RESUMEN
Trypanosomatids are protozoan parasites that cause human and animal neglected diseases. Despite global efforts, effective treatments are still much needed. Phenotypic screens have provided several chemical leads for drug discovery, but the mechanism of action for many of these chemicals is currently unknown. Recently, chemogenomic screens assessing the susceptibility or resistance of parasites carrying genome-wide modifications started to define the mechanism of action of drugs at large scale. In this review, we discuss how genomics is being used for drug discovery in trypanosomatids, how integration of chemical and genomics data from these and other organisms has guided prioritisations of candidate therapeutic targets and additional chemical starting points, and how these data can fuel the expansion of drug discovery pipelines into the era of artificial intelligence.
Asunto(s)
Inteligencia Artificial , Trypanosoma , Animales , Humanos , Descubrimiento de Drogas , Genómica , Genoma , Diseño de FármacosRESUMEN
Since the emergence of the new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) at the end of December 2019 in China, and with the urge of the coronavirus disease 2019 (COVID-19) pandemic, there have been huge efforts of many research teams and governmental institutions worldwide to mitigate the current scenario. Reaching more than 1,377,000 deaths in the world and still with a growing number of infections, SARS-CoV-2 remains a critical issue for global health and economic systems, with an urgency for available therapeutic options. In this scenario, as drug repurposing and discovery remains a challenge, computer-aided drug design (CADD) approaches, including machine learning (ML) techniques, can be useful tools to the design and discovery of novel potential antiviral inhibitors against SARS-CoV-2. In this work, we describe and review the current knowledge on this virus and the pandemic, the latest strategies and computational approaches applied to search for treatment options, as well as the challenges to overcome COVID-19.
Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Diseño de Fármacos , Descubrimiento de Drogas/métodos , SARS-CoV-2/efectos de los fármacos , Antivirales/química , Inteligencia Artificial , COVID-19/metabolismo , Reposicionamiento de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2/fisiologíaRESUMEN
Abstract: Developing a novel drug is a complex, risky, expensive and time-consuming venture. It is estimated that the conventional drug discovery process ending with a new medicine ready for the market can take up to 15 years and more than a billion USD. Fortunately, this scenario has recently changed with the arrival of new approaches. Many novel technologies and methodologies have been developed to increase the efficiency of the drug discovery process, and computational methodologies have become a crucial component of many drug discovery programs. From hit identification to lead optimization, techniques such as ligand- or structure-based virtual screening are widely used in many discovery efforts. It is the case for designing potential anticancer drugs and drug candidates, where these computational approaches have had a major impact over the years and have provided fruitful insights into the field of cancer. In this paper, we review the concept of rational design presenting some of the most representative examples of molecules identified by means of it. Key principles are illustrated through case studies including specifically successful achievements in the field of anticancer drug design to demonstrate that research advances, with the aid of in silico drug design, have the potential to create novel anticancer drugs.
Resumen: El desarrollo de un nuevo fármaco es un proceso complejo y arriesgado que requiere una enorme cantidad de tiempo y dinero. Se estima que el proceso estándar para producir un nuevo fármaco, desde su descubrimiento hasta que acaba en el mercado, puede tardar hasta 15 años y tener un costo de mil millones de dólares (USD). Por fortuna, este escenario ha cambiado recientemente con la llegada de nuevas tecnologías y metodologías. Entre ellas, los métodos computacionales se han convertido en un componente determinante en muchos programas de descubrimiento de fármacos. En un esfuerzo por incrementar las posibilidades de encontrar nuevas moléculas con potencial farmacológico, se utilizan técnicas como el cribado virtual de quimiotecas construidas con base en ligandos o estructuras para la identificación de hits y hasta para la optimización de compuestos líder. En lo que respecta al diseño y descubrimiento de nuevos candidatos a fármacos contra el cáncer, estos enfoques tienen, a la fecha, un impacto importante y aportan nuevas posibilidades terapéuticas. En este artículo se revisa el concepto del diseño racional de moléculas con potencial farmacológico, ilustrando los principios clave con algunos de los ejemplos más representativos y exitosos de moléculas identificadas mediante estas aproximaciones. Se incluyen casos desarrollados en el campo del diseño de fármacos contra el cáncer con la finalidad de mostrar cómo, con la ayuda del diseño asistido por computadora, se pueden generar nuevos fármacos que den esperanza a millones de pacientes.
RESUMEN
Developing a novel drug is a complex, risky, expensive and time-consuming venture. It is estimated that the conventional drug discovery process ending with a new medicine ready for the market can take up to 15 years and more than a billion USD. Fortunately, this scenario has recently changed with the arrival of new approaches. Many novel technologies and methodologies have been developed to increase the efficiency of the drug discovery process, and computational methodologies have become a crucial component of many drug discovery programs. From hit identification to lead optimization, techniques such as ligand- or structure-based virtual screening are widely used in many discovery efforts. It is the case for designing potential anticancer drugs and drug candidates, where these computational approaches have had a major impact over the years and have provided fruitful insights into the field of cancer. In this paper, we review the concept of rational design presenting some of the most representative examples of molecules identified by means of it. Key principles are illustrated through case studies including specifically successful achievements in the field of anticancer drug design to demonstrate that research advances, with the aid of in silico drug design, have the potential to create novel anticancer drugs.