Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1387945, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887281

RESUMEN

Introduction: The standard treatment for preventing rejection in vascularized composite allotransplantation (VCA) currently relies on systemic immunosuppression, which exposes the host to well-known side effects. Locally administered immunosuppression strategies have shown promising results to bypass this hurdle. Nevertheless, their progress has been slow, partially attributed to a limited understanding of the essential mechanisms underlying graft rejection. Recent discoveries highlight the crucial involvement of innate immune components, such as neutrophil extracellular traps (NETs), in organ transplantation. Here we aimed to prolong graft survival through a tacrolimus-based drug delivery system and to understand the role of NETs in VCA graft rejection. Methods: To prevent off-target toxicity and promote graft survival, we tested a locally administered tacrolimus-loaded on-demand drug delivery system (TGMS-TAC) in a multiple MHC-mismatched porcine VCA model. Off-target toxicity was assessed in tissue and blood. Graft rejection was evaluated macroscopically while the complement system, T cells, neutrophils and NETs were analyzed in graft tissues by immunofluorescence and/or western blot. Plasmatic levels of inflammatory cytokines were measured using a Luminex magnetic-bead porcine panel, and NETs were measured in plasma and tissue using DNA-MPO ELISA. Lastly, to evaluate the effect of tacrolimus on NET formation, NETs were induced in-vitro in porcine and human peripheral neutrophils following incubation with tacrolimus. Results: Repeated intra-graft administrations of TGMS-TAC minimized systemic toxicity and prolonged graft survival. Nevertheless, signs of rejection were observed at endpoint. Systemically, there were no increases in cytokine levels, complement anaphylatoxins, T-cell subpopulations, or neutrophils during rejection. Yet, tissue analysis showed local infiltration of T cells and neutrophils, together with neutrophil extracellular traps (NETs) in rejected grafts. Interestingly, intra-graft administration of tacrolimus contributed to a reduction in both T-cellular infiltration and NETs. In fact, in-vitro NETosis assessment showed a 62-84% reduction in NETs after stimulated neutrophils were treated with tacrolimus. Conclusion: Our data indicate that the proposed local delivery of immunosuppression avoids off-target toxicity while prolonging graft survival in a multiple MHC-mismatch VCA model. Furthermore, NETs are found to play a role in graft rejection and could therefore be a potential innovative therapeutic target.


Asunto(s)
Sistemas de Liberación de Medicamentos , Trampas Extracelulares , Rechazo de Injerto , Supervivencia de Injerto , Neutrófilos , Tacrolimus , Alotrasplante Compuesto Vascularizado , Trampas Extracelulares/inmunología , Trampas Extracelulares/efectos de los fármacos , Animales , Supervivencia de Injerto/efectos de los fármacos , Porcinos , Rechazo de Injerto/inmunología , Rechazo de Injerto/prevención & control , Tacrolimus/administración & dosificación , Neutrófilos/inmunología , Neutrófilos/efectos de los fármacos , Alotrasplante Compuesto Vascularizado/métodos , Inmunosupresores/administración & dosificación , Linfocitos T/inmunología , Humanos , Aloinjertos Compuestos/inmunología , Femenino
2.
J Colloid Interface Sci ; 659: 339-354, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38176243

RESUMEN

Nanotechnology's potential in revolutionising cancer treatments is evident in targeted drug delivery systems (DDSs) engineered to optimise therapeutic efficacy and minimise toxicity. This study examines a novel nanocarrier constructed with carbon nano-onions (CNOs), engineered and evaluated for its ability to selectively target cancer cells overexpressing the hyaluronic acid receptor; CD44. Our results highlighted that the CNO-based nanocarrier coupled with hyaluronic acid as the targeting agent demonstrated effective uptake by CD44+ PANC-1 and MIA PaCa-2 cells, while avoiding CD44- Capan-1 cells. The CNO-based nanocarrier also exhibited excellent biocompatibility in all tested pancreatic ductal adenocarcinoma (PDAC) cells, as well as healthy cells. Notably, the CNO-based nanocarrier was successfully loaded with chemotherapeutic 4-(N)-acyl- sidechain-containing prodrugs derived from gemcitabine (GEM). These prodrugs alone exhibited remarkable efficacy in killing PDAC cells which are known to be GEM resistant, and their efficacy was amplified when combined with the CNO-based nanocarrier, particularly in targeting GEM-resistant CD44+ PDAC cells. These findings demonstrate the potential of CNOs as promising scaffolds in advancing targeted DDSs, signifying the translational potential of carbon nanoparticles for cancer therapy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Profármacos , Humanos , Gemcitabina , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Cebollas , Ácido Hialurónico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Línea Celular Tumoral
3.
ACS Biomater Sci Eng ; 10(2): 697-722, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38241003

RESUMEN

Cancer theranostics developed through nanoengineering applications are essential for targeted oncologic interventions in the new era of personalized and precision medicine. Recently, small extracellular vesicles (sEVs) have emerged as an attractive nanoengineering platform for tumor-directed anticancer therapeutic delivery and imaging of malignant tumors. These natural nanoparticles have multiple advantages over synthetic nanoparticle-based delivery systems, such as intrinsic targeting ability, less immunogenicity, and a prolonged circulation time. Since the inception of sEVs as a viable replacement for liposomes (synthetic nanoparticles) as a drug delivery vehicle, many studies have attempted to further the therapeutic efficacy of sEVs. This article discusses engineering strategies for sEVs using physical and chemical methods to enhance their anticancer therapeutic delivery performance. We review physio-chemical techniques of effective therapeutic loading into sEV, sEV surface engineering for targeted entry of therapeutics, and its cancer environment sensitive release inside the cells/organ. Next, we also discuss the novel hybrid sEV systems developed by a combination of sEVs with lipid and metal nanoparticles to garner each component's benefits while overcoming their drawbacks. The article extensively analyzes multiple sEV labeling techniques developed and investigated for live tracking or imaging sEVs. Finally, we discuss the theranostic potential of engineered sEVs in future cancer care regimens.


Asunto(s)
Vesículas Extracelulares , Nanopartículas del Metal , Medicina de Precisión , Sistemas de Liberación de Medicamentos , Ingeniería
4.
Chemistry ; 30(19): e202303982, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38205882

RESUMEN

Cancer, responsible for approximately 10 million lives annually, urgently requires innovative treatments, as well as solutions to mitigate the limitations of traditional chemotherapy, such as long-term adverse side effects and multidrug resistance. This review focuses on Carbon Dots (CDs), an emergent class of nanoparticles (NPs) with remarkable physicochemical and biological properties, and their burgeoning applications in bioimaging and as nanocarriers in drug delivery systems for cancer treatment. The review initiates with an overview of NPs as nanocarriers, followed by an in-depth look into the biological barriers that could affect their distribution, from barriers to administration, to intracellular trafficking. It further explores CDs' synthesis, including both bottom-up and top-down approaches, and their notable biocompatibility, supported by a selection of in vitro, in vivo, and ex vivo studies. Special attention is given to CDs' role in bioimaging, highlighting their optical properties. The discussion extends to their emerging significance as drug carriers, particularly in the delivery of doxorubicin and other anticancer agents, underscoring recent advancements and challenges in this field. Finally, we showcase examples of other promising bioapplications of CDs, emergent owing to the NPs flexible design. As research on CDs evolves, we envisage key challenges, as well as the potential of CD-based systems in bioimaging and cancer therapy.


Asunto(s)
Antineoplásicos , Nanopartículas , Puntos Cuánticos , Sistemas de Liberación de Medicamentos/métodos , Antineoplásicos/uso terapéutico , Nanopartículas/química , Doxorrubicina , Portadores de Fármacos , Puntos Cuánticos/química
5.
Pharmaceutics ; 15(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37514050

RESUMEN

Innovative and new drug delivery systems (DDSs) have recently been developed to vehicle treatments and drugs to the ocular posterior segment and the retina. New formulations and technological developments, such as nanotechnology, novel matrices, and non-traditional treatment strategies, open new perspectives in this field. The aim of this mini-review is to highlight promising strategies reported in the current literature based on innovative routes to overcome the anatomical and physiological barriers of the vitreoretinal structures. The paper also describes the challenges in finding appropriate and pertinent treatments that provide safety and efficacy and the problems related to patient compliance, acceptability, effectiveness, and sustained drug delivery. The clinical application of these experimental approaches can help pave the way for standardizing the use of DDSs in developing enhanced treatment strategies and personalized therapeutic options for ocular pathologies.

6.
Pharmaceutics ; 15(7)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37514089

RESUMEN

Bioinspired (or biologically inspired) drug delivery systems (DDSs) have been intensively studied in the last decades. As bioinspired DDSs, membrane vesicles, including extracellular vesicles (EVs) released from eukaryotic cells, outer membrane vesicles (OMVs) from bacteria, cell-bound membrane vesicles (CBMVs) isolated in situ from cell surfaces, membrane vesicles reorganized after the isolation of the plasma membrane of cells, and others have been rapidly developed and are attracting more and more attention. Most recently, a collection of 25 papers on the advances in membrane vesicle-based drug delivery systems was published in a Special Issue of Pharmaceutics entitled "Advances of membrane vesicles in drug delivery systems". These papers cover many related topics including the source, preparation, modification, drug loading, and in vivo administration and biodistribution of membrane vesicles (mainly extracellular vesicles or exosomes and bacterial outer membrane vesicles), as well as application of membrane vesicles as DDSs in the treatment of various diseases.

7.
Pharmaceutics ; 15(6)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37376211

RESUMEN

Acute and chronic bone infections, especially those caused by methicillin-resistant Staphylococcus aureus (MRSA), remains a major complication and therapeutic challenge. It is documented that local administration of vancomycin offers better results than the usual routes of administration (e.g., intravenous) when ischemic areas are present. In this work, we evaluate the antimicrobial efficacy against S. aureus and S. epidermidis of a novel hybrid 3D-printed scaffold based on polycaprolactone (PCL) and a chitosan (CS) hydrogel loaded with different vancomycin (Van) concentrations (1, 5, 10, 20%). Two cold plasma treatments were used to improve the adhesion of CS hydrogels to the PCL scaffolds by decreasing PCL hydrophobicity. Vancomycin release was measured by means of HPLC, and the biological response of ah-BM-MSCs growing in the presence of the scaffolds was evaluated in terms of cytotoxicity, proliferation, and osteogenic differentiation. The PCL/CS/Van scaffolds tested were found to be biocompatible, bioactive, and bactericide, as demonstrated by no cytotoxicity (LDH activity) or functional alteration (ALP activity, alizarin red staining) of the cultured cells and by bacterial inhibition. Our results suggest that the scaffolds developed would be excellent candidates for use in a wide range of biomedical fields such as drug delivery systems or tissue engineering applications.

8.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37372971

RESUMEN

The awareness of the existence of plant bioactive compounds, namely, phytochemicals (PHYs), with health properties is progressively expanding. Therefore, their massive introduction in the normal diet and in food supplements and their use as natural therapeutics to treat several diseases are increasingly emphasized by several sectors. In particular, most PHYs possessing antifungal, antiviral, anti-inflammatory, antibacterial, antiulcer, anti-cholesterol, hypoglycemic, immunomodulatory, and antioxidant properties have been isolated from plants. Additionally, their secondary modification with new functionalities to further improve their intrinsic beneficial effects has been extensively investigated. Unfortunately, although the idea of exploiting PHYs as therapeutics is amazing, its realization is far from simple, and the possibility of employing them as efficient clinically administrable drugs is almost utopic. Most PHYs are insoluble in water, and, especially when introduced orally, they hardly manage to pass through physiological barriers and scarcely reach the site of action in therapeutic concentrations. Their degradation by enzymatic and microbial digestion, as well as their rapid metabolism and excretion, strongly limits their in vivo activity. To overcome these drawbacks, several nanotechnological approaches have been used, and many nanosized PHY-loaded delivery systems have been developed. This paper, by reporting various case studies, reviews the foremost nanosuspension- and nanoemulsion-based techniques developed for formulating the most relevant PHYs into more bioavailable nanoparticles (NPs) that are suitable or promising for clinical application, mainly by oral administration. In addition, the acute and chronic toxic effects due to exposure to NPs reported so far, the possible nanotoxicity that could result from their massive employment, and ongoing actions to improve knowledge in this field are discussed. The state of the art concerning the actual clinical application of both PHYs and the nanotechnologically engineered PHYs is also reviewed.


Asunto(s)
Antioxidantes , Nanopartículas , Antioxidantes/farmacología , Antiinflamatorios/farmacología , Suplementos Dietéticos , Fitoquímicos , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos
9.
Curr Med Chem ; 2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37062062

RESUMEN

Conventional tumor therapeutic modalities, such as radiotherapy, chemotherapy, and surgery, involve low tumor inhibition efficiency, non-targeted drug delivery, and side effects. The development of novel and practical nano-drug delivery systems (DDSs) for targeted tumor therapy has become particularly important. Among various bioactive nanoparticles, chitosan is considered a suitable candidate for drug delivery due to its non-toxicity, good biocompatibility, and biodegradability. The amino and hydroxyl groups of chitosan endow it with the diverse function of chemical modification, thereby improving its physical and biological properties to meet the requirements of advanced biomedical applications. Therefore, it is necessary to review the property and applications of chitosan-based materials in biomedicine. In this review, the characteristics of chitosan related to its applications are first introduced, and then the preparation and modification of chitosan-based nanoparticles, including the function tailoring of chitosan-modified nanoparticles, are demonstrated and discussed. Finally, the opportunities and challenges of chitosan-based nanomaterials in this emerging field are proposed from the perspective of the rational and systematic design for the biomedicine field.

10.
Biomed Pharmacother ; 155: 113707, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36122520

RESUMEN

Due to the complexity and particularity of cancer cell microenvironments, redox responsive drug delivery systems (DDSs) for cancer therapy have been extensively explored. Compared with widely reported cancer treatment systems based on disulfide bonds, diselenide bonds have better redox properties and greater anticancer efficiency. In this review, the significance and application of diselenide bonds in DDSs are summarized, and the stimulation sensitivity of diselenide bonds is comprehensively reported. The potential and prospects for the application of diselenide bonds in next-generation anticancer drug treatment systems are extensively discussed.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/uso terapéutico , Oxidación-Reducción , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Disulfuros , Portadores de Fármacos/química , Microambiente Tumoral
11.
J Funct Biomater ; 13(1)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35225975

RESUMEN

Molecular recognition is a useful property shared by various molecules, such as antibodies, aptamers and molecularly imprinted polymers (MIPs). It allows these molecules to be potentially involved in many applications including biological and pharmaceutical research, diagnostics, theranostics, therapy and drug delivery. Antibodies, naturally produced by plasma cells, have been exploited for this purpose, but they present noticeable drawbacks, above all production cost and time. Therefore, several research studies for similar applications have been carried out about MIPs and the main studies are reported in this review. MIPs, indeed, are more versatile and cost-effective than conventional antibodies, but the lack of toxicity studies and their scarce use for practical applications, make it that further investigations on this kind of molecules need to be conducted.

12.
Cells ; 10(12)2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34943803

RESUMEN

Stimuli-responsive drug-delivery systems (DDSs) have emerged as a potential tool for applications in healthcare, mainly in the treatment of cancer where versatile nanocarriers are co-triggered by endogenous and exogenous stimuli. Two-dimensional (2D) cell cultures are the most important in vitro model used to evaluate the anticancer activity of these stimuli-responsive DDSs due to their easy manipulation and versatility. However, some limitations suggest that these in vitro models poorly predict the outcome of in vivo studies. One of the main drawbacks of 2D cell cultures is their inadequate representation of the 3D environment's physiological complexity, which sees cells interact with each other and the extracellular matrix (ECM) according to their specific cellular organization. In this regard, 3D cancer models are a promising approach that can overcome the main shortcomings of 2D cancer cell cultures, as these in vitro models possess many peculiarities by which they mimic in vivo tumors, including physiologically relevant cell-cell and cell-ECM interactions. This is, in our opinion, even more relevant when a stimuli-responsive DDS is being investigated. In this review, we therefore report and discuss endogenous and exogenous stimuli-responsive DDSs whose effectiveness has been tested using 3D cancer cell cultures.


Asunto(s)
Sistemas de Liberación de Medicamentos , Modelos Biológicos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Animales , Humanos , Campos Magnéticos , Especies Reactivas de Oxígeno/metabolismo
13.
Colloids Surf B Biointerfaces ; 204: 111790, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33932887

RESUMEN

In past decades, to improve the chemotherapeutic efficiency and reduce the systemic toxicity of small molecule anti-cancer drugs, polymer-based drug delivery systems (DDSs) have attracted great attention for tumor treatment due to their remarkable biocompatibility and responsive degradation in tumor microenvironment (TME). Herein, we developed a kind of pH-responsive and degradable hyperbranched polymeric nanocarriers via yne-phenol click-reaction of resveratrol (RSV) with bifunctional n-butyl dipropiolate (BDP) for efficient doxorubicin (DOX) delivery. The natural product RSV with three phenol groups has excellent antioxidant activity and synergetic enhancement for some anticancer drugs such as DOX. RSV tends to attack the alkynyl groups on BDP by nucleophilic addition in the presence of base as catalyst to afford hyperbranched polyprodrug (denoted as RB). PEGylated RB (termed as RBP) were further synthesized to improve the water solubility and prolong blood circulation by the click reaction of propiolate-terminated RB with amino terminated poly(ethylene glycol) (PEG-NH2). Interestingly, the RBP have high DOX loading ratio (∼58.6 %) at neutral pH, but the vinyl-ether bonds in RB could break down at low pH conditions such as acidic TME (extracellular pH∼6.8, endosomes and lysosomes pH∼5.0) that leading to the targeting release of DOX and RSV. Therefore, the developed RBP@DOX nanoparticles exhibited high kill efficiency to tumor cells and slight damage to normal cells due to the effective delivery and release of DOX and RSV in tumor sites and the synergistic enhancement effect of two drugs.


Asunto(s)
Doxorrubicina , Fenol , Línea Celular Tumoral , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Concentración de Iones de Hidrógeno , Polietilenglicoles , Polímeros
14.
Drug Deliv Transl Res ; 11(4): 1475-1497, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33860447

RESUMEN

Inflammation is the biological response of immune system to protect living organisms from injurious factors. However, excessive and uncontrolled inflammation is implicated in a variety of devastating chronic diseases including atherosclerosis, inflammatory bowel disease (IBD), and rheumatoid arthritis (RA). Improved understanding of inflammatory response has unveiled a rich assortment of anti-inflammatory therapeutics for the treatment and management of relevant chronic diseases. Notwithstanding these successes, clinical outcomes are variable among patients and serious adverse effects are often observed. Moreover, there exist some limitations for clinical anti-inflammatory therapeutics such as aqueous insolubility, low bioavailability, off-target effects, and poor accessibility to subcellular compartments. To address these challenges, the rational design of inflammation-specific drug delivery systems (DDSs) holds significant promise. Moreover, as compared to normal tissues, inflamed tissue-associated pathological milieu (e.g., oxidative stress, acidic pH, and overexpressed enzymes) provides vital biochemical stimuli for triggered delivery of anti-inflammatory agents in a spatiotemporally controlled manner. In this review, we summarize recent advances in the development of anti-inflammatory DDSs with built-in pathological inflammation-specific responsiveness for the treatment of chronic inflammatory diseases.


Asunto(s)
Sistemas de Liberación de Medicamentos , Enfermedades Inflamatorias del Intestino , Antiinflamatorios/uso terapéutico , Enfermedad Crónica , Humanos , Inflamación/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico
15.
J Artif Organs ; 23(4): 348-357, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32632506

RESUMEN

Basic fibroblast growth factor (bFGF) promotes epithelial cell proliferation and angiogenesis but its clinical applications are limited by its short half-life and low retention. Recently developed gelatin hydrogel sheets able to release physiologically active substances in a controlled manner have the potential to overcome these issues. In this study, the effects of gelatin hydrogel sheets impregnated with bFGF on flap survival and angiogenesis were examined in a murine skin flap model. A flap of 1 × 3 cm was generated on the backs of 60 C57BL/6 mice. The mice were divided into five groups (n = 12/group): Group I, untreated; Group II, treated with a gelatin hydrogel sheet impregnated with saline; Group III, treated with bFGF (50 µg) without sheets; Groups IV and V, treated with gelatin hydrogel sheets impregnated with 50 and 100 µg of bFGF, respectively. On the seventh day after surgery, the flap survival area and vascular network were examined and hematoxylin and eosin and von Willebrand factor staining were used for histological examinations. The flap survival areas were significantly larger in Groups IV and V than in other groups. The area of new vessels was significantly larger in Group IV than in the other groups. In the murine skin flap model, gelatin hydrogel sheets impregnated with bFGF promoted angiogenesis and improved flap survival. These findings support the use of bFGF-impregnated gelatin hydrogel sheets for improving ischemic flap survival in clinical settings.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/farmacología , Gelatina/farmacología , Hidrogeles/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Colgajos Quirúrgicos , Animales , Ratones , Ratones Endogámicos C57BL
16.
Pharmaceutics ; 12(1)2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31947815

RESUMEN

Cytotoxic agents that are used conventionally in cancer therapy present limitations that affect their efficacy and safety profile, leading to serious adverse effects. In the aim to overcome these drawbacks, different approaches have been investigated and, among them, theranostics is attracting interest. This new field of medicine combines diagnosis with targeted therapy; therefore, the aim of this study was the preparation and characterization of Molecularly Imprinted Polymers (MIPs) selective for the anticancer drug Sunitinib (SUT) for the development of a novel theranostic system that is able to integrate the drug controlled release ability of MIPs with Rhodamine 6G as a fluorescent marker. MIPs were synthesized by precipitation polymerization and then functionalized with Rhodamine 6G by radical grafting. The obtained polymeric particles were characterized in terms of particles size and distribution, ξ-potential and fluorescent, and hydrophilic properties. Moreover, adsorption isotherms and kinetics and in vitro release properties were also investigated. The obtained binding data confirmed the selective recognition properties of MIP, revealing that SUT adsorption better fitted the Langmuir model, while the adsorption process followed the pseudo-first order kinetic model. Finally, the in vitro release studies highlighted the SUT controlled release behavior of MIP, which was well fitted with the Ritger-Peppas kinetic model. Therefore, the synthesized fluorescent MIP represents a promising material for the development of a theranostic platform for Sunitinib controlled release and self-monitoring in cancer therapy.

17.
Curr Drug Deliv ; 16(10): 923-930, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31663477

RESUMEN

BACKGROUND: It has been shown that curcumin (Cur) has anti-plasmodial activity; however, its weak bioavailability, rapid metabolism, and limited chemical stability have restricted its application in clinical usages. Nanostructured lipid carriers (NLCs) are a type of Drug-Delivery Systems (DDSs) whose core matrix is composed of both solid and liquid lipids. OBJECTIVE: The aim of the current study was to prepare and characterize curcumin-loaded nanostructured lipid carriers (Cur-NLC) for malaria treatment. METHODS: For producing NLC, coconut oil and cetyl palmitate were selected as a liquid and solid lipid, respectively. In order to prepare the Cur-NLC, the microemulsion method was applied. General toxicity assay on Artemia salina as well as hemocompatibility was investigated. Anti-plasmodial activity was studied on mice infected with Plasmodium berghei. RESULTS: The NLCs mean particle size and Polydispersity Index (PI) were 145 nm and 0.3, respectively. Further, the zeta potential of the Cur-NLC was -25 mV. The NLCs indicated a pseudo-spherical shape observed via transmission electron microscopy (TEM). The loading capacity and encapsulation efficacy of the obtained Cur-NLC were 3.1 ± 0.015% and 74 ± 3.32%, respectively. In vitro, Cur release profiles showed a sustained-release pattern up to 5 days in the synthesized Cur-NLC. The results of in vivo antiplasmodial activity against P. berghei revealed that antimalarial activity of Cur-NLC was significantly higher compared with that of free Cur at the dose of 40 mg/kg/day. CONCLUSION: The results of this study suggested that NLC would be used as a potential nanocarrier for the treatment of malaria.


Asunto(s)
Antimaláricos/farmacología , Curcumina/farmacología , Lípidos/química , Malaria/tratamiento farmacológico , Nanoestructuras/química , Plasmodium berghei/efectos de los fármacos , Animales , Antimaláricos/química , Artemia/efectos de los fármacos , Curcumina/química , Modelos Animales de Enfermedad , Portadores de Fármacos/química , Liberación de Fármacos , Femenino , Humanos , Ratones , Tamaño de la Partícula , Propiedades de Superficie
18.
Curr Med Chem ; 26(18): 3341-3369, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29446726

RESUMEN

BACKGROUND: Metal-organic frameworks (MOFs), as a new class of porous organic-inorganic crystalline hybrid materials that governed by the self-assembled of metal atoms and organic struts have attracted tremendous attention because of their special properties. Recently, some more documents have reported different types of nanoscale metal-organic frameworks (NMOFs) as biodegradable and physiological pH-responsive systems for photothermal therapy and radiation therapy in the body. DISCUSSION: In this review paper aims at describing the benefits of using MOF nanoparticles in the field of biomedicine, and putting into perspective their properties in the context of the ones of other NPs. The first section briefly reviews the biomaterial scaffolds of MOFs. The second section presents the main types of stimuli-responsive mechanisms and strategies from two categories: intrinsic (pH, redox state) and extrinsic (temperature, light irradiation and magnetic field) ones. The combinations of photothermal therapy and radiation therapy have been concluded in detail. Finally, clinical applications of MOFs, future challenges and perspectives are also mentioned. CONCLUSION: This review outlines the most recent advances MOFs design and biomedical applications, from different synthesis to their use as smart drug delivery systems, bioimaging technology or a combination of both.


Asunto(s)
Preparaciones de Acción Retardada/química , Portadores de Fármacos/química , Estructuras Metalorgánicas/química , Nanoestructuras/química , Animales , Terapia Combinada/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Estructuras Metalorgánicas/farmacología , Nanoestructuras/toxicidad , Imagen Óptica/métodos , Fototerapia/métodos , Radioterapia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA