-phosphate dehydrogenase (G6PD) is fused with the 6-phosphogluconolactonase (6PGL) enzyme, generating the enzyme named G6PD::6PGL that catalyzes the first two steps of the PPP. Here, we report that the G6PD::6PGL is a bifunctional enzyme with two catalytically active sites. We performed the kinetic characterization of both domains in the fused G6PD::6PGL enzyme, as well as the individual cloned G6PD. The results suggest that the catalytic activity of G6PD and 6PGL domains in the G6PD::6PGL enzyme are more efficient than the individual proteins. Additionally, using enzymatic and mass spectrometry assays, we found that the final metabolites of the catalytic reaction of the G6PD::6PGL are 6-phosphoglucono-δ-lactone and 6-phosphogluconate. Finally, we propose the reaction mechanism in which the G6PD domain performs the catalysis, releasing 6-phosphoglucono-δ-lactone to the reaction medium. Then, this metabolite binds to the 6PGL domain catalyzing the hydrolysis reaction and generating 6-phosphogluconate. The structural difference between the G. lamblia fused enzyme G6PD::6PGL with the human G6PD indicate that the G6PD::6PGL is a potential drug target for the rational synthesis of novels anti-Giardia drugs.

19.
Front Pharmacol ; 12: 647060, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177572

RESUMEN

Decades of successful use of antibiotics is currently challenged by the emergence of increasingly resistant bacterial strains. Novel drugs are urgently required but, in a scenario where private investment in the development of new antimicrobials is declining, efforts to combat drug-resistant infections become a worldwide public health problem. Reasons behind unsuccessful new antimicrobial development projects range from inadequate selection of the molecular targets to a lack of innovation. In this context, increasingly available omics data for multiple pathogens has created new drug discovery and development opportunities to fight infectious diseases. Identification of an appropriate molecular target is currently accepted as a critical step of the drug discovery process. Here, we review how diverse layers of multi-omics data in conjunction with structural/functional analysis and systems biology can be used to prioritize the best candidate proteins. Once the target is selected, virtual screening can be used as a robust methodology to explore molecular scaffolds that could act as inhibitors, guiding the development of new drug lead compounds. This review focuses on how the advent of omics and the development and application of bioinformatics strategies conduct a "big-data era" that improves target selection and lead compound identification in a cost-effective and shortened timeline.

20.
Front Cell Infect Microbiol ; 11: 685866, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178724

RESUMEN

Malaria is a parasitic disease that represents a public health problem worldwide. Protozoans of the Plasmodium genus are responsible for causing malaria in humans. Plasmodium species have a complex life cycle that requires post-translational modifications (PTMs) to control cellular activities temporally and spatially and regulate the levels of critical proteins and cellular mechanisms for maintaining an efficient infection and immune evasion. SUMOylation is a PTM formed by the covalent linkage of a small ubiquitin-like modifier protein to the lysine residues on the protein substrate. This PTM is reversible and is triggered by the sequential action of three enzymes: E1-activating, E2-conjugating, and E3 ligase. On the other end, ubiquitin-like-protein-specific proteases in yeast and sentrin-specific proteases in mammals are responsible for processing SUMO peptides and for deconjugating SUMOylated moieties. Further studies are necessary to comprehend the molecular mechanisms and cellular functions of SUMO in Plasmodium. The emergence of drug-resistant malaria parasites prompts the discovery of new targets and antimalarial drugs with novel mechanisms of action. In this scenario, the conserved biological processes regulated by SUMOylation in the malaria parasites such as gene expression regulation, oxidative stress response, ubiquitylation, and proteasome pathways, suggest PfSUMO as a new potential drug target. This mini-review focuses on the current understanding of the mechanism of action of the PfSUMO during the coordinated multi-step life cycle of Plasmodium and discusses them as attractive new target proteins for the development of parasite-specific inhibitors and therapeutic intervention toward malaria disease.


Asunto(s)
Antimaláricos , Malaria , Plasmodium , Animales , Antimaláricos/farmacología , Humanos , Malaria/tratamiento farmacológico , Plasmodium falciparum , Sumoilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA